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Abstraci—The Maximal Independent Set (MIS) formulstion
tuckles the graph coloring problem (GCP) as the partitioning of
vertices of a graph into & minimum sumber of mavimal
independent sets as each MIS can be assigned o anigue color.
Mehrotra and Trick 5] solved the MIS formulation with an exsct
IF approach, but they were restricted fo solving smaller ar easier
Instances. For harder Instances, it might be Impossible to pet the
optimal solution within & reasenable compuistion time. We
develop & hearistic slgorithm, hoping that we can solve these
probiems in more ressonable time. However, though heoristics
can find & nesr-optimal solation extremely Tost compared to the
viaci approsches, there is  still significant varistions in
performance that can only be explained by the fact that certain
structures or properifes in graphs may be better suited to some
heuristics more than sthers. Selecting the best algorithm on
average scross all instances does not help us pick the best ane for
a particolar instance. The need (v onderstand how the best
hewristic for & particalsr class of instance depends on these graph
propertles s an impartant lsspe. In this research, we wse dain
miming o sclect the best solufion strategies for classes of graph
caloring |ntances.

Keywords—graph coloring; integer linear programming:
algeriihm selection; dota mining; algorithm footprin

L INTRODUCTION

Many practical problems can be formulasted a5
combinatorial optimization problems, which can then
frequently be expressed naturally in terms of graphs and as
integer lincar programs, One of the most fanous problems in
graph theory is praph coloring. Graph coloring, or proper
colorng, has been a popular research lopic simce ils
iniroduction 1o solve the map coloring problem more than 150
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yoars ago. Consider an undirected graph & = (V, E) where ¥V
is a set of verfices (nodes) and E 15 the set of edges, with
[V] = n and|E] = m. The Graph Coloring Problem (GCP) is
defined as coloring the verfices v € Vsuch that no two
adjacent vertices (u, v) € E are assigned the same color. The
most commaon type of graph coloring seeks 10 minimize the
number of colors for 6. The mintmum number of colors with
which the vertices of G can be colored is called the chromatic
number of G, denoted by x{G). The eoloring problem is then
to determing y{G) and o find a coloring of G that uses 3(G)
eolors. (CF can be formulated in many different ways.

A formulation of GCP based on maximal independent sets
was introduced by Mehrotra and Trick [5], and it is known as
the Maximal Independent Set (MIS) formulation. They
formulated the GCP as & problem of panitioning the vertices
of a graph into a minimum number of maximal independent
sets as cach maximal independent set can be assigned a unique
color, The MIS formulstion does not have s symmetry
problem like the standard mode] because it does not involve
assigning a specific color to a verex but it simply defines
which vertices receive the same color. One of the advantages
of the MIS formulation iz the lower bound provided by the
lincar relaxation of the formulation is at least as good as the
one provided by the standard formulation, and probably better.
The computstional resulis show that Mchrotm and Trck's
approach can conswstently solve instances with wp o 70
vertices for random graphs and 250 vertices for random
geometric graph. Thus, they have successfully solved two NP-
hard problems, the Maximum Weight Independent Set
(MWIS) problem and an Integer Programming (IP) pricing
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md so far it gives the most efficient exact
methods to solve GCP of small to medium sizes.

However, the fact that the method mvolves solving two
MNP-Hard problems means that it will not scale up to larger
instances. Previous experiments showed that most of the time
of the column generation technique is spent in solving the
pricmg sub-problem, while solving the master problem of LP
relaxation takes a smill fraction of the whole time. The MIS
formulation introduced by Mehrotra and Trick has some
imieresiing properiies: it does not have a symmetry problem:
and & vertex vE V is not dominated if and omly if the
corresponding constraint is facet defining such that the linear
relaxation of the formulation provides good lower bound.
These properties make it atiractive and raise some interesting
questions such as: Can a feasible (optimal) solution o LP
relaxation lead us to & good feasible (or even optimal) solution
to the GCP? What is the gap between the best integral solution
obtained from an optimal solution of the LP relaxstion and
optimal solution of GCP? How does one construct a good
integral solution efficiently from the optimal solution of the
LP relaxation? Can the final pricing sub-problem used to get a
good approximate solutionto the GCP? Hence to answer the
ahove questions, we propose four different strategies to solve
the GCP by exploiting the fractional solwion of the LP
relaxation. They are LP-IP which solves the LP relaxation
exactly and constructs an integral solution using the exact IP
method, LPapprox-IP  which solves the LP relaxation

and constructs sn integral solution using the
exact [P method, LP-intHeuristic which solves the LP
relaxation exactly and constructs an integral solution using a
rounding heuristic, and LPappeox-intHeuristie which solves
the LP relaxation approximately and constroct an integral
sofution using & rounding heuristics.

