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ABSTRACT 
 

           In this brief article, the extension of density functional theory for non-equilibrium 
systems is presented. Density functional theory is a powerful framework in order to 
study the static properties of electronic systems via a variatonal principle whereby 
the density (varies in 3 dimension space) holds a key role instead of the many-
body wave function. Evans (Adv. Phys., 1979) fully realized the importance of this, 
and extended the theory for inhomogenous fluid systems. Then in an urgent need 
to extend the the theory for dynamical equilibrium or non-equilibrium systems, 
comes dynamical density functional theory. Here, the idea behind dynamical 
density functional theory is given based on the Smoluchowski equation.    
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INTRODUCTION 
 

 

In everyday life many physical phenomena are 

non-equilibrium in nature. These phenomena 

includes, transport processes in biological 

systems[1-3], (out-of-equilibrium) pattern 

formation[4-5], weather forecast[6-8], the behavior 

of a group of insects[1,9], birth and death rate[10], 

the evolution of the stock market[11], so forth.  

 

In physics, a wide variety of non-equilibrium 

behavior can be observed ranging from high 

energy physics[12-14], nano-scale 

phenomena[15], quantum optics (laser and 

maser)[12,16], radioactive decay[17], chemical 

reactions[18], soft materials, e.g. sedimentation of 

colloids[19,20], and liquid crystals[21,22], up to 

astrophysics and cosmology[23].  

 

There is an interesting underlying principle of 

such diverse physical phenomena which is 

worthwhile to be studied. This is their stochastic 

behavior driven by external forces such that non-

vanishing current occurs in the systems.  

 

Hence, it is clear that these phenomena should be 

studied through statistical physics. However, we 

cannot directly apply the usual equilibrium 

statistical physics to non-equilibrium systems. 

This is of course a consequence of the systems 

being driven by some external potential which 

need not be thermally activated. In equilibrium 

regime, such currents are absence. That is why 

the so called non-equilibrium statistical mechanics 

is needed. 

 

EQUILIBRIUM AND NON-EQUILIBRIUM 

STATISTICAL MECHANICS    

 

Equilibrium statistical mechanics deals with static 

microscopic properties of a system, which is the 

basis for thermodynamics. The foundation of 

equilibrium statistical mechanics itself is well-

established, especially with the concept of Gibbs 

ensemble. Using the latter, we may construct the 

partition function of a system, and then the 

thermodynamic properties of the system may be 

derived.  

 

This is in contrast with non-equilibrium statistical 

mechanics. Although, abundant phenomena are 

non-equilibrium, there is no consensus on the 

foundation of non-equilibrium statistical 

mechanics. One reason is that there is no widely 

accepted definition of an ensemble. This drives 

physicists to study non-equilibrium systems using 

various kinetic theories. Furthermore, the 

connections between these theories are still 

lacking. In other words, non-equilibrium statistical 

mechanics is still under construction.  

 

There are, however, two main approaches in 

order to study stochastic processes, ie.: i) 

studying the trajectory a single Brownian particle, 

which is govern by a stochastic differential 

equation, and ii) studying the time evolution of the 

probability density, ! r, ! , that satisfies the  

Fokker-Planck equation. Especially in this article, 

we use the second approach.  

 

DENSITY FUNCTIONAL THEORY 

 

As mentioned above, the standard method in 

exploring a physical system using equilibrium 

statistical mechanics is to construct the partition 

function of the system. Now, the partition function 
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is still dependent upon the microscopic details of 

the system, i.e. all of the degrees of freedom that 

make up the system. Thus, if more particles are 

involved in the system (many-body problem) then 

the form of the partition function may become 

more complicated. 

 

An alternative way to study static equilibrium 

systems without invoking directly the partition 

function is through the so-called classical density 

functional theory (DFT). This is a powerful 

framework to study static equilibrium systems 

based on a variational principle. This theory is 

utilized in classical statistical physics for 

describing phenomena in inhomogeneous fluids 

including adsorption [24,25], freezing [26], surface 

and interface behavior [27], and colloid-polymer 

mixtures [28].  

 

In general, the main objective of DFT is to 

construct an approximate functional for the 

intrinsic free energy ℱ of a classical system. In 

order to achieve this, the theory uses the concept 

that ℱ can be written as a functional of the one-

body density !(!), viz. ℱ[!(!)], where ! is the 

position coordinate. Moreover, ℱ[!(!)] may be 

obtained via a Legendre transform of the grand 

potential functional Ω ! ! , which is also a 

functional of the density. A functional derivative of 

the free energy with respect to density gives the 

one-body direct correlation function, i.e.: !(!)[!; !]. 

An important step in any DFT is the variational 

principle, in which Ω[!] is minimized, i.e. the 

functional derivative of Ω[!] with respect to ! !  

vanishes at the correct equilibrium density !! ! . 

