CHAPTER 1

Converges in Probability

It is possible, in some cases, to find bounds on probabilities based on moments.
Proposition 1. (Markov's inequality) Let X be a random variable, then for any value $t>0$,

$$
P(X \geq a) \leq \frac{E(X)}{a}
$$

Proof. For $a>0$, let

$$
I= \begin{cases}1 & , X \geq a \\ 0 & , \text { otherwise }\end{cases}
$$

since $X \geq 0$ then $I \leq \frac{X}{a}$.
Taking expectations of the above yields that $E(I) \leq \frac{E(X)}{a} . E(I)=P(X \geq a)$, therefore

$$
P(X \geq a) \leq \frac{E(X)}{a}
$$

As a corollary, Proposition 2 can be obtained.
Proposition 2. (Chebyshev's inequality) Let X be a random variable with mean μ and variance σ^{2}. Then, for any $t>0$,

$$
P(|X-\mu| \geq t) \leq \frac{\sigma^{2}}{t^{2}}
$$

Proof. For the continuous case (the discrete case is entirely analogous), let $R=\{x:|x-\mu|>t\}$ then

$$
P(|X-\mu| \geq t) \leq \int_{R} f(x) d x
$$

if $x \in R$,

$$
\frac{|x-\mu|^{2}}{t^{2}} \geq 1
$$

Thus,

$$
\int_{R} f(x) d x \leq \int_{R} \frac{|x-\mu|^{2}}{t^{2}} f(x) d x \leq \int_{-\infty}^{\infty} \frac{(x-\mu)^{2}}{t^{2}} f(x) d x=\frac{\sigma^{2}}{t^{2}}
$$

For another interpretation, set $t=k \sigma$ so that the inequality becomes

$$
\begin{equation*}
P(|X-\mu| \geq k \sigma) \leq \frac{1}{k^{2}} \tag{1.0.1}
\end{equation*}
$$

and an alternative form is

$$
\begin{equation*}
P(|X-\mu|<k \sigma) \geq 1-\frac{1}{k^{2}} \tag{1.0.2}
\end{equation*}
$$

Chebyshev's inequality has the following consequence.
Corollary 3. If $\operatorname{Var}(X)=0$, then $P(X=\mu)=1$
Proof. If $P(X=\mu)<1$, then for some $\varepsilon>0, P(|X-\mu| \geq \varepsilon)>0$. However, by Chebyshev's inequality, for any $\varepsilon>0$,

$$
P(|X-\mu| \geq \varepsilon)=0
$$

Contradiction, $P(X=\mu)=1$
Definition 4. (Convergence in Probability) The sequence of random variables Y_{n} is said to converge in probability to Y, written $Y_{n} \rightarrow_{p} Y$, if

$$
\lim _{n \rightarrow \infty} P\left(\left|Y_{n}-Y\right|<\varepsilon\right)=1
$$

THEOREM 5. The sequence of random variables Y_{1}, Y_{2}, \ldots is said to convergence stochastically to a constant c, written $Y_{n} \rightarrow_{\text {stochastic }} c$, if and only if for every $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} P\left(\left|Y_{n}-c\right|<\varepsilon\right)=1
$$

The sequence of random variables that satisfies Theorem 5 is also said to converge in probability to a constant c, written $Y_{n} \rightarrow_{p} c$.

Example 6. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a uniform distribution, $X_{i} \sim B I N(1, \pi)$ and let $Y_{n}=\frac{\sum_{i=1}^{n} X_{i}}{n}$. Show that $Y_{n} \rightarrow_{p} \pi$.

Solution. Using Proposition 2,

$$
P\left(\left|Y_{n}-\pi\right|<k \sqrt{\frac{\pi(1-\pi)}{n}}\right) \geq 1-\frac{1}{k^{2}}
$$

Choose $\left.\varepsilon=k \sqrt{\frac{\pi(1-\pi)}{n}}\right)$, then

$$
\lim _{n \rightarrow \infty} P\left(\left|Y_{n}-\pi\right|<\varepsilon\right) \geq \lim _{n \rightarrow \infty}\left(1-\frac{\pi(1-\pi)}{\varepsilon^{2} n}\right)
$$

Therefore,

$$
\lim _{n \rightarrow \infty} P\left(\left|Y_{n}-\pi\right|<\varepsilon\right)=1
$$

Theorem 7. (Strong Law of Large Numbers) If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a distribution with finite mean μ and variance σ^{2}, then the sequence of sample means convergence in probability to μ or $\lim _{n \rightarrow \infty} P\left(\left|X_{n}-\mu\right|<\varepsilon\right)=1$, written $\bar{X}_{n} \rightarrow_{s p} \mu$.

Proof. First, find $E\left(\bar{X}_{n}\right)$ and $\operatorname{Var}\left(\bar{X}_{n}\right), E\left(\bar{X}_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} E\left(X_{i}\right)=\mu$. Since the X_{i} are independent, then $\operatorname{Var}\left(\bar{X}_{n}\right)=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=\frac{\sigma^{2}}{n}$. The desired result now follows immediately from Proposition 2 (Chebyshev's inequality), which states that

$$
\lim _{n \rightarrow \infty} P\left(\left|\bar{X}_{n}-\mu\right|<\varepsilon\right) \geq \lim _{n \rightarrow \infty} 1-\frac{\operatorname{Var}\left(\bar{X}_{n}\right)}{\varepsilon^{2}}=\lim _{n \rightarrow \infty} 1-\frac{\sigma^{2}}{n \varepsilon^{2}}=1
$$

Theorem 8. (Weak Law of Large Numbers) If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a distribution with finite mean μ and variance σ^{2}, then the sequence of sample means convergence in probability to μ or $\lim _{n \rightarrow \infty} P\left(\left|\bar{X}_{n}-\mu\right|>\varepsilon\right)=0$, written $\bar{X}_{n} \rightarrow_{w p} \mu$.

