

DEPARTMENT OF NATIONAL EDUCATION YOGYAKARTA STATE UNIVERSITY

FACULTY OF MATHEMATICS AND NATURAL SCIENCE

Address: Karangmalang, Yogyakarta – 55281

Phone: 0274 - 586168 Psw. 217

COURSE SYLLABUS

Faculty : Mathematics and Natural Sciences

Department : Mathematics Education

Course / