CHAPTER 1

Variable Random Transformation

Suppose X is a random variable and $Y=g(X)$ for some function g. Given the distribution of X, what is the distribution of Y ?

1.1. One-To-One Transformation

Let $g(x)$ be a real-valued function of a real variable x. If the equation $y=g(x)$ can be solved uniquely, say $x=h(y)$ then the transformation is one-to-one.

Theorem 1. Suppose that X is a discrete random variable with pdf $f_{X}(x)$ and that $Y=g(X)$ defines a one-to-one transformation. In other words, the equation $y=g(x)$ can be solved uniquely, say $x=h(y)$. Then the pdf of Y is

$$
\begin{equation*}
f_{Y}(y)=f_{X}(h(y)), y \in B \tag{1.1.1}
\end{equation*}
$$

where $B=\left\{y \mid f_{Y}(y)>0\right\}$.
Proof. This follow because

$$
f_{Y}(y)=P[Y=y]=P[g(X)=y]=P[X=h(y)]=f_{X}(h(y))
$$

Example 2. Let $X \sim G E O(p)$, so that $f_{X}(x)=p q^{x-1}, x=1,2,3, \ldots$. Let $Y=X-1$, then $g(x)=x-1, h(y)=y+1$, and $f_{Y}(y)=p q^{(y+1)-1}, y=0,1,2, \ldots$.

THEOREM 3. Suppose that X is a continuous random variable with pdf $f_{X}(x)$ and assume that $Y=g(X)$ defines a one-to-one transformation from $A=\left\{x \mid f_{X}(x)>0\right\}$ on to $B=\left\{y \mid f_{Y}(y)>0\right\}$ with inverse transformation $x=h(y)$. If the derivative $\frac{d h(y)}{d y}$ is continuous and non zero on B, then the pdf of Y is

$$
\begin{equation*}
f_{Y}(y)=f_{X}(h(y))\left|\frac{d h(y)}{d y}\right|, y \in B \tag{1.1.2}
\end{equation*}
$$

Proof. If $y=g(x)$ is one-to-one transformation, then it is either monotonic increasing and monotonic decreasing. If it is assumed that it is increasing, then $g(x) \leq y$ if and only if $x \leq h(y)$, and thus

$$
F_{Y}(y)=P[Y \leq y]=P[g(X) \leq y]=P[X \leq h(y)]=F_{X}(h(y))
$$

and consequently,

$$
f_{Y}(y)=\frac{d F_{X}(h(y))}{d y}=\frac{d F_{X}(h(y))}{d h(y)} \frac{d h(y)}{d y}=f_{X}(h(y))\left|\frac{d h(y)}{d y}\right|
$$

because $g^{\prime}(x)>0$ when $g(x)$ is increasing then $\frac{d h(y)}{d y}>0$.

In the decreasing case, $g(x) \leq y$ if and only if $h(y) \leq x$, and thus

$$
F_{Y}(y)=P[Y \leq y]=P[g(X) \leq y]=P[X \geq h(y)]=1-F_{X}(h(y))
$$

and,

$$
f_{Y}(y)=-f_{X}(h(y)) \frac{d h(y)}{d y}=f_{X}(h(y))\left|\frac{d h(y)}{d y}\right|
$$

because $g^{\prime}(x)<0$ when $g(x)$ is decreasing then $\frac{d h(y)}{d y}<0$.
The derivative of $h(y)$ is usually referred to as the Jacobian of the transformation, and denoted by $J=\frac{d h(y)}{d y}$.

Example 4. Suppose $F_{X}(x)=1-e^{-2 x}, 0<x<\infty$, determine the pdf of $Y=e^{X}$.

Solution. The inverse transformation is $x=h(y)=\ln y$, and the Jacobian is $\left.J=h^{\prime}(y)\right)=\frac{1}{y}$, so that

$$
f_{Y}(y)=f_{X}(\ln y)\left|\frac{1}{y}\right|=2 e^{-2(\ln y)}\left(\frac{1}{y}\right)=2 y^{-3}, 1<y<\infty
$$

Example 5. Suppose $Y \sim \operatorname{LOGN}\left(\mu, \sigma^{2}\right)$, determine the pdf of $X=\ln Y$.
Solution. The pdf of Y is

$$
f_{Y}(y)=\frac{1}{y \sigma \sqrt{2 \pi}} e^{-\frac{(\ln y-\mu)^{2}}{2 \sigma^{2}}}, 0<y<\infty
$$

with parameter $-\infty<\mu<\infty$ and $0<\sigma<\infty$. The inverse transformation is $y=g(x)=e^{x}$, and the Jacobian is $\left.J=g^{\prime}(x)\right)=e^{x}$, so that

$$
f_{X}(x)=f_{Y}\left(e^{x}\right)\left|e^{x}\right|=\frac{1}{e^{x} \sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} e^{x}=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}},-\infty<x<\infty
$$

Therefore $X \sim N\left(\mu, \sigma^{2}\right)$.
Example 6. Suppose $X \sim N(0,1)$, define the pdf of $Y=\mu+\sigma X$ for some $\sigma>0$.

Solution. The pdf of X is

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}},-\infty<x<\infty
$$

The inverse transformation is $x=h(y)=\frac{y-\mu}{\sigma}$, and the Jacobian is $J=$ $\left.h^{\prime}(y)\right)=\frac{1}{\sigma}$, so that

$$
f_{Y}(y)=f_{X}\left(\frac{y-\mu}{\sigma}\right)\left|\frac{1}{\sigma}\right|=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}},-\infty<y<\infty
$$

Therefore $Y \sim N\left(\mu, \sigma^{2}\right)$.
Exercise 7. Work the following exercise
(1) Suppose $f_{X}(x)=\frac{x}{8}, x=1,2,5$, determine the pdf of $Y=3 X+4$
(2) Let X have $f_{X}(x)=\frac{3}{4}\left(1-x^{2}\right),-1<x<1$, determine the pdf of $Y=$ $X+2$
(3) Suppose $X \sim N\left(\mu, \sigma^{2}\right)$ and $0<\sigma<\infty$, determine the pdf of $Z=\frac{X-\mu}{\sigma}$
(4) Let X have $f_{X}(x)=\frac{x^{2}}{24},-2<x<4$, determine the pdf of $Y=X^{2}$

Theorem 8. If X is continuous with $C D F F(X)$, then $U=F(X) \sim U N I F(0,1)$.
Proof. It is assumed that $F(x)$ is one-to-one transformation then $F^{-1}(u)$ is existed.

$$
F_{U}(u)=P[U \leq u]=P[F(X) \leq u]=P\left[X \leq F^{-1}(u)\right]=F\left(F^{-1}(u)\right)=u
$$

Since $0 \leq F(x) \leq 1$, then $F_{U}(u)=0$ if $u \leq 0$ and $F_{U}(u)=1$ if $u \geq 1$. Therefore,

$$
F_{U}(u)=\left\{\begin{array}{cc}
0, & 0 \geq u \\
u, & 0<u<1 \\
1, & u \geq 1
\end{array}\right.
$$

