0.1. Sums of Random Variables

Sums of independent random variables often arise in practice. In examples, determine the distribution of a sum of $S = X_1 + X_2$ where X_1 and X_2 are continuous random variables.

EXAMPLE 1. Let X_1 and X_2 be independent and uniform, $X_i \sim UNIF(0, 1)$. Consider the transformation $T = X_1$ and $S = X_1 + X_2$. Find the pdf of S.

Solution.

The pdf of X is

$$f_S(s) = \begin{cases} s & , 0 < s < 1\\ 2 - s & , 1 \le x < 2 \end{cases}$$

EXAMPLE 2. Let $f_U(u) = e^{-u}$, u > 0 and $f_V(v) = 2v$, 0 < v < 1. U and V are independent. If X = U + V, then the pdf of X is?

Solution.

(1) Consider the transformation X = U + V and Y = V. The pdf of X is

$$f_X(x) = \begin{cases} 0 \int^x 2y e^{-(x-y)} dy = \dots & , 0 < x < 1\\ 0 \int^1 2y e^{-(x-y)} dy = \dots & , 1 \le x < \infty \end{cases}$$

(2) Consider the transformation X = U + V and Y = U. The pdf of X is

$$f_X(x) = \begin{cases} 0 \int^x 2(x-y) e^{-y} dy = \dots & , 0 < x < 1\\ x-1 \int^x 2(x-y) e^{-y} dy = \dots & , 1 \le x < \infty \end{cases}$$

The pdf of X is

$$f_X(x) = \begin{cases} 2x + 2e^{-x} - 2 & , 0 < x < 1\\ 2e^{-x} & , x \ge 1 \end{cases}$$

EXAMPLE 3. Let X_1 and X_2 be independent and uniform, $X_i \sim UNIF(0, 1)$. Consider the transformation $Y_1 = \frac{X_1}{X_2}$ and $Y_2 = X_1 \cdot X_2$. Find the pdf of Y_1 and Y_2 .

Solution.

EXAMPLE 4. Let X_1 and X_2 are independent gamma variables, $f(x_1, x_2) = \frac{1}{\Gamma(\alpha)\Gamma(\beta)}x_1^{\alpha-1}x_2^{\beta-1}e^{-x_1-x_2}, 0 < x_i < \infty$. Consider the transformation $Y_1 = X_1 + X_2$ and $Y_2 = \frac{X_1}{X_1+X_2}$.

The joint pdf of Y_1 and Y_2 is

$$f_{Y_1,Y_2}(y_1,y_2) = \dots, (y_1,y_2) \in \dots$$

And the pdf of Y_1 is

EXAMPLE 5. Let X_1 , X_2 and X_3 are independent gamma variables, $X_i \sim GAM(1, \alpha_i), i = 1, 2, 3$. Consider the transformation $Y_i = \frac{X_i}{\sum\limits_{j=1}^{3} X_j}, i = 1, 2$ and

$$Y_3 = \sum_{j=1}^3 X_j.$$

The joint pdf of Y_1 , Y_2 , and Y_3 is

$$f_{Y_1,Y_2,Y_3}(y_1,y_2,y_3) = \dots, (y_1,y_2,y_3) \in \dots$$

And the pdf of Y_3 is

A technique based on moment generating functions usually is much more convenient than using transformations for determining the distribution of sums of independent random variables.

THEOREM 6. If $X_1, X_2, ..., X_n$ are independent random variables with MGFs $M_{X_i}(t)$ then the MGF of $Y = \sum_{i=1}^n X_i$ is $M_Y(t) = M_{X_1}(t) ... M_{X_n}(t)$ PROOF. Notice that $e^{tY} = e^{t(X_1 + ... + X_n)} = e^{tX_1} ... e^{tX_1}$ so

$$M_{Y}(t) = E\left(e^{tY}\right) = E\left(e^{t(X_{1}+...+X_{n})}\right) = E\left(e^{tX_{1}}\right)...E\left(e^{tX_{1}}\right) = M_{X_{1}}(t)...M_{X_{n}}(t)$$

EXAMPLE 7. Let $X_1, X_2, ..., X_k$ be independent binomial random variables with respective parameters n_i and $p, X_i \sim BIN(n_i, p)$, and let $Y = \sum_{i=1}^k X_i$.

It follows that $M_Y(t) = \dots$ Thus, $Y \sim \dots$

EXAMPLE 8. Let $X_1, X_2, ..., X_n$ be independent Poisson-distributed random variables with respective parameters n_i and $p, X_i \sim POI(\mu_i)$, and let $Y = \sum_{i=1}^{n} X_i$.

It follows that $M_Y(t) = \dots$ Thus, $Y \sim \dots$

EXAMPLE 9. Let $X_1, X_2, ..., X_n$ be independent Gamma-distributed with respective shape parameter $\kappa_1, \kappa_2, ..., \kappa_n$ and common scale parameter $\theta, X_i \sim GAM(\theta, \kappa_i)$ for i = 1, 2, ..., n, and let $Y = \sum_{i=1}^n X_i$.

It follows that $M_Y(t) = \dots$ Thus, $X \sim \dots$

EXAMPLE 10. Let $X_1, X_2, ..., X_n$ be independent normally distributed random variables, $X_i \sim N\left(\mu_i, \sigma_i^2\right)$, and let $Y = \sum_{i=1}^n X_i$.

It follows that $M_Y(t) = \dots$

Thus, $Y \sim \dots$

This includes the special case of a random sample $X_1, X_2, ..., X_n$ from a normally distributed population, say $X_i \sim N(\mu, \sigma^2)$. In this case, $\mu = \mu_i$ and $\sigma^2 = \sigma_i^2$ for all i = 1, 2, ..., n, and consequently $\sum_{i=1}^n X_i \sim N(n\mu, n\sigma^2)$. It also follows readily in the case that the sample mean, $\bar{X} = \frac{\sum_{i=1}^n X_i}{n}$ is normally distributed, $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$.