ICREM 5

Krisnawan Tuwankotta

Outline

Pred-Prey Our goal Scaling Equilibrium CBT Bifurcation

Periodic Perturbatio

Conclusion

References

Cusp-Bodanov-Takens Bifurcation in a Predator-Prey Type of Dynamical System with Time-Periodic Perturbation

> Kus Prihantoso Krisnawan Johan Matheus Tuwankotta

> > October 24th, 2011

ITB-Bandung Indonesia

Outline

ICREM 5

Krisnawan Tuwankotta

Outline

Pred-Prey Our goal Scaling Equilibrium CBT Bifurcation

Periodic Perturbatior

Conclusion

References

- Predator-Prey System
- Cusp-Bogdanov-Takens Bifurcation
- System with Time-Periodic Perturbation

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ● ●

- Conclusion
- References

Predator-Prey System

ICREM 5

Krisnawan Tuwankotta

Outline

Pred-Prey

Our goal Scaling Equilibrium CBT Bifurcation

Periodic Perturbatio Conclusion

References

Given Predator-Prey system

$$\dot{x} = ax - \lambda x^2 - yP(x)$$

$$\dot{y} = -\delta y - \mu y^2 + yQ(x)$$
(1)

where
$$a, \lambda, \delta > 0$$
 dan $\mu \ge 0$,

$$P(x) = \frac{mx}{\alpha x^2 + \beta x + 1}$$
$$Q(x) = cP(x)$$

where $\alpha \geq 0$ dan m, c > 0 dan $\beta > -2\sqrt{\alpha}$.

▲ロト ▲御 ト ▲ 恵 ト ▲ 恵 ト ● ④ ● ● ●

Related works

ICREM 5

Krisnawan Tuwankotta

Outline

Pred-Prey

Our goal Scaling Equilibrium CBT Bifurcation

Periodic Perturbatior Conclusion

References

Broer, et al., *Bifurcation of a predator-prey model with non-monotonic response function*, Comptes Rendus Mathematique, V. 341, (2005) 601-604.

Broer, et al., *A predator-prey model with non-monotonic response function*, Regular and Chaotic Dynamics 11(2) (2006),155-165.

Broer, et al., *Dynamics of a predator-prey model with non-monotonic response function*, DCDS-A 18(2-3) (2007), 221-251.

Haryanto, E., Tuwankotta, J.M., *Swallowtail in predator-prey type of system with time-periodic perturbation*, submitted to ICREM 2011.

Tuwankotta, J.M., Haryanto, E., *On periodic solution of a predator-prey type of dynamical system with time-periodic perturbation*, submitted to ICREM 2011.

Our goal:

ICREM 5

Krisnawan Tuwankotta

Outline

Pred-Prey Our goal Scaling Equilibrium CBT Bifurcation

Periodic Perturbatio

Conclusion

References

Show that there is a codimension 3 bifurcation (Cusp-Bogdanov-Takens) on the system.

イロト (目) (ヨ) (ヨ) (ヨ) () ()

Our goal:

ICREM 5

Krisnawan Tuwankotta

Outline

Pred-Prey Our goal Scaling Equilibrium CBT Bifurcation

Periodic Perturbation Conclusion

References

Show that there is a codimension 3 bifurcation (Cusp-Bogdanov-Takens) on the system.

We give time perturbation on the carrying capacity to see its influence to the bifurcation the variation is $\lambda = \lambda_0 (1 + \epsilon \sin(\omega t))$.

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ● ●

Scaling

Define:

ICREM 5

Krisnawan Tuwankotta

Outline

Pred-Prey Our goal Scaling Equilibrium CBT Bifurcation

Periodic Perturbation Conclusion References

$$t = \frac{1}{a}\tau, \quad x = \frac{a}{cm}\widetilde{x}, \quad y = \frac{a}{m}\widetilde{y}, \qquad \lambda = cm\widetilde{\lambda},$$
$$\delta = a\widetilde{\delta}, \quad \mu = m\widetilde{\mu}, \qquad \alpha = \frac{c^2m^2}{a^2}\widetilde{\alpha}, \quad \beta = \frac{cm}{a}\widetilde{\beta}$$

substitute to the system (1) and discard the tilde on the new variable:

$$\dot{x} = x(1 - \lambda x - \frac{y}{\alpha x^2 + \beta x + 1})$$

$$\dot{y} = y(-\delta - \mu y + \frac{y}{\alpha x^2 + \beta x + 1}).$$
 (2)

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ● ●

We fix the value $\lambda = 0.01$ and $\delta = 1.1$.

