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In the electrostatics, we can determine the electric field field !E(!r) and the
potential V (r) using the first Maxwell equation :

∇ · !E = ρ/ε0 (1)

where in the Cartesian coordinates, ∇ = î ∂
∂x + ĵ ∂

∂y + k̂ ∂
∂z , and the relation

!E = −∇V (2)

when ρ is zero. This procedure requires that we have already known the charge
distribution ρ. But how if we have not known the charge distribution? In this
essay, I will describe one of the methods used in the electrostatics which is called
The Image Method and applied it to some examples. Let us first take a look on
a conductor.

The Conductors

A conductor is defined as a material which can conduct electricity well. It means
the electrons can move freely from one point to another inside the material
under an applied electric field. If we isolate the conductor and apply a constant
electric field, then the charges inside the conductor will rearrange their position
to compensate the external field, so the electric field inside the conductor is
zero. Then we have no charge density inside it, and only exist at the surface of
the conductor called the surface charge density.

Now we know that there is a charge distribution at the surface of the conduc-
tor, so we can determine the electric field produced by this charge distribution
using eq. (1). With the help of the Gauss’ divergence theorem which states that

∫

V
∇ · !E dV =

∮

S

!E · n̂ dS (3)

where dS is the element of closed surface area. Then we get
∫

V
∇ · !E dV =

1

ε0

∫

V
ρ dV =

Qs

ε0
(4)
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then
∮

S

!E · n̂ dS =
Qs

ε0
(5)

where n̂ is the unit vector normal to the surface of the conductor, and Qs is the
surface charge. We can consider the closed surface area to be a cylinder put at
the surface, so the top side of the cylinder is at the outside of the surface and
the bottom side is inside it. Since no electric field exist inside the conductor,
the electric field is going outside the surface. From eq. (5) we get

!E · n̂ = σ/ε0 (6)

where σ is the surface charge distribution defined as σ = Qs/A where A is the
surface area of the conductor.

The Boundary Value Problem

Enough with the conductor, now we are going back to our problem: If we do
not know the value of the charge distribution, how can we find the electric
field and the electric potential. Let us look as this case: Suppose we have a
perfectly conducting plane which is grounded, so the electric potential V is zero
at the surface. Then we have a positive charge Q put above the surface of the
conductor. Now we want to know the electric field and the potential near this
charge.

The readers may argue that we have already know the value of the charge
(which is Q), so this case is not fit into our problem: we do not know the value
of the charge and we want to know the electric field and the potential near
the charge. But look carefully to this case, when we put the positive charge Q
near the surface of the conductor, this will induce a negative charge distribution
on it, since by putting the positive charge there will be an electric field going
through the conductor and the charges on the conductor will rearrange their
position to maintain the electric field inside it to be zero, and we do not know
what the distribution is, so this case is still fit into our problem.

Now, the readers may argue again, why should the surface of the conductor
is set to be zero (grounded). Actually, this case is belong to the general problem
in the electrostatics called The Boundary Value Problem. This is the problem
where we try to determine the electric field without knowing the charge dis-
tribution and the potential distribution . What we have is the first Maxwell’s
equation (eq. 1) and the relation between the electric field and the potential
(eq. 2). By substituting eq. (2) to eq. (1) we have

∇2V = −
ρ

ε0
(7)

This equation is called the Poisson’s equation. If we set ρ = 0 (for a charge free
region), we have the special case

∇2V = 0 (8)
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which is called the Laplace’s equation.
Now, there is a procedure to solve both equations. First, we try to solve the

Laplace’s or Poisson’s equation using direct integration when V is a function of
one variable or using the separation of variable if V is a function of more than
one variable. Of course there would be some unknown integration constants.
To determine these constants, we apply the boundary condition (that is why
we set V = 0 at the surface of the conductor in our case). After obtaining the
potential V , we can get the electric field using eq. (2) and the induced charge
distribution σ using eq. (6).

The Image Method

To do the first step, we have learnt the method of separation of variable and the
solution to the spherical coordinates in the lecture. There is another method
which is quite useful in tackling a specific problem like in our case. The method
is called the image method, introduced for the first time in 1848 by the great
physicist Lord Kelvin. This method states that a charge configuration put above
an infinite grounded perfect conducting plane, can be replaced by the charge
configuration, the image charge and an equipotential surface in the place of the
conducting plane. When we use this method, we have to have the image charge
put in the conducting region, so the eq. (7) is satisfied. Another condition is that
the image charge should be located such that the potential of the conducting
plane is zero or constant, so the boundary condition is satisfied. By using
this method, we do not have to solve the Poisson’s or the Laplace’s equation.
However, this method can only be applied to a specific problem like what we
have in our case. Let us look at some examples:

Example 1: a point charge above a grounded conducting
plane

We look back to our case: we have a positive point charge Q put at a distance of h
above a perfectly conducting plane which is grounded, so the electric potential at
the surface is zero (see figure 1a). We can consider that the plane is lying on the
xy plane, and the point charge is above the centre of this plane so x = 0, y = 0
and z = h. Now, we replace the conducting plane with an equipotential surface,
which is zero, and an image (fictious) point charge −Q (figure 1b) (we choose
that the value of the image point charge is the same with the real point charge,
but with opposite charge, and the same distance from the surface, but with the
opposite direction. This choices will make the potential at the surface is zero,
as required). The electric field at the point P (x, y, z) is given by:

"E("r) =
Q

4πε0r3
1

"r1 +
−Q

4πε3
2

"r2

r1 is the distace of point P from the real point charge, and r2 is the distance of
point P from the image charge, given by:
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Figure 1: (a) a point charge above a grounded conducting plane (b) the image
configuration

