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Topic 1

Some Preliminary Considerations

1.1 Basic Axioms for Z

Some special sets are used throughout this handout. These sets are denoted by standard

symbols,

N = {1, 2, 3, ...} = the set of natural numbers = Z+,

Z = {...,−3,−2,−1, 0, 1, 2, 3, ...} = the set of integers,

Q =
{

n
m | n,m ∈ Z and m 6= 0

}
= the set of rational numbers, and

R = the set of real numbers.

Note that N ⊂ Z ⊂ Q ⊂ R. Below, a list of some particularly important properties of Z

that will be needed. These are called axioms since we will not prove them in this course.

Some basic axiom for Z:

1. If a, b ∈ Z, then a + b, a − b, and ab ∈ Z. (Z is closed under addition, subtaction,

and multiplication.)

2. If a ∈ Z then there is no x ∈ Z such that a < x < a+ 1.

3. Properties of inequalities: If a, b, c ∈ R then

a. If a < b and b < c then a < c.

b. If a < b then a+ c < b+ c.

1



TOPIC 1. SOME PRELIMINARY CONSIDERATIONS 2

c. If a < b and 0 < c then ac < bc.

d. If a < b and c < 0 then bc < ac.

e. Given a and b, then one and only one of the following holds:

a = b, a < b, a > b

4. Laws of exponent: If n,m ∈ Z, a, b ∈ R and a and b are not zero then

a. (an)m = anm

b. (ab)n = anbn

c. anam = an+m

5. The Well Ordering Property for N: Every nonempty subset A of N contain a

least element, that is to say, there exist an element m ∈ A ⊂ N such that for each

a ∈ A we have m ≤ a.

1.2 The Principle of Mathematical Induction

Let P (n) be a statement concerning the integer variable n, and let n0 be any fixed integer.

P (n) is true for all integers n > n0 if one can establish both of the following statements:

i. P (n) is true for n = n0, and

ii. Whenever P (n) is true for n0 ≤ n ≤ k then P (n) is true for n = k + 1.

Example 1.2.1. Prove that if n ≥ 5 then 2n > 5n.

Proof. We prove it by Mathematical Induction.

i. If n = 5, we have 25 = 32 > 25 = 5 · 5 which is true.

ii. Assume (the induction hypothesis)

2n > 5n for n0 ≤ n ≤ k.

Taking n = k we have

2k > 5k.
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Multiplying both sides by 2 gives

2k+1 > 10k.

Now 10k = 5k + 5k and k ≥ 5 so k ≥ 1 and therefore 5k ≥ 5. Hence

10k = 5k + 5k ≥ 5k + 5 = 5(k + 1).

It follows that

2k+1 > 10k ≥ 5(k + 1).

and therefore

2k+1 > 5(k + 1).

Hence we conclude that 2n > 5n for n ≥ 5.

1.3 The Binomial Theorem

For any n, k ∈ Z+ satisfying 0 ≤ k ≤ n, the combination of k objects from n objects,

denoted by

 n

k

, defined by

 n

k

 =
n!

k!(n− k)!

Let x, y ∈ R and n ∈ Z+, the binomial theorem says that

(x+ y)n =
n∑

k=0

 n

k

xn−kyk

It is easy to verify that

(x+ y)2 = x2 + 2xy + y2;

(x+ y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5;

· · · etc.
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1.4 Problems

1. We prove that every city is small, by induction on the number of its inhabitants.

Clearly, if a city has just one inhabitant, it is small. Assume a city has n inhabitants.

If this city is small, it is still so even if we add one inhabitant. So we deduce that

all cities are small. Is everything right or is something amiss?

a. Everything is right and it proves that mathematics cannot possibly be applied

to concrete question.

b. The basis of the induction is not right: if there is a single inhabitant, it is not

a city.

c. The basis of the induction is right, but the proof of the inductive step depends

upon the definition of the small city.

d. None of the above.

2. Assume we have defined a city to be small if it has less than 50.000 inhabitants.

Which of the statements (a) - (d) of problem 1 is correct?

3. Conjecture a formula for An, if A =

 1 1

0 1

. Then by use of induction, prove your

formula.

4. Proof that for 1 ≤ k ≤ n, we have n

k

+

 n

k − 1

 =

 n+ 1

k


Hint: Multiply the identity 1

k + 1
n−k+1 = n+1

k(n−k+1) by n!
(k−1)!(n−k)! .

5. Use the mathematical induction to prove the binomial theorem.

6. Prove that

1 + 2 + 22 + · · ·+ 2n−2 + 2n−1 = 2n − 1

(This problem is connected with the problem of Hanoi tower.)



Topic 2

Recursion Concept

2.1 The Concept of Recursion

Definition 2.1. We say that the function f is defined recursively if the value of f at 1 is

specified and for each n ∈ N, a rule is provided for determining f(n+ 1) from f(n).

Example 2.1.1. The term n! can be recursively define by:

f(1) = 1 and f(n+ 1) = (n+ 1)f(n).

