0.1. Not One-To-One Transformation

Suppose that the function of $u(x)$ is not one-to-one transformation over $A=$ $\left\{x \mid f_{X}(x)>0\right\}$. It is possible to partition A into disjoint subsets A_{1}, A_{2}, \ldots such that is one-to-one over each A_{j}. Then for each y in the range of $g(x)$, the equation $y=g(x)$ has a unique solution $x_{j}=h_{j}(y)$ over the set A_{j}. It follows that Theorem ?? and ?? can be extended to functions that are not one-to-one by replacing equations ?? and ?? with

$$
\begin{equation*}
f_{Y}(y)=\sum_{j} f_{X}\left(h_{j}(y)\right) \tag{0.1.1}
\end{equation*}
$$

for the discrete case and,

$$
\begin{equation*}
f_{Y}(y)=\sum_{j} f_{X}\left(h_{j}(y)\right)\left|\frac{d h_{j}(y)}{d y}\right| \tag{0.1.2}
\end{equation*}
$$

for the continuous case.
Example 1. Let $f_{X}(x)=\frac{4}{31}\left(\frac{1}{2}\right)^{x}, x=-2,-1,0,1,2$ and consider $Y=|X|$.
Solution. Clearly, $B=\{0,1,2\}$ and
$f_{Y}(0)=f_{X}(0)=\frac{4}{31}$
$f_{Y}(1)=f_{X}(-1)+f_{X}(1)=\frac{8}{31}+\frac{2}{31}=\frac{10}{31}$
$f_{Y}(2)=f_{X}(-2)+f_{X}(2)=\frac{16}{31}+\frac{1}{31}=\frac{17}{31}$
Another way to express this is
$f_{Y}(0)=\frac{4}{31}, y=0$
$f_{Y}(1)=\frac{4}{31}\left[\left(\frac{1}{2}\right)^{-y}+\left(\frac{1}{2}\right)^{y}\right], y=1,2$
Example 2. Suppose $X \sim \operatorname{UNIF}(-1,1)$ and $Y=X^{2}$. Determine pdf of Y.
It is possible to partition $A=(-1,1)$ into disjoint subsets $A_{1}=(-1,0)$ and $A_{2}=(0,1)$. Since A is continuous then $x=0$ can be neglected. Then for each y in the range of $g(x)$, the equation $y=g(x)$ has a unique solution $x_{1}=h_{1}(y)=-\sqrt{y}$ over the set A_{1} and $x_{2}=h_{2}(y)=\sqrt{y}$ over the set A_{2}. Thus the pdf of Y is

$$
f_{Y}(y)=f_{X}(-\sqrt{y})\left|\frac{-1}{2 \sqrt{y}}\right|+f_{X}(\sqrt{y})\left|\frac{1}{2 \sqrt{y}}\right|=\frac{1}{2 \sqrt{y}}, y \in(0,1)
$$

Example 3. Let $f_{X}(x)=\frac{x^{2}}{3},-1<x<2$ and consider $Y=X^{2}$. Determine pdf of Y.

There are two inverse transformation, $x_{1}=h_{1}(y)=-\sqrt{y}$ for $x<0$ and $x_{2}=h_{2}(y)=\sqrt{y}$ for $x>0$. Thus the pdf of Y is
$f_{Y}(y)=\left\{\begin{array}{cl}f_{X}(-\sqrt{y})\left|\frac{-1}{2 \sqrt{y}}\right|+f_{X}(\sqrt{y})\left|\frac{1}{2 \sqrt{y}}\right|=\frac{1}{2 \sqrt{y}}\left[\frac{(-\sqrt{y})^{2}}{3}+\frac{(\sqrt{y})^{2}}{3}\right] & , 0<y<1 \\ f_{X}(\sqrt{y})\left|\frac{-1}{2 \sqrt{y}}\right|=\frac{1}{2 \sqrt{y}}\left[\frac{(-\sqrt{y})^{2}}{3}\right] & , 1<y<4\end{array}\right.$