Equilibrium points

ICREM 5

Krisnawan Tuwankotta

Outline

Pred-Prey Our goal Scaling Equilibrium CBT Bifurcation

Periodic Perturbation

References

The system (2) has some equilibrium points:

- **(**) O(0,0), where $\lambda_1 = 1$ and $\lambda_2 = -1.1$.
- (100, 0), $\lambda_1 = -1$ and $\lambda_2 = -1.1 + \frac{0.01}{0.0001 + 0.01\beta + \alpha}$.
- (a) $(0, -\frac{\delta}{\mu})$, for $\mu \neq 0$.
- for x ≠ 0 and y ≠ 0, the equilibrium point of the system
 (2) is the solution of

$$1 - 0.01x - \frac{y}{\alpha x^2 + \beta x + 1} = 0$$

-1.1 - $\mu y + \frac{x}{\alpha x^2 + \beta x + 1} = 0$

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ → ヨ → の々ぐ

Equilibrium points

ICREM 5

Krisnawan Tuwankotta

Outline

Pred-Prey Our goal Scaling Equilibrium CBT Bifurcatio

Periodic Perturbatior Conclusion

References

The system (2) has some equilibrium points:

- **(**) O(0,0), where $\lambda_1 = 1$ and $\lambda_2 = -1.1$.
- 2 (100, 0), $\lambda_1 = -1$ and $\lambda_2 = -1.1 + \frac{0.01}{0.0001 + 0.01\beta + \alpha}$.
- (a) $(0, -\frac{\delta}{\mu})$, for $\mu \neq 0$.
- If or x ≠ 0 and y ≠ 0, the equilibrium point of the system
 (2) is the solution of

$$1 - 0.01x - \frac{y}{\alpha x^2 + \beta x + 1} = 0$$

-1.1 - \mu y + \frac{x}{\alpha x^2 + \beta x + 1} = 0

(日) (日) (日) (日) (日) (日) (日)

The Cusp-Bogdanov-Takens bifurcation point is $(\bar{\alpha}, \bar{\beta}, \bar{\mu}) = (0.0003986797, 0.8459684, 0.0013)$ at $(\bar{x}, \bar{y}) = (49.38394909, 22.14429463).$

Cusp-Bogdanov-Takens Bifurcation

ICREM 5

Krisnawan Tuwankotta

Outline

Pred-Prey Our goal Scaling Equilibrium CBT Bifurcation

Periodic Perturbatior Conclusion

References

Cusp-Bogdanov-Takens Bifurcation Diagram

ICREM 5

Krisnawan Tuwankotta

Outline

Pred-Prey Our goal Scaling Equilibrium CBT Bifurcation

Periodic Perturbation Conclusion

Figure: Cusp-Bogdanov-Takens Bifurcation Diagram and its Phase Portrait

System with Periodic Perturbation

ICREM 5

Krisnawan Tuwankotta

Outline

Pred-Prey Our goal Scaling Equilibrium CBT Bifurcation

Periodic Perturbation

Conclusior

References

Before the periodic perturbation, the system is:

$$\dot{x} = x(1 - \lambda x - \frac{y}{\alpha x^2 + \beta x + 1})$$

$$\dot{y} = y(-\delta - \mu y + \frac{y}{\alpha x^2 + \beta x + 1}).$$
 (3)

Parameter λ , is varied by

$$\lambda = \lambda_0 \left(1 + \epsilon \sin \left(\omega t \right) \right) \tag{4}$$

where λ_0, ω are constants and $\epsilon > 0$ is the perturbation parameter. Thus we get

$$\dot{x} = x - \lambda x^{2} - \lambda \epsilon \sin(\omega t) x^{2} - \frac{xy}{\alpha x^{2} + \beta x + 1}$$

$$\dot{y} = -\delta y - \mu y^{2} + \frac{xy}{\alpha x^{2} + \beta x + 1}$$
(5)

the strategy

ICREM 5

Krisnawan Tuwankotta

Outline

Pred-Prey Our goal Scaling Equilibrium CBT Bifurcation

Periodic Perturbation

Conclusion

References

Define

$$\dot{u} = \omega v + u - u(u^2 + v^2) \dot{v} = -\omega u + v - v(u^2 + v^2).$$
 (6)