Example 2.1.2. (Fibonacci sequence) Two newborn rabbits, a male and female, are

left on a desert island on the 1st of January. This couple becomes fertile after two months

and, starting on the 1st of March, they give birth to two more rabbits, a male and a female,

the first day of each month. Each couple of newborn rabbits, analogously, become fertile

after two months and, starting on the first day of their third month, gives birth to a new

couple of rabbits. How many couples are there on the island after n months?

Answer: Let fn denote the number of couples of rabbits, a male and a female, that are

present in the island during the nth month. It is clear that fn is the sum of two numbers

completely determined by the situation in the preceding months, that is:

i. the number fn−1 of the couples of rabbits in the island in the (n − 1)th month, as

no rabbit dies; and

ii. the number of the couples of rabbits born on the first day of nth month, which are

as many as the couples of rabbits which are fertile on that day, and these in turn are

as many as the fn−2 couples of rabbits that were in the island two months before.

5



TOPIC 2. RECURSION CONCEPT 6

As a consequence, we may write for the sequence f1, f2, f3, ..., fn recursively define by

f1 = 1, f2 = 1, and fn = fn−1 + fn−2 for n ≥ 3. (2.1)

We would like, in fact, to have a solution of the recurrence relation (2.1), that is closed

formula giving the nth term of Fibonacci sequence, without having to compute all the

preceding terms. Actually, the closed formula for the nth Fibonacci number is

fn =
1√
5

[(
1 +
√

5

2

n

− 1−
√

5

2

n
)]

. (2.2)

In order get the formula (2.2), we shall use matrix operations and some principles of linear

algebra. Thus, we are not going to discuss about it yet.

2.2 Discussion

Each group discuss one of the subsections below, subsection 2.2.1 is for the groups: 1, 3,

4, and 7, and subsection 2.2.2 is for the groups: 2, 5, 6, 8, and 9. Each subsection will

presents by selected group.

2.2.1 The Bright Graduate

Young Krisnawan, who was about to graduate at the head of his class at Yogyakarta State

University, was in the pleasant position of having choice of two very attractive offers, both

at $5000 a year. Unable to make up his mind between them immediately, he wrote the

two companies and asked his chances were for raises over the next ten years.

Company A replied to the effect that it would guarantee a raise of $300 every six months

for the next ten years. And its raises will be started at the second sixth-month. Meanwhile,

company B said it would guarantee a raise of $1200 every twelve months for the next ten

years since the second year.

Krisnawan quite confused with this offer. Can you help him to make the decision?

2.2.2 The Tower of Hanoi

The game of the tower of Hanoi was invented by the mathematician E. Lucas in 1883. The

tower of Hanoi consist of n circular holed discs, with a vertical peg A running through all
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of them; the discs are stacked with their diameters decreasing from bottom up.

The goal of the game is to transfer all discs, in the same order, that is to say, with their

diameters decreasing from bottom up, on another peg C, by using a support peg B (see

figure 2.1) and observing the following rules:

i the discs must transferred one at a time from one peg to another one;

ii never during the game, on any peg, a disc with a greater diameter may be located

above a disc with a smaller diameter.

Determine the number of moves necessary to conclude the game starting with n discs!

Figure 2.1: The tower of Hanoi with n = 7 discs

2.3 Problems

1. What is the recursive function (recurrence relation) for the sum of the first n odd

natural number?

2. What is the solution of the geometric progression an = r · an−1, a0 = k where r and

k are fixed integer.

3. What is the recurrence relation for the world population if the population increase

by 3% each year?

4. Iyan has opened a bank account for which there are no charges and yielding a yearly

4% interest which is computed and paid to his account every third month. Suppose

Iyan deposited a certain amount of money when he opened the account and after that
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he neither withdrew nor deposited money from the account. What is the recurrence

relation determining amount of money Iyan has in his account after n years?



Topic 3

Divisibility

3.1 Elementary Divisibility Properties

Definition 3.1. The term d|n, d 6= 0 divides n, means that there is an integer k such

that n = dk. The term d - n means that d does not divides n.

In other words, we can say that d|n iff d 6= 0 and n = dk for some k, and d - n iff there

is no k such that n = dk.

Theorem 3.2. (Divisibility Properties): If n,m, d, a, b ∈ Z then the following statements

hold:

1. 1|n and if n 6= 0 then n|n and n|0

2. If d|n and n|m then d|m (transitivity)

3. If d|n and d|m then d|(an+ bm) (linearity)

4. If d|n then ad|an (multiplication property)

5. If ad|an then d 6= 0 and d|n (cancellation property)

6. If n|1 then n = ±1

7. If d, n ∈ Z+ and d|n then d ≤ n. (comparison property)

Example 3.1.1. Prove that if d|k and d|l then d|(k − l)

9
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Proof. By use of Theorem 3.2 (3), and pick up a = 1, b = −1, k = n, and l = m we get

the desired term.

3.2 Floor and Ceiling of a Real Number

Definition 3.3. If x is any real number we define

bxc = the greatest integer less than or equal to x, and

dxe = the least integer greater than or equal to x

The term bxc is called the floor of x and dxe is called the ceiling of x.

