

YOGYAKARTA STATE UNIVERSITY FACULTY OF MATHEMATICS AND NATURAL SCIENCES

SYLLABUS

SIL/MAA 209/13 18 Februari 2011

I. Course Description

Number theory is the study of properties of numbers in particular the integers and rational numbers. Questions in elementary number theory include divisibility properties of integers (e.g. the Euclidean algorithm), properties of primes (e.g. there are infinitely many), congruencies, and integer solutions to basic equations (e.g. Diophantine equations). Even though number theory is one of the oldest disciplines in mathematics, it has recently contributed to many practical problems such as coding theory, cryptography, or other tools in modern information technology. These applications will also be part of this class!

II. Course Competencies

Student understanding on some properties of integers and on the application of number theory.

Week	Competencies	Topic	Strategy	Textbook
1.	Understand and be	Some Preliminary	interactive lecture,	A.1.1-1.3
	able to construct	Considerations	question and	
	proofs by inductional	1. Basic Axiom for Z	answer.	
	mathematics.	2. Proof by Induction		
		3. The Binomial Theorem		
2		Recursion Concept	discussion	A.2.1-2.2
3	Be able to use the	Divisibility	interactive lecture,	A.3.1-3.3
	Euclidean algorithm	1. Elementary Divisibility	question and	
	to find the solution of	Properties	answer.	
	Bezout and	2. Floor and ceiling		
	Diophantine, and able	3. Division Algorithm		
	to write a rational			
4	number in the form of	Euclidean Algorithm	interactive lecture,	A.4.1-4.3
	continued fractions.	1. GCD	question and	
		2. LCM	answer.	
		3. Euclidean algorithm		

III. Weekly Outline

YOGYAKARTA STATE UNIVERSITY FACULTY OF MATHEMATICS AND NATURAL SCIENCES

SYLLABUS

SIL/MAA 209/13 18 Februari 2011

_					
5		Applications of Euclidean	Discussion	A.4.4	
		Algorithm			
		1. Bezout Identity			
		2. Diophantine			
		3. Continued Fractions			
6	Midterm 1				
7-8	Understand how to	Counting in Arbitrary	Discussion	5.1-5.3	
	count in a different	Base			
	base.	1. Positional Notation of			
		Numbers			
		2. Base 2 and Its			
		Operations			
		3. Base 8			
		4. Base 16			
9	Understand the	Primes	interactive lecture,	A.6.1-6.2	
	properties of primes.	1. Prime Number	question and		
		2. Prime Factorization	answer.		
10	Understand the	Congruencies	interactive lecture,	A.7.1-7.2	
	properties of	1. Basic Properties	question and		
	congruencies.	2. Linear Congruencies	answer.		
11	Understand the	Number-Theoretic	Discussion	A.8.1-8.3	
	properties of some	Functions			
	special functions.				
12	Understand the	Primitive Roots and	interactive lecture,	A.9.1-9.3	
	properties of roots and	Indices	question and		
	indices.		answer.		
13	Midterm 2				
14-16	Knowing and	Additional topic	Discussion	A.10-12	
-	understanding the	1. Nonlinear Diophantine		-	
	application of number	2. Cryptography			
	theory.	3. Elliptic Curve			
		Final Exam			
	г шаг Ехаш				

IV Textbook and References

A. Textbook

Krisnawan, K.P. Handout of Number Theory. Yogyakarta State University.

- B. References
 - 1. Baldoni, M.W., Ciliberto, C., and Cattaneo, G.M.P. 2009. *Elementary Number Theory, Cryptography, and Codes*. Springer-Verlag Berlin Heidelberg.
 - 2. Burton, D.M. 1998. *Elementary NumberTheory*. Fourth edition. The McGraw-Hill Companies, Inc.
 - 3. Clark, W.E. 2002. Elementary Number Theory.

YOGYAKARTA STATE UNIVERSITY FACULTY OF MATHEMATICS AND NATURAL SCIENCES

SYLLABUS

SIL/MAA 209/13 18 Februari 2011

V Grades will be calculated according to the following rubric:

1	Class Participation	5%
2	Homework	15%
3	Midterm 1	25%
4	Midterm 2	25%
5	Final Exam	30%
	Total	100%

Academic dishonesty, including cheating and plagiarism, will not be tolerated.

Yogyakarta, February 2012

Instructor

Kus Prihantoso K., M.Si

NIP. 19790406 200501 1 005