Although heuristics might be able to find pood feasible
solutions extremely fast compared 10 exact approaches, there
is still sigmificant variation in performance that can caly be
explained by the fact that certain structure properties in graphs
may be better suited to some beuristics more than others. The
tued 1o understand how the best heuristic for particular classes
of instances depends on these graph properties is an important
isspe, Time and complexities can be minimized by knowing
which algorithm to use for a particular instance rather than
testing all algorithms by trial and emor. Selecting the best
algorithm on average across all imstances does not help os pack
the hest one for a particular instance. Wolpert and Macready's
[15] Mo-Free-Lunch (NFL) theorems tell us that if an
algorithm does particularhywell on one class of problems then
there are likely to be other classes of instances where it will
perform poorly. Instances arising from some applications are
actually not as hard as the theory predicts; while others can be
just as bad as the worst case; so it is valuable o onderstand
how an algorithm performs on varions kinds of instances. The
features of instances can help determine this, and seme recent
work [13] has begun to show how the feamres of graphs
determing the of graph coloring heuristics like
DSATUR [1] and tabu search [4]. In this research, we extend
such analysis 1o understand how our four proposed approaches
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ahove performs on average across all test instances, as well as
to perform data mining analysis to determine hiw the festures
of graphs affect algorithm performance. Specifically, we
determine if there are particular classes of instances where one
dominates the others, and aim to chamacterize the
features of such instances. Thus, by using the powerful facet-
defining MIS formulation for GCP, the goals of this research
are firstly i find out if computational efficiencies can be
ohtained by using the LP relaxation to yvield integer feasible
salutions, and whether the LP needs to be solved exsetly or if
an approximation is sufficient. Likewise, we determine if the
imteger feasible solution needs to be solved exactly from the
LP relaxation, or does a heuristic rounding procedure yield the
same results? We will compare the proposed hewrstic
algorithms to general purpose heuristics commonly used for
graph coloring, and downloaded from Joe Culberson's graph
coloring weh resources page [3] We will also study the
festures of & collection of the graphs and determine if these
festures are predictive of algorithm performance for classes of
instances. All of the computational experiments will use the
DIMACS benchmark instances and some additional randomly
generated instances (geometric and random graphs) from
generators available from Culberson's web site [17].

1.  PRELIMINARY CONCEPTS

A. Formulation of GCP
In this section, we iotroduce the classical Imfeger Linear
Programming models for GCP. Let € be an upper bound on
the number of colors. Then a straight forward 1LP model for
GCP can be defined using (€ + 1) [V] binary variables [2].
The standard formulation is

£
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where x,. = 1 if color ¢ is assigned o vertex v and x,. =0
otherwise. The binary variables ¥, indicate whether color ¢ is
used in some verices, i.e. y. = 1if x,. = 1 for some vertex v.
Constraint (1) ensures that each veriex receives exactly one
color, while constraint (2) ensures that adjacent vertices have
different colors. Finally comstraint (3) imposes the variahles to
be binary.

In [6), Mehrotra and Trick proposed an alternative
formulation for the GCP. The formulation relies on the fact
that any set of vertices that have the same color is an
independent sct. In other words, independent sets can be nsed
to represent the set of vertices that have the same color. Based
on that the GCP can be formulsted as (The Maximal

Independent Set Formulation ):
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where | is the index set of all maximal independent sets of
. The binary variables x; indicate whether the vertices in the
maximal independent set 5; could be assigned to the same
color or not, In other words, x; = 1 implies thar verfices that
re in the maximal independent set §; could have the same
color, while x; = 0 implies that the vertices are not required
to have the same color. Thus the abjective fimction is to find
the minimum number of maximal independent sets that cover
all vertices of the graph G. Constraint (4) ensures that every
mta:umﬂmgr-phmmthelmgmuha:mmmﬂ
sel (ie. must receive at least ome color).