Example 3.2.1. b3, 2c = 3, b−4, 7c = −5, d8, 1e = 9, and d7, 8e = −7.

Note that if n is an integer, by definition we have;

n = bxc ⇔ n ≤ x < n+ 1.

Lemma 3.4. For all x ∈ R, we have

x− 1 < bxc ≤ x.

Proof. Let n = bxc, this give immediately that bxc ≤ x and x < n + 1 which implies

x− 1 < n = bxc.

3.3 The Division Algorithm

Theorem 3.5. (The Division Algorithm): If a, b ∈ Z and b > 0 then there exist unique

integers q, r ∈ Z satisfying the two conditions:

a = bq + r and 0 ≤ r < b.

In this situation, the term a will be called dividend, b the divisor, q the quotient and

r the remainder when a is divided by b. Note that there are two parts to this result,

existence and uniqueness of the integers q and r.
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Proof. First, we will prove the existence of q and r.

Given b > 0 and any a, define

q = ba
b
c

r = a− bq.

Clearly, we have a = bq+ r, but we need to prove that 0 ≤ r < b. By Lemma 3.4 we have

a

b
− 1 < ba

b
c ≤ a

b
.

Multiply the terms by −b, since b > 0, it gives

b− a > −bba
b
c ≥ −a.

Add all sides by a and replace bab c by q, we obtain

b > a− bq ≥ 0.

Since r = a− bq, this gives us the desired result 0 ≤ r < b.

We still have to prove that q and r are uniquely determined.

Assume that

a = bq1 + r1 and 0 ≤ r1 < b,

and

a = bq2 + r2 and 0 ≤ r2 < b.

We must show that r1 = r2 and q1 = q2.

Now if r1 6= r2, without loss of generality we can assume that r2 > r1. Subtracting the

two equations above, we obtain

b(q1 − q2) + (r1 − r2) = 0⇔ b(q1 − q2) = (r2 − r1).

This implies that b|(r2 − r1), by theorem 3.2 (7) this implies that b ≤ r2 − r1.

On the other hand, we see that

0 ≤ r1 < r2 < b.

We have b > r2 − r1, but this contradicts b ≤ r2 − r1. So, we must conclude that r2 = r1.

Now, we see that b(q1 − q2) = r2 − r1 = 0, since b > 0 then q1 = q2.
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Example 3.3.1. Show that the expression a(a2+2)
3 is an integer for all a ≥ 1.

Proof. According to the Division Algorithm, every a is of the form 3q, 3q + 1, or 3q + 2.

For if a = 3q then
a(a2 + 2)

3
= q(9q2 + 2)

which clearly is an integer.

For if a = 3q + 1 then
a(a2 + 2)

3
= (3q + 1)(3q2 + 2q + 1)

and a(a2+2)
3 is an integer also.

Finally, for if a = 3q + 2 then

a(a2 + 2)

3
= (3q + 2)(3q2 + 4q + 2)

an integer once more.

Consequently, our result is established in all cases.

3.4 Problems

1. Show that any integer of the form 6k+ 5 is also the form 3j + 2, but not conversely.

2. Use the Division Algorithm to establish the following:

a. The square of any integer is either the form 3k or 3k + 1.

b. The cube of any integer has one of the forms: 9k, 9k + 1, or 9k + 8.

c. The cube of any integer has one of the forms: 7k, 7k + 1 or 7k − 1.

d. The fourth power of any integer is either the form 5k or 5k + 1.

3. For n ≥ 1, prove that n(n+1)(2n+1)
6 is an integer.

4. For n ≥ 1, establish that the integer n(7n2 + 5) is of the form 6k.

5. If n is an odd integer, show that n4 + 4n2 + 11 is of the form 16k.

6. Verify that if an integer is simultaneously a square and a cube (as is the case with

64 = 82 = 43), then it must be either of the form 7k or 7k + 1.
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The Euclidean Algorithm

4.1 GCD (Greatest Common Divisor)

Definition 4.1. Let a and b be given integers, with at least one of them different from

zero. The greatest common divisor of a and b, denoted by gcd (a, b), is the positive integer

d satisfying the following:

i. d|a and d|b

ii. If c|a and c|b then c ≤ d.

For which a = 0 and b = 0, we define gcd(0, 0) = 0.

If e|a and e|b then we call e as a common divisor of a and b. Now let

C(a, b) = {e : e|a and e|b}, (4.1)

that is, C(a, b) is the set of all common divisor of a and b. Note that, since everything

divides 0 then C(0, 0) = Z, so there is no largest common divisor of 0 with 0. This is why

we must define gcd(0, 0).

Example 4.1.1. C(18, 27) = {−1, 1,−3, 3,−9, 9}, so gcd(18, 27) = 9.

Example 4.1.2. C(−15, 36) = {−1, 1,−3, 3}, so gcd(−15, 36) = 3.

Example 4.1.3. C(16, 25) = {−1, 1}, so gcd(16, 25) = 1.