System (6) has solutions $u = \sin \omega t$ and $v = \cos \omega t$.

$$\dot{u} = \omega v + u - u(u^2 + v^2)$$

$$\dot{v} = -\omega u + v - v(u^2 + v^2)$$

$$\dot{x} = x - \lambda x^2 - \lambda \varepsilon u x^2 - \frac{xy}{\alpha x^2 + \beta x + 1}$$

$$\dot{y} = -\delta y - \mu y^2 + \frac{xy}{\alpha x^2 + \beta x + 1}$$

We investigate the system at $\omega = 1$, $\lambda = 0.01$, and $\delta = 1.1$ for the perturbations $\epsilon = 0.0003$, $\epsilon = 0.001$, and $\epsilon = 0.02$.

Bifurcation Diagrams after the Perturbations

Figure: Bifurcation diagram of the system (5) for $\epsilon > 0$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ● ●

ICREM 5

Krisnawan Tuwankotta

Outline

Pred-Prey Our goal Scaling Equilibrium CBT Bifurcation

Periodic Perturbation

Conclusion

ヘロト 人間 とくほとくほとう

ъ

Figure: Zoom in K (left), L (middle), dan M (right)

Figure: Zoom in K1 (left), L1 (middle), dan M1 (right)

Conclusion

ICREM 5

Krisnawan Tuwankotta

Outline

Pred-Prey Our goal Scaling Equilibrium CBT Bifurcation

Periodic Perturbatior

Conclusion

References

- 1. For the value $\lambda = 0.01$ and $\delta = 1.1$ we get that the Cusp-Bogdanov-Takens bifurcation happens at $(\bar{\alpha}, \bar{\beta}, \bar{\mu}) = (0.0003986797, 0.8459684, 0.0013)$ for $(\bar{x}, \bar{y}) = (49.38394909, 22.14429463).$
- 2. We found that the Cusp-Bogdanov-Takens bifurcation is persist to the perturbation for $\epsilon > 0$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

References

ICREM 5

Krisnawan Tuwankotta

Outline

- Pred-Prey Our goal Scaling Equilibrium CBT Bifurcation
- Periodic Perturbation
- Conclusion
- References

- 1. Broer, et al., *Bifurcation of a predator-prey model with non-monotonic response function*, Comptes Rendus Mathematique, V. 341, (2005) 601-604.
- 2. Broer, et al., *A predator-prey model with non-monotonic response function*, Regular and Chaotic Dynamics 11(2) (2006),155-165.
- 3. Broer, et al., *Dynamics of a predator-prey model with non-monotonic response function*, DCDS-A 18(2-3) (2007), 221-251.
- Doedel, E.J, et al. AUTO 2000: Continuation and Bifurcation Software for Ordinary Differential Equations, User's Guide, Concordia University, Montreal, Canada 2000.
- Freedman, H.I., Wolkowics, G.S., Predator-prey Systems with Group Defense: The Paradox of Enrichment Revisited, Bull. Math. Biol. (1986), pp. 493-508.
- 6. Haryanto, E., Tuwankotta, J.M., *Swallowtail in predator-prey type of system with time-periodic perturbation*, submitted to ICREM 2011.
- 7. Y.A. Kuznetsov, *Elements of Applied Bifurcation Theory*, second edition, Springer-Verlag New York, Inc., 1998.
- Tuwankotta, J.M., Haryanto, E., On periodic solution of a predator-prey type of dynamical system with time-periodic perturbation, submitted to ICREM 2011.

ICREM 5

Krisnawan Tuwankotta

Outline

Pred-Prey Our goal Scaling Equilibrium CBT Bifurcation

Periodic Perturbation

Conclusion

References

THANK YOU MATUR NUWUN

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