Constraint () states that variahle x; must be hinary.

B. Heuristics Approach to the GCP

Good heuristic algorithms are essential to tackle hard
optimization problems. Using heuristics one might be able to
find good feasible solotion quickly. Moreover, heunistics are
useful 1o tighten the bounds and consequently to reduce the
search space, especially in enumerative approaches such as
branch and bomnd/cut‘price. This motivates the large amount
of litersture conceming the beuristic and metaheuristic
approaches for GCP. Some of the most popular heuristics and
mectaheuristics found in the literature are DSATUR (1] and
tnbu search [4].

DSATUR is one of the most well-known exact algorithms
and is exact for bipartite graphs [1]. It is a sequential vertex
coloring that successively colors the vertices sorted in
predetermined order hased on the ssturntion degree of a vertex.
Samration degree of & vertex is the number of different colars
compected to the vertex. DSATUR works by subdividing the
problem into sub-problems. TABU Search (TS) is a higher
level houristic algorithm for solving combinatorial optimization
problems. It is an ftemtive improvement that starts
from any initial feasible solution and attempts to determine a
betier solution. The version of this algorithm proposed by
Hertz [4] for graph coloring is referred to as TABUCOL.

C. Adlgorithm Selection

Research into algorithm performance has led o the
question of which algorithm is the most suitshle for particular
domains and cerain instances. In her research, Smith-Miles
[12] has formulated the questions: For a particular problam
domain, what are the features or characteristics of particular
instances of the problem that are likely to correlate with good
or bad algorithm performance? Can we model the relationship
between these characteristics and algonthm performance? To
answer those guestions, we can use the algorithm selection
framework proposed by John Rice in 1976 |7] as follows: For
a given problem instance x € P, with festures f(x) € F,
fmmeummmg&'[f[x}}mmﬂgmthmmd
such thar the selected algorithm @ €A minimizes the
performance mapping ¥ (@ (x)) € ¥ [B]. By using this
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maoidel, there are four essential components that can be derived
for graph coloring problems:

1. The problem space P: the input graphs defined by a

set of vertices and cdges.

2. The feature space F: the features or characteristics of

the graph.

3. The algorthm space A: all algorthms that we

consider to solve the graph coloring problems.

4. The performance space ¥: the minimum number of

colors found by an algorithm.

The collection of data describing [P, F, A, Y] i known as
meta-data [12]. The role of data mining is to leam the
relationship between the feature space and the performance
space so that performance cam be predicted based on the
features of an mstance alone, In addition, data visualization
techniques can be employed to gain insights into the
relationships in the high dimensional feature space. Data
mining methods will be utilized in this research to provide
insights into the strengths and weaknesses of the solution
strategics used in the research.

. SoLUTION STRATEGIES BASED ON LP RELAXATION

Wnpuﬂmwnuhumdm;iﬂdwnhpndtnyu
answers 0 the research questions. It includes the
preprocessing process before we begin the main computation,
the pricing problem, and our four different 10 solve
the final solution of LP relaxation to obtain & feasible integral
solution. From now on, without Joss of generality, we may
assume that all vertices in a graph are not dominated. IT the
graph has dominated vertices then using some preprocessing
we can always reduce the CG problem into a smaller problem
where po vertices are dominated,

A. LP Relaxation and Column Ceneration

We developed four greedy heuristics that we use o solve
the pricing problem. We use the best solution from these
heuristics to gencrate a new column for the restricted master
problem (RMP) if the reduced cost is negative. If the
heuristics fail, we solve the MWIS exactly. However, we
terminate the solver whenever it finds a column with negative
reduced cost. In this way, MWIS problem is solved exactly
only to prove the optimality. The four greedy beunstics are
Heuristic Based on the Maximum Weight, Heuristic Based on
the Net Marginal Weight, Heuristic Based on the Weight
Ratio, and Heuristic Based on the Weight of Neighborhoods.
B. Generating Feasible Integer Splution jor GOP