Theorem 4.2. Let a, b, c ∈ Z with gcd(a, b) = d, then

13
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i. gcd(ad ,
b
d) = 1

ii. gcd(a+ cb, b) = d.

Proof. There are two item to be prove, gcd(ad ,
b
d) = 1 and gcd(a+ cb, b) = d.

i. Let a, b ∈ Z with gcd(a, b) = d, we will show that gcd(ad ,
b
d) = 1.

Let e ∈ C(ad ,
b
d) then e|ad and e| bd . Based on the definition 3.1, there are integers k

and l such that a
d = ek and b

d = el, so that a = dek and b = del. Hence, de|a and

de|b, so that de ∈ C(a, b). But, since gcd(a, b) = d, then d is the greatest element of

C(a, b), hence de ≤ d, and its only happen if e = ±1. Thus, gcd(ad ,
b
d) = 1.

ii. Let a, b, c ∈ Z with gcd(a, b) = d, we have to show that

gcd(a+ cb, b) = d. (4.2)

Let p be any element of C(a, b) then p|a and p|b. By theorem 3.2 (3) we see that

p|(a + cb), so that p ∈ C(a + cb, b), hence C(a, b) ⊂ C(a + cb, b). Now let q be

any element of C(a + cb, b). Then again by theorem 3.2 (3), we see that q divides

(a+cb)−cb = a, so that q ∈ C(a, b). Hence C(a+cb, b) ⊂ C(a, b). Thus C(a+cb, b) =

C(a, b), and it means that gcd(a+ cb, b) = gcd(a, b) = d.

Hence gcd(ad ,
b
d) = 1 and gcd(a+ cb, b) = d.

In some cases we are more interested in pairs if integers than sharing no common

divisor than ±1. Such pairs of integers are called relatively prime.

Definition 4.3. The integers a and b are called relatively prime if gcd(a, b) = 1.

4.2 LCM (Least Common Multiple)

Definition 4.4. Let a, b ∈ Z, a 6= 0, and b 6= 0. The least common multiple of a and b,

denoted by lcm(a, b), is the positive integer m satisfying the following:

i. a|m and b|m

ii. If a|c and b|c, with c > 0, then m ≤ c.
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Example 4.2.1. The positif common multiples of the integers −12 and 30 are 60, 120,

180,...; hence lcm(−12, 30) = 60.

Theorem 4.5. For positive integers a and b

gcd(a, b).lcm(a, b) = ab. (4.3)

Proof. To begin, put d = gcd(a, b) and write a = dr, b = ds for integers r and s. If m = ab
d ,

then m = as = rb, the effect of which is to make m a (positif) common multiple of a and

b.

Now let c be any positif integer that is a common multiple of a and b; say, for definitness,

c = au = bv. As we know, there exist integers x and y satisfying d = ax + by. In

consequence,

c

m
=

cd

ab
(4.4)

=
c(ax+ by)

ab
(4.5)

=
(c
b

)
x+

( c
a

)
y (4.6)

= vx+ uy (4.7)

The equation states that m|c, allowing us to conclude that m ≤ c. Thus, in accordance

with definition (above), m = lcm(a, b); that is,

lcm(a, b) =
ab

d
=

ab

gcd(a, b)
(4.8)

which is what we started out to prove.

Corollary 4.6. For any choice of positif integers a and b, lcm(a, b) = ab iff gcd(a, b) = 1.

4.3 The Euclidean Algorithm

The greatest common divisor of two integers can be found by listing all their positive

divisors and choosing the largest one common to each; but this is cumbersome for large

numbers. The division algorithm provides a more efficient method to compute gcd(a, b).

Prove that if a > 0 then gcd(a, 0) = a and gcd(a, a) = a

Lemma 4.7. Let a > b > 0. If a = bq + r then

gcd(a, b) = gcd(b, r). (4.9)
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Proof. It suffices to show that C(a, b) = C(b, r), that is, the common divisors of a and

b are the same as the common divisors of b and r. To show this, first let d|a and d|b.

Note that r = a − bq, which is a linear comination of a and b. So, by theorem 3.2.(3)

d|r. Thus d|b and d|r. Using theorem 3.2.(3) again and using the fact that a = bq + r is

a linear combination of b and r, we have d|a. So d|a and d|b. We have thus shown that

C(a, b) = C(b, r). So gcd(a, b) = gcd(b, r).

By use of Division Algorithm and lemma 4.7 we may described The Euclidean Al-

gorithm as follows:

i. Apply the Division Algorithm to a and b to get

a = q1b+ r1, 0 ≤ r1 < b

ii. If r1 = 0 then b|a and gcd(a, b) = b. If r1 6= 0, repeat step 1 (divide b by r1) to get

q2 and r2 satisfying

b = q2r1 + r2, 0 ≤ r2 < r1

iii. If r2 = 0 then gcd(a, b) = r1. If r2 6= 0, repeat step 1 (divide rn−1 by rn) to get qn+1

and rn+1 satisfying

rn−1 = qn+1rn + rn+1, 0 ≤ rn+1 < rn

iv. The division prcess continues until some zero reminder appears (rn+1 = 0), then

gcd(a, b) = rn.

