Converges in Probability and Distribution

DEFINITION 1. Let $\{X_n\}$, X be random variables. Then $\{X_n\}$ converges in distribution to X as $n \to \infty$, written $X_n \to_d X$, if

$$\lim_{n \to \infty} P(X_n \le X) = \lim_{n \to \infty} F_{X_n}(x) = F_X(x)$$

for each continuity point of the distribution function F(x).

EXAMPLE 2. Let $X_1, X_2, ..., X_n$ be a random sample from a unifrom distribution, $X_i \sim UNIF(0,1)$, and let $Y_n = X_{n:n}$ the largest order statistic. Find limiting distribution of Y_n .

Solution. From equation ?? the CDF of Y_n is $G_{Y_n} = (F_X(y))^n$ and

$$F_X(x) = \begin{cases} 0, & 0 \ge x \\ x, & 0 < x < 1 \\ 1, & x \ge 1 \end{cases}$$

Therefore

$$G_{Y_n}(y) = \begin{cases} 0, & 0 \ge y \\ y^n, & 0 < y < 1 \\ 1, & y \ge 1 \end{cases}$$

and

$$\lim_{n \to \infty} G_{Y_n}(y) = \begin{cases} \lim_{n \to \infty} 0 = 0, & 0 \ge y \\ \lim_{n \to \infty} y^n = 0, & 0 < y < 1 \\ \lim_{n \to \infty} 1 = 1, & y \ge 1 \end{cases}$$

Thus

$$G_Y(y) = \lim_{n \to \infty} G_{Y_n}(y) = \begin{cases} 0 & , y < 1\\ 1 & , y \ge 1 \end{cases}$$

EXAMPLE 3. Suppose that $X_1, X_2, ..., X_n$ is a random sample from a Pareto distribution, $X_i \sim PAR(1,1)$ or $f_X(x) = (1+x)^{-2}, x>0$, and let $Y_n = nX_{1:n}$. The CDF of X_i is $F_X(x) = 1 - \frac{1}{1+x}, x>0$, Find limiting distribution of Y_n

Solution. From equation ??,

$$G_{Y_n}\left(y\right) = \begin{cases} 1 - \left(1 - F_X\left(\frac{y}{n}\right)\right)^n = 1 - \left(\frac{1}{1 + \frac{y}{n}}\right)^n = 1 - \left(1 + \frac{y}{n}\right)^{-n} & , 0 < y \\ 0 & , y \le 0 \end{cases}$$

and

$$G_{Y}(y) = \lim_{n \to \infty} G_{Y_{n}}(y) = \begin{cases} \lim_{n \to \infty} 1 - \left(1 + \frac{y}{n}\right)^{-n} = 1 - e^{-y} & , 0 < y \\ 0 & , y \le 0 \end{cases}$$

1

Example 4. Rework Example 3 for $Y_n = X_{n:n}$

Solution. From equation ??,

$$G_{Y_n}(y) = \begin{cases} (F_X(y))^n = \left(1 - \left(\frac{1}{1+y}\right)\right)^n & , 0 > y \\ 0 & , y \ge 0 \end{cases}$$

and

$$G_Y(y) = \lim_{n \to \infty} G_{Y_n}(y) = \begin{cases} \lim_{n \to \infty} \left(\frac{y}{1+y}\right)^n = 0 & , 0 > y \\ 0 & , y \ge 0 \end{cases}$$

Thus Y_n does not have limit distribution.

DEFINITION 5. The function $G\left(y\right)$ is the CDF of degenerate distribution at the value y=c if

$$G_Y(y) = \begin{cases} 0 & , y < c \\ 1 & , y \ge c \end{cases}$$

In other words, G(y) is the CDF of discrete distribution that assigns probability one at the value y = c and zero otherwise.

Example 6. Let $X_1,X_2,...,X_n$ is a random sample from an Exponensial distribution, $X_i \sim EXP\left(\theta\right)$ or $f_X\left(x\right) = \frac{1}{\theta}e^{-\frac{x}{\theta}}, x>0$, and let $Y_n = X_{1:n}$

Solution. It follows that the CDF of Y_n is

$$G_{Y_n}(y) = \begin{cases} 1 - e^{-\frac{ny}{\theta}} &, y > 0\\ 0 &, y \le 0 \end{cases}$$

Then

$$G_{Y}\left(y\right) = \lim_{n \to \infty} G_{Y_{n}}(y) = \begin{cases} \lim_{n \to \infty} 1 - e^{-\frac{ny}{\theta}} = 1 &, 0 < y \\ 0 &, y \leq 0 \end{cases}$$

which is corresponds to a degenerate distribution at the value y = 0.

DEFINITION 7. A sequence of random variables $Y_1, Y_2, ...$ is said to **convergence stochastically** to a constant c, written $Y_n \to_{stochastic} c$, if it has a limiting distribution that is degenerate at y = c.

EXAMPLE 8. For Example 2 and from Definition 5 and Definition 7, and G(y) is the CDF of degenerate distribution at the value y = 1 and $Y_n \rightarrow_{stochastic} 1$.

Theorem 9. (Continuity Theorem) Let $Y_1, Y_2, ...$ be a sequence of random variables with respective CDF's $G_{Y_1}(y)$, $G_{Y_2}(y)$, ... and MGF's $M_{Y_1}(t)$, $M_{Y_2}(t)$, If $M_Y(t)$ is the MGF of a CDF $G_Y(y)$, and if $\lim_{n\to\infty} M_{Y_n}(t) = M_Y(t)$ for all t in open interval containing zero, -h < t < h, then $\lim_{n\to\infty} G_{Y_n}(y) = G_Y(y)$ for all continuity points of $G_Y(y)$.