We introduce the column generation approach that we use
to solve the LPrelaxation of the MIS formulation of the GCP
in the previous section. From any feasible solution of the LP
relaxation we can construct a feasible solution o GCP. In this
section, we describe the exact approach that we use to find the
best solution for GOCP that could be obtained guided by the
optimal (most likely fractional) sofution of the LP relaxation,
Then we introduce some heuristic algorithms that could be
used to find a good integral solution using the optimal solution
of the relaxed problem.
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Exploiting the fractional solution, one might construct

different integral feasible solutions to the GCP. The most
siraight forward approach is by uming infeger programming.
Therefore, afier solving the LP relaxabon, we remove all
columns (independent scis) that are not in the optimal solution
from the final restricied master problem. Then we solve it as an
integer program. From & computstions]l point of view, this
approach might not be a very efficient way to construct an
imtegral solution to the GCP using the fractional solution,
However, it will provide us the best solution 1o the GCP thai
could be constructed using the fractional sohution,

However, for large problems it might be impossible to get
the optimal solution within & reasonshle computation time.
T'emtﬁne,mhudwdngedlhumdpnﬂlm;ﬂmhm
it a8 greedy rounding. The heuristic is efficient
and could be wsed for large problems to get a reasonably good
integral solution to the GCP. This greedy rounding constructs
mmmwmﬂmﬂmﬁmmu
relaxation, using three different heuristic algonthms and
provides the best solution as the final feasible mtegral solution
of the GCP. Our three different beuristic algorithms are
Heuristic based on Weight, Heuristic based on Number of
Cover, Heoristic based on Least Cover.

€. Solution Strategies for GCP

Based on our proposed algonthms above, we use a number
of different ways to find an intcgral feasible solution o the
GOP:

1. LP-IP: Solve the LP relaxation exactly and construct
an integral solution using the exact method,

2. LPapprox-IP: Solve the LP relaxation approximately
and construct an integml solution using the exact
method.

3, LP-IntHeuristic: Salve the LP relaxation exactly and
construct an integral solution using the roumding
heunstic,

4,  LPapprox-IntHewristic: Solve the LP relaxation
approximately and construct an imiegral sofution
using the roumding heuristic.

Wtdunmﬂhhqnﬂ:tyufﬂulﬂgﬂlmhﬂmmﬂ

problems. Approximation of the LP relaxation can be obtuined
by terminating the column generation approach early.

V. NUMERICAL RESULTS

We test our approaches on the benchmark data sets which
are widely used by many researchers and on some randomly
generated data set. All algorithms are implemented and tested
using CPLEX12.0] embedded in C++ on a machine with 15
processor, 3.33GHz, and 4 GRRAM, Throughout this paper,
the CPL times are reported in seconds. The instances used for
the experiments are DIMACS benchmarks instances mken
from  fipolidimacs nitgers edu/pobichallenge/graphf  and
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CPL time. There are 171 mstances in this group and mest of
them can be solved within few seconds. We also have 28 hard
instances. 'We call them hard instances as they are hard to
snlve exacily in a reasonable amount of time md most of the
proposed heuristic spproaches o the litermture use these
instances as a benchmark data set.

Applying each sohmion strategy to each graph, we cam
draw some conclusion about the average performance of each
strutegy. Generally, LP-IP strategy produces the best feasible
integral solutions among other heuristics, while the L Papprox-
heuristics. The LP-IP and the LPapprox-IPsolve maore
problems with the same solution quality compared to
DSATUR, while the LP-intHeuristic and the LPapprox-
solution quality, compared to tabu search.