4.4 Discussion

Each group discuss one of the sections below, subsection 4.4.1 is for the groups: 1, 6, and

7, subsection 4.4.2 is for the groups: 2, 5, and 8 and subsection 4.4.3 is for the groups: 3,

4, and 9. Each section will presents by selected group.

4.4.1 Bézout’s Identity

The Euclidean Algorithm also provides a way of proofing the following theorem



TOPIC 4. THE EUCLIDEAN ALGORITHM 17

Theorem 4.8. For all integers a and b there exist integer x and y such that

gcd(a, b) = ax+ by. (4.10)

Proof. See Clark, 2002: page 25, and Burton, 1998: page 22.

Equation (4.10) is called Bézout’s Identity and turns out to be very useful.

Use the Euclidean Algorithm to answer the following problems.

1. Find x and y of Bézout’s identity gcd(480, 245) = 480x+ 245y

2. What are the coefficients of 28231 and of 1515 in Bézout’s identity for gcd(28231, 1515)?

3. Determine the greatest common divisor of the real polynomials f(x) = x3+3x2−x−3

and g(x) = x2 + 3x+ 2, and find a Bézout’s Identity.

4.4.2 The Diophantine Equation

The simplest type of Diophantine equation that we shall consider is the linear Diophantine

equation in two unknowns:

ax+ by = c

where a, b, c are given integers and a, b are not both zero. A solution of this equation is

a pair of integers x0 and y0 which, when substitued into the equation, satisfy it; that is,

we ask that ax0 + by0 = c.

Theorem 4.9. The linear diophantine equation ax + by = c, with a, b ∈ Z, and a, b

are not both zero, admits solution x, y ∈ Z iff d|c, where d = gcd(a, b). If x0, y0 is any

particular of this equation, then all other solutions are given by

x = x0 +

(
b

d

)
t y = y0 −

(a
d

)
t

Proof. See Burton, 1998: page 34, and Baldoni, et al., 2009: page 20.

Use the Euclidean Algorithm to answer the following problems.

1. Find x and y of the Diophantine equation 95 = 480x+ 245y

2. Find the coefficients of 28762 and of 1515 in Diophantine equation,

13 = 28231x+ 1515y.
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3. A farmer purchased one hundred head of livestock for a total cost of $4000. Prices

were as follow: calves, $120 each; lambs, $50 each; and piglets, $25 each. If the

farmer obtained at least one animal of each type, how many did he buy?

4.4.3 Continued Fractions

Definition 4.10. A finite continued fractions is a fraction of the form

a1 +
1

a2 + 1

a3+
. . . 1

an−1+
1
an

where a1, a2, · · · , an ∈ R, all positive with the possible exception of a1. The number

a2, · · · , an are called partial denominators, or partial quotiens, of the fraction.

A finite continued fraction is said to be simple if all of its partial quotiens are integer.

Use the Euclidean Algorithm to answer the following problems.

1. Write 480
245 as a continued fraction.

2. What is the expression of 28231
1515 in a continued fraction?

3. What is the expression of the quotiens of two successive Fibonacci number, fn+1

fn
, in

a continued fraction?



Topic 5

Counting in Arbitrary Base

5.1 Positional Notation of Numbers

When we write the number 2532 in base 10, we mean the following expression:

2562 = 2 · 103 + 5 · 102 + 6 · 101 + 2 · 100.

The writen above is the positional notation in base 10.Examining further this example,

notice that dividing 2562 by 10 we get

2562 = 256 · 10 + 2,

that is 2, the rightmost digit, gives the remainder of the division by 10 of the original

number. Going on, we divide the quotient we found by 10 again, we get

256 = 25 · 10 + 6.

So the second digit from the right, that is 6, once more gives the remainder of the division,

and is so uniquely determined. If we continue our algorithm then we found that the

next remainder will be 5 and 2. In conclusion, three digits appearing in the decimal

representasion of the number are uniquely determined by successive divisions.

Theorem 5.1. Let β be an integer greather than 1. Then, for each n ∈ N there exist a

non-negative integer k and k + 1 integers a0, a1, ..., ak such that 0 ≤ ai < β, for each

i = 0, ..., k, these being the only such integers satisfying:

n = akβ
k + ak−1β

k−1 + · · ·+ a1β + a0. (5.1)

19
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Proof. Apply the Euclidean algorithm in the following way: divide n by β obtaining

n = q1 · β + a0, 0 ≤ a0 < β.

If q1 6= 0, divide it by β obtaining

q1 = q2 · β + a1, 0 ≤ a1 < β.

Going on the same way we get

q2 = q3 · β + a2, 0 ≤ a2 < β

q3 = q4 · β + a3, 0 ≤ a3 < β

...

qk−1 = qk · β + ak−1, 0 ≤ ak−1 < β.

