
CHAPTER 1

Converges in Probability

It is possible, in some cases, to �nd bounds on probabilities based on moments.

Proposition 1. (Markov's inequality) Let X be a random variable, then for
any value t > 0,

P (X ≥ a) ≤ E (X)

a

Proof. For a > 0, let

I =

{
1 , X ≥ a
0 , otherwise

since X ≥ 0 then I ≤ X
a .

Taking expectations of the above yields that E (I) ≤ E(X)
a . E (I) = P (X ≥ a),

therefore

P (X ≥ a) ≤ E (X)

a
�

As a corollary, Proposition 2 can be obtained.

Proposition 2. (Chebyshev's inequality) Let X be a random variable with
mean µ and variance σ2. Then, for any t > 0,

P (|X − µ| ≥ t) ≤ σ2

t2

Proof. For the continuous case (the discrete case is entirely analogous), let
R = {x : |x− µ| > t} then

P (|X − µ| ≥ t) ≤
ˆ

R

f (x) dx

if x ∈ R,
|x− µ|2

t2
≥ 1

Thus,

ˆ

R

f (x) dx ≤
ˆ

R

|x− µ|2

t2
f (x) dx ≤

∞̂

−∞

(x− µ)
2

t2
f (x) dx =

σ2

t2

�
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For another interpretation, set t = kσ so that the inequality becomes

(1.0.1) P (|X − µ| ≥ kσ) ≤ 1

k2

and an alternative form is

(1.0.2) P (|X − µ| < kσ) ≥ 1− 1

k2

Chebyshev's inequality has the following consequence.

Corollary 3. If V ar(X) = 0, then P (X = µ) = 1

Proof. If P (X = µ) < 1, then for some ε > 0, P (|X − µ| ≥ ε) > 0. However,
by Chebyshev's inequality, for any ε > 0,

P (|X − µ| ≥ ε) = 0

Contradiction, P (X = µ) = 1 �

Definition 4. (Convergence in Probability) The sequence of random variables
Yn is said to converge in probability to Y , written Yn →p Y , if

lim
n�∞

P (|Yn=Y | < ε) = 1

Theorem 5. The sequence of random variables Y1, Y2, ... is said to conver-

gence stochastically to a constant c, written Yn →stochastic c, if and only if for
every ε > 0,

lim
n�∞

P (|Yn=c| < ε) = 1

The sequence of random variables that satis�es Theorem 5 is also said to con-

verge in probability to a constant c, written Yn →p c.

Example 6. Let X1, X2, ..., Xn be a random sample from a uniform distribu-

tion, Xi ∼ BIN (1, π) and let Y n =

n∑
i=1

Xi

n . Show that Yn →p π.

Solution. Using Proposition 2,

P (|Yn − π| < k

√
π (1− π)

n
) ≥ 1− 1

k2

Choose ε = k
√

π(1−π)
n ), then

lim
n�∞

P (|Yn − π| < ε) ≥ lim
n�∞

(
1− π (1− π)

ε2n

)
Therefore,

lim
n�∞

P (|Yn − π| < ε) = 1

Theorem 7. (Strong Law of Large Numbers) If X1, X2, ..., Xn is a random
sample from a distribution with �nite mean µ and varianceσ2, then the sequence of
sample means convergence in probability to µ or lim

n�∞
P (|X̄n=µ| < ε) = 1, written

X̄n →sp µ.
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Proof. First, �nd E(X̄n) and V ar(X̄n), E(X̄n) = 1
n

n∑
i=1

E (Xi) = µ. Since the

Xi are independent, then V ar(X̄n) = 1
n2

n∑
i=1

V ar (Xi) = σ2

n . The desired result now

follows immediately from Proposition 2 (Chebyshev's inequality), which states that

lim
n�∞

P (|X̄n=µ| < ε) ≥ lim
n�∞

1− V ar(X̄n)

ε2
= lim
n�∞

1− σ2

nε2
= 1

�

Theorem 8. (Weak Law of Large Numbers) If X1, X2, ..., Xn is a random
sample from a distribution with �nite mean µ and varianceσ2, then the sequence of
sample means convergence in probability to µ or lim

n�∞
P (|X̄n=µ| > ε) = 0, written

X̄n →wp µ.

Proof. First, �nd E(X̄n) and V ar(X̄n), E(X̄n) = 1
n

n∑
i=1

E (Xi) = µ. Since the

Xi are independent, then V ar(X̄n) = 1
n2

n∑
i=1

V ar (Xi) = σ2

n . The desired result now

follows immediately from Proposition 2 (Chebyshev's inequality), which states that

lim
n�∞

P (|X̄n=µ| > ε) ≤ lim
n�∞

V ar(X̄n)

ε2
= lim
n�∞

σ2

nε2
= 0

�

Theorem 9. If Zn =
√
n(Y n−m)

c →d Z ∼ N (0, 1) then Y n →p m

Proof. If Zn =
√
n(Y n−m)

c →d Z ∼ N (0, 1), then from Theorem ?? Y n →d

N
(
m, c

2

n

)
. Using Proposition 2,

P (|Yn −m| < k
c√
n

) ≥ 1− 1

k2

Choose ε = k c√
n
, then k = ε

√
n
c and

lim
n�∞

P (|Yn −m| < ε) ≥ lim
n�∞

(
1− c2

ε2n

)
Therefore,

lim
n�∞

P (|Yn −m| < ε) = 1

�

Theorem 10. For a sequence of random variables, if Yn →p Y then Yn →d Y

Proof. ... �

Theorem 11. If Yn →p c then for any function g (y) that is continuous at c,

g (Yn)→p g (c)

Proof. ... �

Theorem 12. If Xn and Yn are two sequence of random variables such that
Xn →p c and Yn →p d then,

(1) aXn + bYn →p ac+ bd
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(2) XnYn →p cd

(3) Xn

c →p 1, c 6= 0

(4) 1
Xn
→p

1
c ,∀nP [Xn 6= 0] = 1, c 6= 0

(5)
√
Xn →p

√
c,∀nP [Xn ≥ 0] = 1

Proof. ... �

Theorem 13. (Slutsky's Theorem) If Xn and Yn are two sequence of random
variables such that Xn →p c and Yn →d Y then,

(1) Xn + Yn →d c+ Y
(2) XnYn →d cY
(3) Yn

Xn
→d

Y
c , c 6= 0

Proof. (As a special case Xn could be an ordinary numerical sequence such
as Xn = n

(n−1) )... �

Theorem 14. If Yn →d Y then for any continuous function g (y) , g (Yn)→d

g (Y )

Proof. (Assume g (y) is not to depend on n) ... �

Theorem 15. If
√
n(Y n−m)

c →d Z ∼ N (0, 1) and if g (y) has nonzero derivative
at y = m, g′ (m) 6= 0, then

√
n [g (Y n)− g (m)]

|cg′ (m)|
→d Z ∼ N (0, 1)

Proof. ... �

1.1. Problems

(1) Let X1, X2, ..., Xn be a random sample from a uniform distribution, Xi ∼

BIN (1, π) and let Y n =

n∑
i=1

(Xi−π)

n . Show that Yn →p 0.