In terms of trsde-off between the solution quality and the
compitational time, though the LP-IP provides feasible
golutions with the smallest gaps to the optimal sclution,
compared to the other heuristics, with a maximum gap of
20%, this heuristic requires much more time to solve the
problems on casy instances. The longest ime to solve the easy
instances is 1396 seconds and the longest computational time
w solve the harder msmnces is almost 7000 seconds. The
LPapprox-intHeuristic approach provides feasible solutions
with the maximum gap the same as the solution obtainedby
the LPIP for the easy instances, but it produces larger
maximum gap for the harder instances, which is 160%, where
the LP-IP only has 150% as the maximum gap. However, the
computational time spent to solve the GCP on both types of
instances are faster compare 1o the other bewnistics, up to 1407
seconds and 4034 seconds, respectively. Although the third
approach, the LP-intHeuristic . #olves the easy and
harder instances much faster compared to the two previous
strategies, where the maximum time spent for casy instances is
1019 seconds and for the harder mstances s 3847 seconds
{half time from LP-IP time), their feasible mtegral solutions
ohtained are bit worse, up to 33% for easy instances and 177%
fior the harder ones. However, the solutions produced by this
strategy are much better compared to the solutions obtained by
DSATUR which has the maximum gap of 43% and 128%for
easy and bhander instances, respectively. The LPapprox-
intHeuristic solves all instances with the fastest time, where
the maximum time spent for easy instances is 73 seconds and
for harder instances is 1005 seconds; they are 95% and B6%
faster compared fo the first strategy, LP-IP stmiegy.
Unformnarety, its solution qualities are much worse among
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other proposed approaches and DSATUR, but they are better
than the solotion obtained by tabu search and Greedy
approsches. Our fourth proposed approsch, LPapprox-
intHeuristic strategy, gives feasible integral solutions with the
maximum gap to the optimal solution up to 45% for easy
instances and 190% for harder ones. Therefore, DSATUR is
better to solve the harder mnstances compare to the LPapprox-
intHeuristic. The two geneml heuristics, tabu search and
Greedy, give similar solution quality but they have the largest
maximum gaps to the optimal solution compared wm the others,
which are about 71% for easy instances and 260% for harder
DIES.

To summarize our observations om the seven heuristics
above, we formulate the following observations. If the
solution quality is the only criterion 1o be taken into account
and an efficient exact IP approach is not available, the use of
LP-IP strategy or LPapprox-1P strategy for easy instances is
advised, while for the harder instances, the use of DSATUR is
advised, However, if both the solution quality and
computational time are relevant, we strongly recommend the
use of LP-intHeuristic, LPapprox-intHeurissic or DSATUR for
easy instinces and only LP-intHeuristic strategy or LPapprox-
intHeuristic strategy for hurder ones. Finally we advise not to
use tabu search or Greedy for both types of instances unless no
other choice is available,

V. PREDICTING ALGORITHM PERFORMANCE USING DATA

MINING

There are two types of solution approaches proposed and
used in this paper; exact and heuristic. Although heuristics can
often find a pear-optimal solution extremely fast compared to
exact approaches, the performance of amy heuristic is
verydependent on the properties of the instance. Time and
complexities can be minimired by knowing which approach to
use for a particular instance rather than testing all approaches
by trial and error, However, selecting the best algorithm on
average scross all instances does not help us pick the best one
for a particular instance, as supported by Wolpert and
Mbocready's [15] MNo-Free-Lunch (NFL) theorems. Even
though we have the experimental results for each proposed
approaches as well the other heuristics mentioned above, we
need to understand more abowt how our proposed approsches
perform on different subsets of test instances. We would like
o know if there are particular features of mstances that malke
smappmﬂmpmnﬂuﬁlﬂudmthm
research of Smith-Miles and Lopes [9], exploring the
featuresof graph coloring instances to determine if there is n
particalar class of instances where one approach dominates the
others is the final contribution of the research. Pan of this
work, focused on the generl purpose heuristics, has already
been published [13], and in this paper we extend the work
further to learn about the suitability of the exact and heuristics
sirategies based upon the MIS formulation of graph coloring.
We explore different features of mstances that have hesn
described  before, 1o determine which of our proposed
approaches, LP-IP, LPapprox-IP, LP-intHeurstic and
LPapprox-intHeuristic, as well as other general purpose
heuristics, DSATUR, tabu search and Greedy, gives a near-
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optimal solution for particular classes of instances. Here, dam
mining can help us 1o gain a good understanding of the
relationship  between the featires of instances amd the
performance of algorithms; in this case they are our proposed
strategies and three general heuristics: DSATUR, tabu scarch
and Greedy.