Since n > q1 > q2 > · · · > 0 is a strictly decreasing sequence of positive integers, this

process must eventually end, say, at the (k − 1) stage, that is qk < β. It means that if we

continue our step then we will get qk+1 ≤ 0. Setting ak = qk, proceed backwards, and we

will reach the representation

n = akβ
k + ak−1β

k−1 + · · ·+ a1β + a0 (5.2)

which was our aim. The uniqueness of this expression is clear, as the digits ai appearing in

it are uniquely determined (Theorem 3.5) as the remainders of the successive divisions.

Example 5.1.1. Express the ten-base number, 2562, in the number of base 9.

Answer: Apply the Euclidean algorithm in the following way:

2562 = 284 · 9 + 6

248 = 27 · 9 + 5

27 = 3 · 9 + 0

Thus, based on the Theorem 5.1 above, we have that 2562 = 30569.

Example 5.1.2. By use of Theorem 5.1 above, we can find that 2562 = 1010000000102.
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The choice of 10 as a notational base is purely conventional; in fact, along the centuries

different cultures used different bases in their numerical systems: Babylonians used the

base 60, Mayans the base 20 and so on. Computers use the base 2 and that why we called

it the binary system. Each digits in the binary system conveys one bit of information;

the symbol 0 interpreted by the computer as the command off and the symbol 1 as the

command on. Other bases used in computer science are 8 and 16.

5.2 Base 2 and Its Operations

We describe now the rules to perform the four operation (+,−,÷,×) when we represent

the numbers in base 2.

5.2.1 Addition

The addition tables we must learn in order to perform additions in base 2 are very simple:

0 + 0 = 0, 0 + 1 = 1,

1 + 0 = 1, 1 + 1 = 10.

Let a =
∑n

i=0 ai · 2i and b =
∑n

i=0 bi · 2i be two positif integers. Then

a+ b =
n∑

i=0

(ai + bi) · 2i.

Now use the addition table and remember that 1 + 1 = 10, this means that the term

(ai + bi) · 2i = 2i+1, if ai = bi = 1, and so we must carry 1 to the next coefficient, so the

coefficient of 2i+1 becomes ai+1 + bi+1 + 1, while the coefficient of 2i is 0.

Example 5.2.2. Suppose we have to sum the numbers: a.) 10111111 and 1011; b.)

1100110 and 101010
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5.2.3 Subtraction

In the same way, if a =
∑n

i=0 ai · 2i and b =
∑n

i=0 bi · 2i and a ≥ b, then

a− b =

n∑
i=0

(ai − bi) · 2i.

Here we face the problem if for some i we have ai = 0 and bi = 1. In this case, in the row

representing a, we borrow a 1 from the firs 1 appearing when we move leftwards starting

form ai. Let us see how we actually perform the subtraction of two numbers:

Example 5.2.4. Suppose we want to subtract 100001 by 1010

Answer: We have here a = 100001 = 25 + 20 and b = 1010 = 23 + 21,

a− b = 25 − 23 − 21 + 20 = 25 − 23 + (−22 + 22)− 21 + 20

= 25 − 23 − 22 + 2 · 21 − 21 + 20 = 25 − 23 − 22 + (2− 1)21 + 20

= 25 − 23 + (−23 + 23)− 22 + 21 + 20 = 25 − 23 − 23 + 2 · 22 − 22 + 21 + 20

= 25 − 2 · 23 + (2− 1)2 + 21 + 20 = 25 − 24 + 22 + 21 + 20

= 25 + (−25 + 25)− 24 + 22 + 21 + 20 = 2 · 24 − 24 + 22 + 21 + 20

= (2− 1)24 + 22 + 21 + 20 = 24 + 22 + 21 + 20

= 10111

5.2.5 Multiplication

If we are considering the number a =
∑n

i=0 ai · 2i, then 2j · a =
∑n

i=0 ai · 2i+j , that is,

(2j · a) may written simply moving leftwards by j positions the digits of a and putting on

their right the same number of zeros. On the other hand, suppose we have the numbers

a =
n∑

i=0

ai · 2i and b =
m∑
j=0

bj · 2j .

Suppose the non-zero digits of b are exactly the h digits bj1 , bj2 , · · · , bjh , that is, let

b =

h∑
l=1

2jl .

In this case, we have

a · b =

h∑
l=1

n∑
i=0

ai · 2i+jl .

Example 5.2.6. Suppose we deal with a multiplication of 11101 by 1101
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5.2.7 Division

Finally, as regards division, we may proceed in the same way as in base 10.

Example 5.2.8. Consider a = 11001 and b = 101. What is the value of a÷ b in base 2?

5.3 Base 8 and 16 (Discussion)

Each group discuss one of the sections below, subsection 5.3.1 is for the groups: 3, 4, 5,

7, and 8, and subsection 5.3.2 is for the groups: 1, 2, 6, and 9. Each section will presents

by selected group.

5.3.1 Base 8

Discuss within your group about: transforming a number in base 10 to a number in base

8 and vice versa, transforming a number in base 2 to a number in base 8 and vice versa,

and explain the four operations (+,−,÷,×) in base 8.

