

YOGYAKARTA STATE UNIVERSITY FACULTY OF MATHEMATICS AND NATURAL SCIENCES

SYLLABUS

FRM/FMIPA/063-01 3 September 2012

Faculty	: Mathematics and Natural Sciences
Study Program	: Mathematics Education
Course & Code	: Mathematical Statistics, SMA 328
Credit Hours	: Theory 2 credit, Practice 1 credit
Semester	: V
Prerequisites & Code	: Probability Theory, MAA 318
Lecturer	: Rosita Kusumawati, M.Sc.

I. COURSE DESCRIPTION

The course is more focused on probability concepts than statistical mathematics. The materials of probability theory are combinatorial methods, probability, random variables and their distributions, joint distributions, properties of random variables, and functions of random variables.

II. BASED COMPETENCY

The students able to use probability and probability distribution for solving a real problem and mathematics problem which is need the calculation of probability, prove the theorems which related to probability, and find a relationship between distributions, and determine expected value of random variables.

Meeting	Based Competency	Subject Matter	Activities	References
1-3	To understand CDF	CDF technique, Transformation	Discussion	A: 31-39
	technique, Transformation	methods	& Exercises	B: 1-16
	methods and To gain the			C: 1-113
	ability to compute the CDF			
	of a new variable			
4-6	To understand sums of	Sums of random variables, Order	Discussion	A: 1-30
	random variables, order	Statistics	& Exercises	B: 22-102
	Statistics			C: 1-113
	To understand the concept	Sequences of random variables,	Discussion	A: 53-83
7-10	of law large number,	The central limit theorem,	& Exercises	B: 117-134
	central limit theorem and	Approximations for the binomial		
	its assumptions	distribution		
11-15	To recognize and learn	Asymptotic normal distributions,	Discussion	A: 91-124
	properties of stochastic	Properties of stochastic	& Exercises	B: 134-224
	convergence	convergence		
16		Mid Test		

III. ACTIVITIES PLAN

17-21	To solve sampling	Sampling distributions, Large-	Discussion	A: 137-160
	distributions	sample properties,	& Exercises	B: 232-286
22-26	To explain methods of	Methods of estimation, Criteria for	Discussion	A: 171-188
	estimation	evaluating estimators	& Exercises	B: 297-373
27-32	To gain the ability to use to	Bayes and minimax estimators	Discussion	A: 193-214
	Bayes and minimax		& Exercises	
	estimation methods			

IV. REFERENCES

Compulsory textbooks :

- A. Bain, Lee J. & Engelhardt, Max. 1992. *Introduction to Probability and Mathematical Statistics*. Belmont: Duxbury Press.
- B. Ross, Sheldon M. 2010. A First Course in Probability. New Jersey: Prentice-Hall.

Suggested reference books

C. Rice, John A., 1995. Mathematical Statistics and Data Analysis. Belmont: Duxbury Press.

V. EVALUATION

No.	Components	Weight (%)
1.	Participations	5
2.	Assigment	10
3.	Quiz	15
4.	Mid Test	30
6.	Final Test	40
Total		100

:

Verified by Head of Department Yogyakarta, September 2012 Lecturer

Dr. Hartono NIP. 19620329 198702 1 002 Rosita Kusumawati, M.Sc. NIP. 19800707 200501 2 001