
0.1. Sums of Random Variables

Sums of independent random variables often arise in practice. In examples,
determine the distribution of a sum of S = X1+X2 whereX1 andX2 are continuous
random variables.

Example 1. Let X1 and X2 be independent and uniform, Xi ∼ UNIF (0, 1).
Consider the transformation T = X1 and S = X1 +X2. Find the pdf of S.

Solution.
The pdf of X is

fS(s) =

{
s , 0 < s < 1

2− s , 1 ≤ x < 2

Example 2. Let fU (u) = e−u, u > 0 and fV (v) = 2v, 0 < v < 1 . U and V
are independent. If X = U + V , then the pdf of X is?

Solution.

(1) Consider the transformation X = U + V and Y = V . The pdf of X is

fX(x) =

{
0

´ x
2ye−(x−y)dy = ... , 0 < x < 1

0

´ 1
2ye−(x−y)dy = ... , 1 ≤ x <∞

(2) Consider the transformation X = U + V and Y = U . The pdf of X is

fX(x) =

{
0

´ x
2 (x− y) e−ydy = ... , 0 < x < 1

x−1

´ x
2 (x− y) e−ydy = ... , 1 ≤ x <∞

The pdf of X is

fX(x) =

{
2x+ 2e−x − 2 , 0 < x < 1

2e−x , x ≥ 1

Example 3. Let X1 and X2 be independent and uniform, Xi ∼ UNIF (0, 1).
Consider the transformation Y1 = X1

X2
and Y2 = X1.X2. Find the pdf of Y1 and Y2.

Solution.

Example 4. Let X1 and X2 are independent gamma variables, f (x1, x2) =
1

Γ(α)Γ(β)x
α−1
1 xβ−1

2 e−x1−x2 , 0 < xi <∞. Consider the transformation Y1 = X1 +X2

and Y2 = X1

X1+X2
.

The joint pdf of Y 1 and Y2 is

fY 1,Y2(y1, y2) = ..., (y1, y2) ∈ ...

And the pdf of Y 1 is

Example 5. Let X1, X2 and X3 are independent gamma variables, Xi ∼
GAM (1, αi) , i = 1, 2, 3. Consider the transformation Yi = Xi

3∑
j=1

Xj

, i = 1, 2 and

Y3 =
3∑
j=1

Xj .

1



0.1. SUMS OF RANDOM VARIABLES 2

The joint pdf of Y 1, Y2, and Y3 is

fY 1,Y2,Y3
(y1, y2, y3) = ... , (y1, y2, y3) ∈ ...

And the pdf of Y 3 is
A technique based on moment generating functions usually is much more con-

venient than using transformations for determining the distribution of sums of
independent random variables.

Theorem 6. If X1, X2, ..., Xn are independent random variables with MGFs

MXi (t) then the MGF of Y =
n∑
i=1

Xi is

MY (t) = MX1
(t) ...MXn

(t)

Proof. Notice that etY = et(X1+...+Xn) = etX1 ...etX1 so
MY (t) = E

(
etY
)

= E
(
et(X1+...+Xn)

)
= E

(
etX1

)
...E

(
etX1

)
= MX1 (t) ...MXn (t)

�

Example 7. LetX1, X2, ..., Xk be independent binomial random variables with

respective parameters ni and p, Xi ∼ BIN (ni, p), and let Y =
k∑
i=1

Xi.

It follows that MY (t) = ...
Thus, Y ∼ ...

Example 8. Let X1, X2, ..., Xn be independent Poisson-distributed random

variables with respective parameters ni and p, Xi ∼ POI (µi), and let Y =
n∑
i=1

Xi.

It follows that MY (t) = ...
Thus, Y ∼ ...

Example 9. Let X1, X2, ..., Xn be independent Gamma-distributed with re-
spective shape parameter κ1, κ2, ..., κn and common scale parameter θ,Xi ∼ GAM (θ, κi)

for i = 1, 2, ..., n, and let Y =
n∑
i=1

Xi.

It follows that MY (t) = ...
Thus, X ∼ ...

Example 10. Let X1, X2, ..., Xn be independent normally distributed random

variables, Xi ∼ N
(
µi, σ

2
i

)
, and let Y =

n∑
i=1

Xi.

It follows that MY (t) = ...
Thus, Y ∼ ...
This includes the special case of a random sample X1, X2, ..., Xn from a nor-

mally distributed population, say Xi ∼ N
(
µ, σ2

)
. In this case, µ = µi and

σ2 = σ2
i for all i = 1, 2, ..., n, and consequently

n∑
i=1

Xi ∼ N
(
nµ, nσ2

)
. It also fol-

lows readily in the case that the sample mean, X̄ =

n∑
i=1

Xi

n is normally distributed,

X̄ ∼ N
(
µ, σ

2

n

)
.


