

COURSE SYLLABUS

Faculty	: Mathematics and Natural Science		
Department	: Mathematics Education		
Course / Code	: Logic and Sets / MAT 302		
Credits	: Theory: 2 SKS	Practice: 1	SKS
Semester	: 1 st		
Prerequisite/Code	:-		
Lecturer	: Ariyadi Wijaya, M.Sc		

:

I. Course Description

Logic and sets contains statement; logical connective and truth table; tautology; contradiction; contingency; deriving conclusion; sets and their properties; relation; map and functions.

II. Standard Competency:

Students are expected to be able to: (1) explain and apply logical thinking; (2) differentiate map and function; (3) find the inverse of a function; (4) compose new functions by given functions.

III. Lesson strategies :

- Expository
- Discussion

IV. Lesson Plan

:

Week	Basic Competencies	Topic	Lesson Strategies	References	
1	Identifying and differentiating sentence and statement	Sentence and statement			
2	Solving problems on logical connectives and making their truth table	Logical connective and truth table: - Negation - Disjunction - Conjunction - Conditional - Inverse, converse and contraposition - Biconditional			
3	Solving problems on tautology, contradiction, contingency and making their truth table.	Tautology, contradiction and contingency			
4	Deriving logical conclusion	Deriving conclusion			
5-6	Converting open sentences into statement by using quantifier	Quantification: - Open sentence - Universal and existential quantifier			
7	EXAM				
8-9	Identifying sets and working on their operations	 Set: Definition of set Relation of sets Operation on sets The properties of a set Ordered pair Cartesian product Power set 			
10, 11	Identifying and	Relation and map:			

12-13	differentiating relation and map Identifying functions and working on their operation (including inverse function and composite function)	 Definition of relation Kinds of mapping Function: Definition of function Kinds of function Kinds of function Inverse function Inverse function Composite function Properties of a
14		function EXAM
15-16	Identifying advanced set	Set (advanced): - Denumerable and non- denumerable sets - Cardinal number
		EXAM

V. References

:

- [A] Suppes, P. & Hill, S. (2002). First Course in Mathematical Logic. New York: Dower Publication, Inc.
- [B] Nolt, J., Rohatyn, D. & Varzi, A. (1998). Schaum's Outline of Logic (Second Edition). New York: McGraw-Hill

VI. Evaluation :

Number	Components of Evaluation	Percentage (%)
1	Participation	5
2	Tasks	15
3	Mid Semester Exam 1	20
4	Mid Semester Exam 2	20
5	Final Exam	40
	Total	100%

Yogyakarta,

Head of Department

Lecturer,

..... NIP NIP