Graph featares are the properties of a graph that depends on
its abstract structures. In this research, graph features play
important roles as they have correlation with the
of graph coloring The analysis of different features
described below has been performed in our recent work [13] by
ming a Python interface 1o the open source software called
igraph and an open source library of scientific tools called
SciPy.

The 16 graph festures we used are: the pumber of vertices
in o graph (denocted by n); The oumber of edges in a graph
{denoted by m); The diameter of a graph; The density of a
graph; The average path length; The girth; Mean and standard
devistion ufnnd'cl The

i algebraic
graph spectrum. Dcmlnmbefmﬁm[i.}}

A. Experimental Meto-Data

We present ouwr experimental meta-daitn  using  the
framework proposedby Rice in 1976 [16], and adapted to the
study of optimization algorithm performance by Smith-Miles
[12]. There are four essential components in our meta datn that
are derived from the GCP:

I. The prohlem space F: a set of 63 easy instances and
28 harder instances, of which 64 imstances are
DIMACS benchmark instances and 27 instances are
geometric and mndom instances that are mndomly
genernted using Networks generstor.

2. The festure space F: a set of 16 features or
characteristics of graph as described above [13].

3. The algorithm space A: consists of four proposed
heuristic approaches: LP-IP, LPapprox-IP, LP-
miHeuristic and LPapprox-initHeuristic, and three
other general purpose heuristics: DSATUR, wba
search and ,

4, The performance space Y the mimmum namber of
colors found by an approach after a single run.

The Algorithm Selection Problem, defined by Rice [58],
requires us 1o learn the relationship between the fearure space
F and the algorithm performance space ¥ for cach algorithm
in the algorithm space 4, by using the instances in the problem
MFHEngdﬂ.W:w-Mnfwud
and unsupervised data mining techmiques to leam these
mlmm:pamdpmnmshmmdummm
B. Visualizing Instance Space

We begin with a self-organizing feature map (SOFM) to
vismalize the high dimensional festure space as a rwo
dimensional map of the instance space. Here, our instance
space comprises & set of 91 instances, where wach of these
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instances is defined by |6 features that are related to GCP. We

a preprocessing  procedure  which mwvolves two
mmhlﬁm“mm
& logarithmic transformation to improve the normality of the
distributions, Secondly, by using a scaling transformation, all
festures are pormalized to [0,1]. We used the software
package Viscovery SOMine [14] to generate the SOFM using
a reciangular map of approximate ratio 100:77, trained with 42
of all 91 instances). Figure 1

each
nhu'nnmﬁg:nluﬂlml.ﬂlulﬂhs!.ﬂmhl.
Class § for the blue region, pink region,
green region, and light

Fig 1 The distribmtion of all labellod instances scross instance space.
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We can determine specific features that are dominant in a
class by looking at the distribution of festures as seen in
Figare 3. The values sccording to one variahle are displayed
by the color of the pixel;, where warm colars (red, arange, snd
yellow) represent high values and cool colors (blue) represent
low valoes.

We can sec that Cluster | contuins instances that have a
high standard deviation of node degree, a low mean and high
standard deviation of eigenvector centrality. Instances with a
very low standard deviation of node degree, a low
hetweenness centrality mean and standard deviation are found
in Cluster 2. Cluster 3 contains instances with a medium o
hhhuﬂuﬂmndrﬁmmahbmmﬂﬂny
standard deviation, high eigenvector centrality mean, a
medium to high value of algebhmic connectivity, and o medinm
o high value of spectrum standard deviation. Instances with a
low density, & ligh average path length, and a low spectrum
mean are clustered in Cluster 4. We can conclude that the
instances that are in Cluster 4 are gparse and close to bipartite
since the spectrum mean for bipartite graphs is zero due tothe
symmetry of the eigenvalues +4;. Cluster 5 contains imstances
with a high girth and o very low clustering coefficient.

C. Footprines of Algorithm Performance

After the clusters or instance classes are identified, the

next step is to examing the algorithm performances across
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those instances. Here, the algorithm performances are the
performances of owr four proposed strategies as  well
DSATUR, tabu search and Greedy in producing the feasible
imtegral solution, ie. number of colors. The solution gaps to the
optimal solution or best known solution (as a percentage) for
mmumnmmmwmm

Fig 4. The performancs of tach algomihm based on the gap 1o the oplimal
sohstion scross instance wpace. Blue value represent & small optimality gap,
wibibe red values represent @ poor solution with s high optimalny gap.