Proof. First, find $E\left(\bar{X}_{n}\right)$ and $\operatorname{Var}\left(\bar{X}_{n}\right), E\left(\bar{X}_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} E\left(X_{i}\right)=\mu$. Since the X_{i} are independent, then $\operatorname{Var}\left(\bar{X}_{n}\right)=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=\frac{\sigma^{2}}{n}$. The desired result now follows immediately from Proposition 2 (Chebyshev's inequality), which states that

$$
\lim _{n \rightarrow \infty} P\left(\left|\bar{X}_{n}-\mu\right|>\varepsilon\right) \leq \lim _{n \rightarrow \infty} \frac{\operatorname{Var}\left(\bar{X}_{n}\right)}{\varepsilon^{2}}=\lim _{n \rightarrow \infty} \frac{\sigma^{2}}{n \varepsilon^{2}}=0
$$

Theorem 9. If $Z_{n}=\frac{\sqrt{n}\left(Y_{n}-m\right)}{c} \rightarrow_{d} Z \sim N(0,1)$ then $Y_{n} \rightarrow_{p} m$
Proof. If $Z_{n}=\frac{\sqrt{n}\left(Y_{n}-m\right)}{c} \rightarrow_{d} Z \sim N(0,1)$, then from Theorem ?? $Y_{n} \rightarrow_{d}$ $N\left(m, \frac{c^{2}}{n}\right)$. Using Proposition 2,

$$
P\left(\left|Y_{n}-m\right|<k \frac{c}{\sqrt{n}}\right) \geq 1-\frac{1}{k^{2}}
$$

Choose $\varepsilon=k \frac{c}{\sqrt{n}}$, then $k=\frac{\varepsilon \sqrt{n}}{c}$ and

$$
\lim _{n \rightarrow \infty} P\left(\left|Y_{n}-m\right|<\varepsilon\right) \geq \lim _{n \rightarrow \infty}\left(1-\frac{c^{2}}{\varepsilon^{2} n}\right)
$$

Therefore,

$$
\lim _{n \rightarrow \infty} P\left(\left|Y_{n}-m\right|<\varepsilon\right)=1
$$

Theorem 10. For a sequence of random variables, if $Y_{n} \rightarrow_{p} Y$ then $Y_{n} \rightarrow_{d} Y$
Proof. ...
THEOREM 11. If $Y_{n} \rightarrow_{p} c$ then for any function $g(y)$ that is continuous at c,

$$
g\left(Y_{n}\right) \rightarrow_{p} g(c)
$$

Proof. ..
Theorem 12. If X_{n} and Y_{n} are two sequence of random variables such that $X_{n} \rightarrow_{p} c$ and $Y_{n} \rightarrow_{p} d$ then,
(1) $a X_{n}+b Y_{n} \rightarrow_{p} a c+b d$
(2) $X_{n} Y_{n} \rightarrow_{p} c d$
(3) $\frac{X_{n}}{c} \rightarrow_{p} 1, c \neq 0$
(4) $\frac{1}{X_{n}} \rightarrow_{p} \frac{1}{c}, \forall n P\left[X_{n} \neq 0\right]=1, c \neq 0$
(5) $\sqrt{X_{n}} \rightarrow_{p} \sqrt{c}, \forall n P\left[X_{n} \geq 0\right]=1$

Proof. .
Theorem 13. (Slutsky's Theorem) If X_{n} and Y_{n} are two sequence of random variables such that $X_{n} \rightarrow_{p} c$ and $Y_{n} \rightarrow_{d} Y$ then,
(1) $X_{n}+Y_{n} \rightarrow_{d} c+Y$
(2) $X_{n} Y_{n} \rightarrow_{d} c Y$
(3) $\frac{Y_{n}}{X_{n}} \rightarrow_{d} \frac{Y}{c}, c \neq 0$

Proof. (As a special case X_{n} could be an ordinary numerical sequence such as $\left.X_{n}=\frac{n}{(n-1)}\right) \ldots$

Theorem 14. If $Y_{n} \rightarrow_{d} Y$ then for any continuous function $g(y), g\left(Y_{n}\right) \rightarrow_{d}$ $g(Y)$

Proof. (Assume $g(y)$ is not to depend on n) ...
ThEOREM 15. If $\frac{\sqrt{n}\left(Y_{n}-m\right)}{c} \rightarrow_{d} Z \sim N(0,1)$ and if $g(y)$ has nonzero derivative at $y=m, g^{\prime}(m) \neq 0$, then

$$
\frac{\sqrt{n}\left[g\left(Y_{n}\right)-g(m)\right]}{\left|c g^{\prime}(m)\right|} \rightarrow_{d} Z \sim N(0,1)
$$

Proof. .

1.1. Problems

(1) Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a uniform distribution, $X_{i} \sim$ $B I N(1, \pi)$ and let $Y_{n}=\frac{\sum_{i=1}^{n}\left(X_{i}-\pi\right)}{n}$. Show that $Y_{n} \rightarrow_{p} 0$.

