0.1. Joint Transformation

The preceding theorems can be extended to apply to functions of several random variables.

Theorem 1. If X is a vector of discrete random variables with joint pdf $f_{X}(x)$ and $Y=g(X)$ defines a one-to-one transformation, then the joint pdf of Y is

$$
f_{Y}\left(y_{1}, y_{2}, \ldots, y_{k}\right)=f_{X}\left(x_{1}, x_{2}, \ldots, x_{k}\right)
$$

where $x_{1}, x_{2}, \ldots, x_{k}$ are the solutions of $y=g(x)$ and consequently depend on $y_{1}, y_{2}, \ldots, y_{k}$.

If the transformation is not one-to-one, and if a partition exists, say A_{1}, A_{2}, \ldots, such that the equation $y=g(x)$ has a unique solution $x=x_{j}$ or $x_{j}=x_{1 j}, x_{2 j}, \ldots, x_{k j}$ over A_{j}, then the pdf of Y is

$$
f_{Y}\left(y_{1}, y_{2}, \ldots, y_{k}\right)=\sum_{j} f_{X}\left(x_{1 j}, x_{2 j}, \ldots, x_{k j}\right)
$$

Theorem 2. Suppose that $X=X_{1}, X_{2}, \ldots, X_{k}$ is a vector of continuous random variables with joint pdf $f_{X}\left(x_{1}, x_{2}, \ldots, x_{k}\right)>0$ on A, and $Y=Y_{1}, Y_{2}, \ldots, Y_{k}$ is defined by the one-to-one transformation

$$
Y_{i}=g_{i}\left(X_{1}, X_{2}, \ldots, X_{k}\right), i=1,2, \ldots, k
$$

If the Jacobian is continuous and nonzero over the range of the transformation, then the joint pdf of Y is

$$
f_{Y}\left(y_{1}, y_{2}, \ldots, y_{k}\right)=f_{X}\left(x_{1}, x_{2}, \ldots, x_{k}\right)|J|
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ is the solution of $y=u(x)$, and the Jacobian is the determinant of the kxk matrix of partial derivatives:

$$
J=\left|\begin{array}{cccc}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{1}}{\partial y_{2}} & \cdots & \frac{\partial x_{1}}{\partial y_{k}} \\
\frac{\partial x_{2}}{\partial y_{1}} & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
\frac{\partial x_{k}}{\partial y_{1}} & \cdots & \cdots & \frac{\partial x_{k}}{\partial y_{k}}
\end{array}\right|
$$

Proof. Denote by B the range of a transformation $y=g(x)$ with the inverse $x=h(y)$. Assume that $D \subset B$, and let C be the set of all points $x=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ that map into D under transformation. Therefore,

$$
\begin{aligned}
& P[Y \in D]=\int \begin{array}{c}
\int \cdots \int \\
D
\end{array} f_{Y}\left(y_{1}, y_{2}, \ldots, y_{k}\right) d y_{1} \ldots d y_{k} \\
& P[Y \in D]=\begin{array}{c}
\int \cdots \int_{C} \\
C_{X}\left(x_{1}, x_{2}, \ldots, x_{k}\right) d x_{1} \ldots d x_{k} \\
P[Y \in D]=\iint_{D} f_{X}\left(h_{1}\left(y_{1}, y_{2}, \ldots, y_{k}\right), \ldots, h_{k}\left(y_{1}, y_{2}, \ldots, y_{k}\right)\right)|J| d y_{1} \ldots d y_{k}
\end{array}
\end{aligned}
$$

If the transformation is not one-to-one, can be extended. The equation $y=g(x)$ has a unique solution over each set in a partition A_{1}, A_{2}, \ldots, and if these solutions have nonzero continuous Jacobians, then the pdf of Y is

$$
f_{Y}\left(y_{1}, y_{2}, \ldots, y_{k}\right)=\sum_{i} f_{X}\left(x_{1 i}, x_{2 i}, \ldots, x_{k i}\right)\left|J_{i}\right|
$$

Example 3. Let X_{1} and X_{2} be independent and exponential, $X \sim E X P(1)$. Thus, the joint pdf is

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\exp \left(-\left(x_{1}+x_{2}\right)\right),\left(x_{1}, x_{2}\right) \in A
$$

where $A=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}>0, x_{2}>0\right\}$.
Consider the random variables $Y_{1}=X_{1}$ and $Y_{2}=X_{1}+X_{2}$. This corresponds to the transformation $y_{1}=x_{1}$ and $y_{2}=x_{1}+x_{2}$, which has a unique solution, $x_{1}=y_{1}$ and $x_{2}=y_{2}-y_{1}$. The Jacobian is $|J|=\left|\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right|=1$ and thus

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=f_{X_{1}, X_{2}}\left(y_{1}, y_{2}-y_{1}\right)|J|=\exp \left(-y_{2}\right),\left(y_{1}, y_{2}\right) \in B
$$

and zero otherwise. The set of B is obtained by transforming the set A, an this corresponds to $y_{1}=x_{1}>0$ and $y_{2}-y_{1}=x_{2}>0$. Thus $B=\left\{\left(y_{1}, y_{2}\right) \mid \infty>y_{1}>y_{2}>0\right\}$.

The marginal pdf of Y_{1} and Y_{2} are given as follows:
$f_{Y_{1}}\left(y_{1}\right)=\ldots$
$f_{Y_{2}}\left(y_{2}\right)=\ldots$
Example 4. Suppose that, instead of the transformation of the previous example, a different transformation, $y_{1}=x_{1}-x_{2}$ and $y_{2}=x_{1}+x_{2}$ is considered.

The solution is $x_{1}=\ldots$ and $x_{2}=\ldots$ The Jacobian is $|J|=\ldots$ The joint pdf is given by

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=f_{X_{1}, X_{2}}(\ldots, \ldots)|\ldots|=\ldots \in B
$$

where $B=\left\{\left(y_{1}, y_{2}\right) \mid \ldots\right\}$. The marginal pdf of Y_{1} and Y_{2} are given as follows:
$f_{Y_{1}}\left(y_{1}\right)=\ldots$
$f_{Y_{2}}\left(y_{2}\right)=\ldots$