I Figure 4, the performance of LP-IP, LPapprox-IP, LP-
intHeuristic and LPapprox-intHeuristic, are shown in the fop
map, while the performance of DSATUR, tabu search and
Greedy are shown in the bottom map. The warm colors (red,
omnge, and yellow) represent a high gap between the optimal
solution and the solution obtained by each algorithm. Cool
colors (hlue) represent a low gap between the optimal solution
mmmm&mu&wm:mm

solution. There are many interesting results from
this SOFM from which we can draw some conchusions, From
the first two maps at the top part, we can see that LP-IP and
LPapprox-IP achieve similar performances across most of
instances. Both algorithms perform poorly in the half subset of
Choster 3 and small subset of Cluster 1, which are on the top
left comer of the maps, while the use of these algorithms are
effective for rest of the instances in the map.

There is a small subset of instances from Cluster | close 1o
the tap left corner where LP-IP and LP-intHeuristic produce a
hetter feasible integral solution rather than those obtained by
the LPapprox-IF or the LPapprox-intHeurishic strategies.
Among the four proposed heuristics, LP-intHeuristic gives the
best feasible solution to those imstances, even though the gap
is still high. It means that for those instances, il is NEcessary to
solve the LP relaxation exactly, However, DSATUR or tabo
search will give the hest feasible integral solution among all
heuristics for these instances. LP-IP and LPapprox-IP are
needed for all instances in Closter 2 1o solve the problem,
since the use of LP-intHeuristic and LPapprox-intHeunistic
gives slightly worse feasible mtegral solutions. It means that
the final solution of the LP relaxation of these instances needs
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1o be solved as an IP, Likewise DSATUR, tabu scarch and
Greedy will give the worst performances in this instance class.
All heuristies give a good on the instances in
Cluster 5, except for a small pocket in this class where Greedy
produced slightly worse integral solutions. If we compare to
the Figure 3 in the previous section, we can conclude that all
heuristics perform well on instances having small number of
nodes, edges, standsrd devistion, clustering  coefficient,
betweenness mean, betweenness standard deviation, algebraic
compectivity; and mediuom to high value of eigenvector
particularty well for the instances in Cluster 4 in the top right,
which are close to bipartite, since it is known to be exact for
bipartite graphs [1].

Fig 5. mmxwmm;mm-
obiain the best soldion amoag el bewt b

ifﬂmhmwmhﬁm:hmﬂq

=214~
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instances have medium value of density and medium to high
vahie of clusiering cocfficient. Thus, constructing the integral
solution using an exact method is necessary when the graph's
density is high as well as if it is well-clustered. We can also
sec the superiority of DSATUR in the top right comer where
DSATUR can produce the best integral solution, while the
others cannot.  From  Figure 3, we can conclude thar
DSATUR gives the best solution for instances with a high
number of vertices, & high sumber of edges, a high mean,
high algehraic connectivity and a high spectrum mean. In
other words, a large non-bipartite graph which is very well
connected will obtain the best solution using DSATUR. There
is also a small pocket ot the bottom of Cluster 1 (in the middle
of the map), where LP-IP and LPapprox-IF, tabu search
obtains the best solution, while the other algorithms fail
Unfornmately, we cannot observe the specific instance
features that make it different from others. For all instances in
Cluster 5, any algorithms will give the best solution, except
Giready. Similar to with our previous work [13] focosed on the
geneml| purpose heuristics; bere SOFM is also able to show
clear regions where the performance of algorithms is similar.
it ghould be reiterated that we do not use any algorithm
performance data a5 inputs to the clustering process of SOFM,
but only superimpose performance data after the clusters have
hmndn:ﬁctihumhmthlndmmmﬁln&:
in feature space and also have similar performanece
results (shown by the continuity of the footprints) means that
the features that we choss are well suited o chamcterize the
similarities between the instances, and the properties of these

feamres clearly affect the parformance of algorithms.
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