In other words,

$$\lim_{n\to\infty} M_{Y_n}\left(t\right) = M_Y\left(t\right) \Rightarrow \lim_{n\to\infty} G_{Y_n}\left(y\right) = G_Y\left(y\right) \Rightarrow Y_n \to_d Y$$

EXAMPLE 10. Let $X_1, X_2, ..., X_n$ be a random sample from a Bernoulli distribution, $X_i \sim BIN(1, p)$, and consider $Y_n = \sum_{i=1}^n X_i$.

Solution. Let $np = \mu$ for fixed $\mu > 0$ then $p \to 0$ as $n \to \infty$. Thus, from Theorem ??,

$$M_{Y_n}(t) = (pe^t + q)^n$$

$$= \left(\frac{\mu e^t}{n} + 1 - \frac{\mu}{n}\right)^n$$

$$= \left(1 + \frac{\mu(e^t - 1)}{n}\right)^n$$

And

$$\lim_{n \to \infty} M_{Y_n}(t) = \lim_{n \to \infty} \left(1 + \frac{\mu(e^t - 1)}{n} \right)^n = e^{\mu(e^t - 1)}$$

Since $M_Y(t) = e^{\mu(e^t - 1)}$ is the MGF of the Poisson distribution with mean μ . Thus, $Y_n \to_d Y \sim POI(\mu = np)$.

EXAMPLE 11. Let $X_1, X_2, ..., X_n$ be a random sample and consider $Y_n = \sum_{i=1}^n X_i$ and $Z_n = \frac{Y_n - np}{\sqrt{npq}}$.

Solution. Let $\sigma_n = \sqrt{npq}$, $Z_n = \frac{Y_n}{\sigma_n} - \frac{np}{\sigma_n}$. Since $Z_n = \frac{Y_n}{\sigma_n} - \frac{np}{\sigma_n}$, then $M_{Z_n}(t) = M_{\frac{Y_n}{\sigma_n} - \frac{np}{\sigma_n}}(t) = e^{-\frac{npt}{\sigma_n}} M_{Y_n}\left(\frac{t}{\sigma_n}\right)$. Therefore, using the series expansion $e^a = 1 + a + \frac{a^2}{2} + \dots$,

$$\begin{split} M_{Z_n}\left(t\right) &= e^{-\frac{npt}{\sigma_n}} \left(pe^{\frac{t}{\sigma_n}} + q\right)^n \\ &= \left[e^{-\frac{pt}{\sigma_n}} \left(pe^{\frac{t}{\sigma_n}} + q\right)\right]^n \\ &= \left[\left(1 - \frac{pt}{\sigma_n} + \frac{p^2t^2}{2\sigma_n^2} + \ldots\right) \left(p(1 + \frac{t}{\sigma_n} + \frac{t^2}{2\sigma_n^2} + \ldots) + q\right)\right]^n \\ &= \left[\left(1 - \frac{pt}{\sigma_n} + \frac{p^2t^2}{2\sigma_n^2} + \ldots\right) \left(1 + \frac{pt}{\sigma_n} + \frac{pt^2}{2\sigma_n^2} + \ldots\right)\right]^n \\ &= \left[\left(1 + \frac{t^2}{2n} + \frac{d(n)}{n}\right)\right]^n \end{split}$$

where $d(n) \to 0$ as $n \to \infty$. Thus,

$$\lim_{n \to \infty} M_{Z_n}\left(t\right) = \lim_{n \to \infty} \left[\left(1 + \frac{t^2}{2n} + \frac{d\left(n\right)}{n}\right) \right]^n = e^{\frac{t^2}{2}}$$

In other words, $Z_n = \frac{Y_n - np}{\sqrt{npq}} \rightarrow_d Z \sim N(0, 1)$.

EXAMPLE 12. Let $Z_1, Z_2, ..., Z_n$ be a random sample and $Z_i \sim N(0, 1)$, Find the limiting distribution of $Z_n = \frac{\sum\limits_{i=1}^n Z_i + \frac{1}{n}}{\sqrt{n}}$.

Solution. Since MGF of Z_i is $M_Z\left(t\right)=e^{\frac{1}{2}t^2},$ then from Theorem ?? MGF of Z_n is,

$$M_{Z_n}(t) = E\left(e^{Z_n t}\right)$$

$$= E\left(e^{\left(\frac{n}{\sum z_i + \frac{1}{n}}\right)t}\right)$$

$$= E\left(e^{\frac{t}{\sqrt{n}} + \frac{t}{\sqrt{n}}\sum_{i=1}^{n} Z_i}\right)$$

$$= e^{\frac{t}{\sqrt{n}}} E\left(e^{\frac{t}{\sqrt{n}} Z_1} e^{\frac{t}{\sqrt{n}} Z_2} ... e^{\frac{t}{\sqrt{n}} Z_n}\right)$$

$$= e^{\frac{t}{\sqrt{n}}} \left(M_{Z_n}\left(\frac{t}{\sqrt{n}}\right)\right)^n$$

Therefore,

Therefore,
$$\lim_{n\to\infty} M_{Z_n}\left(t\right) = \lim_{n\to\infty} e^{\frac{t}{\sqrt{n}}} \left(e^{\frac{t^2}{2n}}\right)^n = \lim_{n\to\infty} e^{\frac{t}{\sqrt{n}}} e^{\frac{t^2}{2}} = e^{\frac{t^2}{2}}$$
 Thus, $Z_n \to_d Z \sim N\left(0,1\right)$.