!r1 = (x, y, z) − (0, 0, h) = xî + yĵ + (z − h)k̂

!r2 = (x, y, z) − (0, 0,−h) = xî + yĵ + (z + h)k̂

so, we have

!E =
Q

4πε0

{

xî + yĵ + (z − h)k̂

[x2 + y2 + (z − h)2]3/2
−

xî + yĵ + (z + h)k̂

[x2 + y2 + (z + h)2]3/2

}

(9)

Now we can determine the potential at P using eq. (2) so V = −
∫

!E · d!r.
Thus,

V (r) =
Q

4πε0r1
+

−Q

4πε0r2

=
Q

4πε0

{

1

[x2 + y2 + (z − h)2]1/2
−

1

[x2 + y2 + (z + h)2]1/2

}

for z > 0 and V = 0 for z ≤ 0.
We want to know the surface charge distribution at the surface of the con-

ducting plane. By setting z = 0 for the eq. (9) and using eq. (6) we get

σ = ε0
!E(z = 0) · n̂ =

−Qh

2π[x2 + y2 + h2]3/2

We can see that the charge distribution is maximum at the surface under the
point charge and decrease rapidly if we move from this point (see figure 2).

This negative charge distribution will exert a force on the positive point
charge toward the surface, which is simply:

!F =
−Q2

4πε0(2h)2
k̂
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Figure 2: The surface charge distribution of a perfectly conducting plane when
a positive charge Q is located at a distance h above it. We use the value of
Q = 1 and h = 5.

Example 2 : a point charge near a conducting sphere

Suppose we have a grounded conducting sphere of radius R and we put a positive
point charge Q near the sphere with a distance of d0 from the centre of the
sphere. From symmetry, the image charge q should be located on the line
joining the centre of the sphere and the positive point charge (assume that the
unit vector along this line is k̂). Now, what is the value of the image charge? We
cannot set the value to be the same as the real point charge with the opposite
sign as we did for the example 1 (we will see the reason below). By using the
image method, it is required that the equipotential surface is zero. Suppose that
the image charge has a distance of !r1 = !R − !d to point P at the surface of the
sphere and !r2 = !R − !d0 for the real charge (see figure 3a). Since the potential
at the surface should be zero, then

Vp =
1

4πε0

(

Q

|!R − !d0|
+

q

|!R − !d|

)

= 0

So we have
Q

|!R − !d0|
=

−q

|!R − !d|

We can write the above equation as

Q/R

|r̂ − d0

R k̂|
=

−q/d

|r̂R
d − k̂|

(10)

so we can set both the denominators and the numerators are equal:

q =
d

R
Q
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Figure 3: A point charge and a grounded conducting sphere

|r̂ −
d0

R
k̂| = |r̂

R

d
− k̂| (11)

If we square eq. (11), we get

1 − 2
d0

R
(k̂ · r̂) +

(

d0

R

)2

= 1 − 2
R

d
(k̂ · r̂) +

(

R

d

)2

(12)

In order to be the same, each term in eq. (12) should be the same, so we have

d0

R
=

R

d
so d =

R2

d0
and q = −

R

d0
Q

Now, the reader might ask: why don’t we factorise out R in eq. (10) both sides?
Well, if we did that, then we end up with q = −Q and d = d0. Since the image
method requires that the image charge should be located in the conducting
region, this cannot be the solution.

Now we have the value of the image charge and its position from the centre
of the sphere. We can determine the potential at point P which is outside the
sphere with a distance of r from the centre of the sphere (figure 3b):

V =
1

4πε0

(

Q

|#r − #d0|
+

Qd/R

|#r − #d|

)

and the electric field

#E(#r) =
1

4πε0

(

Q(#r − #d0)

|#r − #d0|3
+

−Qd/R(#r − #d

|#r − #d|3

)
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To get the electric field at the surface of the sphere, we set !r = !R

!E(!r = !R) =
Q

4πε0

{

!R − !d0

|!R − !d0|3
+

−R/d0(!R − !d

|!R − !d|3

}

We can write the above equation in term of θ using the Cosinus Law:

|!R − !d0| =
√

R2 + d2
0 − 2Rd0 cos θ

|!R − !d| =
√

R2 + d2 − 2Rd cos θ

and the relation d = R2/d0. So we get

!E(!r = !R) =
Q

4πε0

{

!R − d0k̂

[R2 + d2
0 − 2Rd0 cos θ]3/2

−
(R/d0)(!R − (R2/d0)k̂)

[R2 + R4/d2
0 − dR3/d0 cos θ]3/2

}

rearrange the above equation, we will get

!E(!r = !R) = −
Q

4πε0R2

d2
0/R2 − 1

[d2
0/R2 − 2d0/R cos θ + 1]3/2

r̂

We can see that the electric field is normal to the surface of the sphere, using
eq. (6) We get the surface charge distribution to be

σ = −
Q

4πR2

d2
0/R2 − 1

[d2
0/R2 − 2d0/R cos θ + 1]3/2

From figure 4, we can see that the charge density is maximum at θ = 0
and minimum at θ = π. The force exerted on the positive point charge by the
induced charge distribution is :

!F =
Q2

4πε0

(R/d0)

(d0 − d)2
=

Q2

4πε0d2
0

(R/d)0

(1 − R2/d2
0)

2

In summary, we can see that the image method is very useful in calculating
the induced charge distribution at a conducting surface due to the presence of
a charge configuration and also the electric field and the potential near this
system. However, this method can only be applied to this specific problem.
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Figure 4: The dependence of the surface charge distribution with the angle
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