5.3.2 Base 16

Discuss within your group about: transforming a number in base 10 to a number in base

16 and vice versa, transforming a number in base 2 to a number in base 16 and vice versa,

and explain the four operations (+,−,÷,×) in base 16.
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Prime Factorization

6.1 Fundamental Theorem of Arithmetic

Theorem 6.1. Fundamental Theorem of Arithmetic. Every integer n > 1 can be

writen uniquely in the form

n = p1p2p2 · · · ps,

where s is a positive integer and p1, p2, ...ps are primes satisfying

p1 ≤ p2 ≤ · · · ≤ ps.

To prove Theorem 6.1, we need to establish some lemmas.

Lemma 6.2. If a|bc and gcd(a, b) = 1 then a|c

Proof. See Clark, 2002: page 38 and Burton, 1998: page 24.

Lemma 6.3. (Euclid’s Lemma) If p is a prime and p|ab then p|a or p|b

Proof. See Clark, 2002: page 38 and Burton, 1998: page 40.

Lemma 6.4. Let p be prime and let a1, a2, · · · , an be integers and n ≥ 1. If p|a1a2 · · · an,

then p|ai for at least one i ∈ {1, 2, · · · , n}.

Proof. See Clark, 2002: page 39.

So, now is the time to prove Theorem 6.1.

24



TOPIC 6. PRIME FACTORIZATION 25

Proof. existence

If n is a prime, then there is nothing more to prove. If n is composite, then there exists

an integer d satisfying d|n and d < n. Among all such integers d, we can choose p1 the

smallest by Well-Ordering Principle. Then p1 must be prime, otherwise it would have a

divisor q with 1 < q < p1; but then q|p1 and p1|n imply that q|n, which contradicts the

choice of p1 as the smallest positive divisor, not equal to 1, of n.

We therefore may write n = p1n1, where p1 is prime and 1 < n1 < n. If n1 happens to be

a prime, then we have our representation. In the contrary case, the argument is repeated

to produce a second prime number p2 such that n1 = p2n2; that is

n = p1p2n2, 1 < n2 < n1. (6.1)

If n2 is a prime, then it is not necessary to go further. Otherwise n2 = p3n3, with p3 a

prime;

n = p1p2p3n3, 1 < n3 < n2. (6.2)

The decreasing sequence

n > n1 > n2 > n3 > · · · > 1 (6.3)

cannot continue indefinitely, so after a finite number steps nk−1 is a prime, call it, ps. This

lead to the prime factorization

n = p1p2 · · · ps. (6.4)

uniqueness

Suppose that n = p1p2 · · · ps = q1q2 · · · qt where s ≥ 1, t ≥ 1, p1, p2, · · · , ps, q1, q2, · · · , qt

are primes, p1 ≤ p2 ≤ · · · ≤ ps, and q1 ≤ q2 ≤ · · · ≤ qt. We will show by mathematical

induction on s that s = t and pi = qi for i = 1, 2, · · · t.

Suppose s = 1, then n = p1 is prime and we have

p1 = n = q1q2 · · · qt.

If t > 1, this contradicts the fact that p1 is prime, so t = 1 and we have p1 = q1 as desired.

Now assume the result holds for all s such that 1 ≤ s ≤ k. We want to show that it holds

for s = k + 1. So assume

n = p1p2 · · · pkpk+1
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and

n = q1q2 · · · qt

where p1 ≤ p2 ≤ · · · ≤ pk+1 and q1 ≤ q2 ≤ · · · ≤ qt.

Clearly that pk+1|n so pk+1|q1q2 · · · qt. By Lemma 6.4, pk+1|qi for some i ∈ {1, 2, · · · t}.

Since pk+1 and qi are primes then pk+1 = qi (Why?). Hence pk+1 = qi ≤ qt.

By the similar argument qt|n = p1p2 · · · pk+1 then qt = pj for some j ∈ {1, 2, · · · k + 1}.

Hence qt = pj ≤ pk+1. This shows that

pk+1 ≤ qt ≤ pk+1

so pk+1 = qt. Note that

p1p2 · · · pkpk+1 = q1q2 · · · qt−1qt,

since pk+1 = qt we can cancel this prime fromboth sides and we have

p1p2 · · · pk = q1q2 · · · qt−1.

By induction hypothesis, k = t−1 and pi = qi for i = 1, 2, · · · t−1. Thus we have k+1 = t

and pi = qi for i = 1, 2, · · · t− 1. So this theorem holds.

By the Fundamental Theorem of Arithmetic, it is clear that if n > 1 then it can be

written uniquely in the form

n = pa11 p
a2
2 · · · p

as
s , (6.5)

for some s ≥ 1. The term (6.5) called the canonical form of n. The Fundamental Theorem

of Arithmetic also helps us to find gcd and lcm of 2 or more integers easily.

Suppose there are k positive integers, n1, n2, · · ·nk, where ni > 1 for all i ≤ k. We can

write these integers in the canonical form

n1 = pa111 pa122 · · · pa1ss

n2 = pa211 pa222 · · · pa2ss

· · ·

nk = pak11 pak22 · · · pakss .