Once !! !  is attained, one may then derived 

other thermodynamic quantities of the system.    

 

This is why classical DFT is somewhat ‘simplifies’ 

the standard method of statistical, i.e.: rather than 

determining the many-body probability density of 

the system, we directly use the one-body density 

which only depends upon three space variables. 

However, one problem concerning any DFT is 

that ℱ[!], is unknown, except for a special case of 

the hard rods model. That is why, most often, the 

(excess) free energy is largely obtained by 

various approximation. If we are not careful in 

constructing an approximation for the free energy, 

we may drift away from the true physical aspect of 

the system. The functional might not reflect the 

true behavior of the system. This resulted in the 

so-called uncontrolled approximations.  

 

TOWARDS DYNAMICAL DFT 

 

DFT was first formulated for quantum mechanical 

systems by P. Hohenberg and W. Kohn in 1964, 

which is contained in [29]. DFT was fully 

operational via a method introduced by Kohn and 

L. J. Sham in 1965 [30]. For his part in the 

development of DFT, W. Kohn together with J. 

Pople received the noble prize in chemistry in 

1998. Because of the simplicity in its application, 

DFT is now considered as the standard method in 

studying the structure of matter in chemistry. 

 

The use of DFT is not jut limited to quantum 

systems. Extension of DFT for finite systems was 

formulated by Mermin [31]. This is the basis for 

classical DFT, which is fully realized by Evans 

[32].     

 

The success of classical DFT in describing 

various properties of equilibrium systems leads to 

a natural desire to use it in attempts to treat non-

equilibrium systems [32-34]. There is an 
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appealing advantage of using DFT for dynamical 

systems, i.e. it provides insights into the dynamics 

of the systems on the microscopic level via 

statistical mechanics.      

 

Recently, there has been a vast number of results 

coming out of DFT that are devoted to dealing 

with off-equilibrium, near-equilibrium or relaxation 

to equilibrium systems. The extension of classical 

DFT to dynamical systems is known as dynamical 

DFT (DDFT)[34-36] or time-dependent DFT 

(TDDFT)[37-38]. 

 

APPLYING DYNAMICAL DFT  

 

To our knowledge the idea of using DFT to study 

dynamical systems and non-equilibrium systems 

following the success of (equilibrium) classical 

DFT was initially introduced around 1979 in [32], 

to analyze the kinetics of spinodal decomposition 

at the level of a varying time-dependent one-body 

density. In this early development of the DDFT, it 

is postulated [32, 33], without rigorous derivation, 

that the current density of a system is 

thermodynamically driven by the gradient of the 

(equilibrium) chemical potential, the latter being 

obtained as the functional derivative of the 

(equilibrium) free energy functional ℱ ! . In [33], a 

time-dependent one-body density, which has a 

structure of a generalized Smoluchowski 

equation, is derived using the aforementioned 

assumption combined with the continuity equation 

and the functional ℱ ! . Formal derivations of the 

DDFT or TDDFT then follows from numerous 

articles [34, 35, 37, 39] using various assumptions 

and kinetic equations as starting points, e.g. 

Browian motion [35], the Langevin equation [34], 

hydrodynamic equation [39], and Newton’s 

equation of motion [40]. Interestingly, the equation 

for the time evolution of the one-body density that 

is gained from this derivations has a rather similar 

form [41]. DDFT has been employed to study the 

dynamics of soft matters, including the glass 

transition of dense colloidal suspension [42], 

salvation of simple mixtures [43], ultrasoft particle 

under time-varying potentials [44], relaxation of 

model fluids of platelike colloidal particles [45], 

and sedimentation of hard-sphere-like colloidal 

particles confined in horizontal capillaries [46]. 

 

The concept of DDFT relies, as an input, on ℱ ! , 

which is a functional of the one-body density. The 

current density, i.e. the average number of 

particles going through a given volume per unit 

time, is obtained as an output of the theory. 

Based on the Smoluchowski equation, one 

obtains the equation [35], 

  

!
!" !, !
!"

= ∇! !, ! ∇
!Ω !
!" !, !

,                                                          (1) 

 

where ! !, !  is the time-dependent one-body 

density. The above equation gives the time 

evolution of the one-body density at position !. 
Equation (1) also relies on the postulate that the 

non-equilibrium fluctuation comes from the 

thermal fluctuation of the equilibrium system. 

Here, one strictly use the equilibrium grand 

potential functional.   

 

CONCLUSION  

 

We have explained in general equilibrium and 

non-equilibrium statistical mechanics. We then 

explain qualitatively about DFT. Finally, we 

describe the extension of DFT to dynamical 

systems, called dynamical DFT.   
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