0.1. Sums of Random Variables

Sums of independent random variables often arise in practice. In examples, determine the distribution of a sum of $S=X_{1}+X_{2}$ where X_{1} and X_{2} are continuous random variables.

Example 1. Let X_{1} and X_{2} be independent and uniform, $X_{i} \sim \operatorname{UNIF}(0,1)$. Consider the transformation $T=X_{1}$ and $S=X_{1}+X_{2}$. Find the pdf of S.

Solution.
The pdf of X is

$$
f_{S}(s)=\left\{\begin{array}{cc}
s & , 0<s<1 \\
2-s & , 1 \leq x<2
\end{array}\right.
$$

Example 2. Let $f_{U}(u)=e^{-u}, u>0$ and $f_{V}(v)=2 v, 0<v<1 . U$ and V are independent. If $X=U+V$, then the pdf of X is?

Solution.
(1) Consider the transformation $X=U+V$ and $Y=V$. The pdf of X is

$$
f_{X}(x)= \begin{cases}0 \int^{x} 2 y e^{-(x-y)} d y=\ldots & , 0<x<1 \\ 0 \int^{1} 2 y e^{-(x-y)} d y=\ldots & , 1 \leq x<\infty\end{cases}
$$

(2) Consider the transformation $X=U+V$ and $Y=U$. The pdf of X is

$$
f_{X}(x)=\left\{\begin{array}{cc}
0 \int^{x} 2(x-y) e^{-y} d y=\ldots & , 0<x<1 \\
x-1 \int^{x} 2(x-y) e^{-y} d y=\ldots & , 1 \leq x<\infty
\end{array}\right.
$$

The pdf of X is

$$
f_{X}(x)=\left\{\begin{array}{cc}
2 x+2 e^{-x}-2 & , 0<x<1 \\
2 e^{-x} & , x \geq 1
\end{array}\right.
$$

Example 3. Let X_{1} and X_{2} be independent and uniform, $X_{i} \sim \operatorname{UNIF}(0,1)$. Consider the transformation $Y_{1}=\frac{X_{1}}{X_{2}}$ and $Y_{2}=X_{1} . X_{2}$. Find the pdf of Y_{1} and Y_{2}.

Solution.

Example 4. Let X_{1} and X_{2} are independent gamma variables, $f\left(x_{1}, x_{2}\right)=$ $\frac{1}{\Gamma(\alpha) \Gamma(\beta)} x_{1}^{\alpha-1} x_{2}^{\beta-1} e^{-x_{1}-x_{2}}, 0<x_{i}<\infty$. Consider the transformation $Y_{1}=X_{1}+X_{2}$ and $Y_{2}=\frac{X_{1}}{X_{1}+X_{2}}$.

The joint pdf of Y_{1} and Y_{2} is

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=\ldots,\left(y_{1}, y_{2}\right) \in \ldots
$$

And the pdf of Y_{1} is
Example 5. Let X_{1}, X_{2} and X_{3} are independent gamma variables, $X_{i} \sim$ $\operatorname{GAM}\left(1, \alpha_{i}\right), i=1,2,3$. Consider the transformation $Y_{i}=\frac{X_{i}}{\sum_{j=1}^{3} X_{j}}, i=1,2$ and $Y_{3}=\sum_{j=1}^{3} X_{j}$.

The joint pdf of Y_{1}, Y_{2}, and Y_{3} is

$$
f_{Y_{1}, Y_{2}, Y_{3}}\left(y_{1}, y_{2}, y_{3}\right)=\ldots,\left(y_{1}, y_{2}, y_{3}\right) \in \ldots
$$

And the pdf of Y_{3} is
A technique based on moment generating functions usually is much more convenient than using transformations for determining the distribution of sums of independent random variables.

Theorem 6. If $X_{1}, X_{2}, \ldots, X_{n}$ are independent random variables with MGFs $M_{X_{i}}(t)$ then the $M G F$ of $Y=\sum_{i=1}^{n} X_{i}$ is

$$
M_{Y}(t)=M_{X_{1}}(t) \ldots M_{X_{n}}(t)
$$

Proof. Notice that $e^{t Y}=e^{t\left(X_{1}+\ldots+X_{n}\right)}=e^{t X_{1}} \ldots e^{t X_{1}}$ so
$M_{Y}(t)=E\left(e^{t Y}\right)=E\left(e^{t\left(X_{1}+\ldots+X_{n}\right)}\right)=E\left(e^{t X_{1}}\right) \ldots E\left(e^{t X_{1}}\right)=M_{X_{1}}(t) \ldots M_{X_{n}}(t)$
Example 7. Let $X_{1}, X_{2}, \ldots, X_{k}$ be independent binomial random variables with respective parameters n_{i} and $p, X_{i} \sim B I N\left(n_{i}, p\right)$, and let $Y=\sum_{i=1}^{k} X_{i}$.

It follows that $M_{Y}(t)=\ldots$
Thus, $Y \sim \ldots$
Example 8. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent Poisson-distributed random variables with respective parameters n_{i} and $p, X_{i} \sim P O I\left(\mu_{i}\right)$, and let $Y=\sum_{i=1}^{n} X_{i}$.

It follows that $M_{Y}(t)=\ldots$
Thus, $Y \sim \ldots$
Example 9. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent Gamma-distributed with respective shape parameter $\kappa_{1}, \kappa_{2}, \ldots, \kappa_{n}$ and common scale parameter $\theta, X_{i} \sim \operatorname{GAM}\left(\theta, \kappa_{i}\right)$ for $i=1,2, \ldots, n$, and let $Y=\sum_{i=1}^{n} X_{i}$.

It follows that $M_{Y}(t)=\ldots$
Thus, $X \sim \ldots$
Example 10. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent normally distributed random variables, $X_{i} \sim N\left(\mu_{i}, \sigma_{i}^{2}\right)$, and let $Y=\sum_{i=1}^{n} X_{i}$.

It follows that $M_{Y}(t)=\ldots$
Thus, $Y \sim \ldots$
This includes the special case of a random sample $X_{1}, X_{2}, \ldots, X_{n}$ from a normally distributed population, say $X_{i} \sim N\left(\mu, \sigma^{2}\right)$. In this case, $\mu=\mu_{i}$ and $\sigma^{2}=\sigma_{i}^{2}$ for all $i=1,2, \ldots, n$, and consequently $\sum_{i=1}^{n} X_{i} \sim N\left(n \mu, n \sigma^{2}\right)$. It also follows readily in the case that the sample mean, $\bar{X}=\frac{\sum_{i=1}^{n} X_{i}}{n}$ is normally distributed, $\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$.