Then

gcd(n1, n2, · · · , nk) = p
min{a11,a21,···ak1}
1 p

min{a12,a22,···ak2}
2 · · · pmin{a1s,a2s,···aks}

s
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and

lcm(n1, n2, · · · , nk) = p
max{a11,a21,···ak1}
1 p

max{a12,a22,···ak2}
2 · · · pmax{a1s,a2s,···aks}

s .

Example 6.1.1. Find the gcd and lcm of 198, 216, and 252.

Answer: It is clear that

198 = 2 · 32 · 11

216 = 23 · 33

252 = 22 · 32 · 7

Thus

gcd(198, 216, 252) = 2min{1,2,3} · 3min{2,3} · 7min{0,1} · 11min{0,1}

= 21 · 32 · 70 · 110 = 18

lcm(198, 216, 252) = 2max{1,2,3} · 3max{2,3} · 7max{0,1} · 11max{0,1}

= 23 · 33 · 71 · 111 = 16632

Theorem 6.5. If n > 1 is composite then it has a prime divisor p ≤
√
n

Proof. See Clark, 2002: page 32.
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Congruences

7.1 Basic Properties

Definition 7.1. Let n be a fixed integer. Two integers a and b are said to be congruent

modulo n, symbolized by

a ≡ b( mod n)

if n|a− b.

Example 7.1.1. Consider n = 7, prove that

3 ≡ 24( mod 7)why??? −31 ≡ 11( mod 7)why??? −15 ≡ −64( mod 7)why???

yang ga kongruen???

Given an integer a, let q and r be its quotient and remainder upon division by n, so

that

a = qn+ r 0 ≤ r < n.

Then, by definition of congruence, a ≡ r( mod n). Since there are n choices for r, we see

that every integer is congruent modulo n to exactly one of the values 0, 1, · · · , n − 1; in

particular, a ≡ 0( mod n) iff n|a. The set of n integers 0, 1, · · · , n− 1 is called the set of

least positive residues modulo n.

In general, a collection of n integers a1, a2, · · · , an is said to form a complete set of residues

modulo n if ak is congruent modulo n to 0, 1, · · · , or n− 1. For instance, −12, −4, 11, 13,

22, 82, and 91 constitute a complete set of residues modulo 7.

The next theorem shows that congruence is an equivalence relation.

28
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Theorem 7.2. (Congruence is an equivalence relation.) For all a, b, c ∈ Z and m > 0 we

have

i a ≡ a( mod m) {reflexivity}

ii If a ≡ b( mod m) then b ≡ a( mod m) {symmetry}

iii If a ≡ b( mod m) and b ≡ c( mod m) then a ≡ c( mod m) {transitivity}

Proof. i a− a = 0 = 0.m so m|a− a hence a ≡ a( mod m).

ii If a ≡ b( mod m) then m|a − b it means that a − b = qm hence b − a = (−q)m so

m|b− a hence b ≡ a( mod m)

iii If a ≡ b( mod m) and b ≡ c( mod m) then m|a − b and m|b − c. By linearity

property (Theorem 3.2), we have m|(a− b) + (b− c) = a− c so a ≡ c( mod m).

hehehe....

Congruence is an equivalence relation so we can make sets those we called equivalence

classes of integers by congruence relation.

Example 7.1.2. We can make 5 equivalence classes of integers by congruence relation

modulo 5, those are:

1. 0̄5 = [0]5 = {· · · ,−10,−5, 0, 5, 10, · · · }

(0̄5 is a set of integers such that if a ∈ 0̄5 then a ≡ 0( mod 5))

2. 1̄5 = [1]5 = {· · · ,−9,−4, 1, 6, 11, · · · }

(1̄5 is a set of integers such that if a ∈ 1̄5 then a ≡ 1( mod 5))

3. 2̄5 = [2]5 = {· · · ,−8,−3, 2, 7, 12, · · · }

(2̄5 is a set of integers such that if a ∈ 2̄5 then a ≡ 2( mod 5))

4. 3̄5 = [3]5 = {· · · ,−7,−2, 3, 8, 13, · · · }

(3̄5 is a set of integers such that if a ∈ 3̄5 then a ≡ 3( mod 5))

5. 4̄5 = [4]5 = {· · · ,−6,−1, 4, 9, 14, · · · }

(4̄5 is a set of integers such that if a ∈ 4̄5 then a ≡ 4( mod 5))
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7.2 Linear Congruences

An equation of the form ax ≡ b( mod n) is called linear congruence, and by a solution of

such equation we mean an integer x0 for which ax0 ≡ b( mod n). By definition, ax0 ≡ b(

mod n) iff n|ax0−b iff ax0−b = ny0. Thus the problem of finding all integers which satisfy

the linear congruence ax ≡ b( mod n) is identical with that of obtaining all solutions of

the linear Diophantine equation ax− ny = b (Topic 5.2.2).

Theorem 7.3. The linear congruence ax ≡ b( mod n) has a solution iff d|b where d =

gcd(a, n).
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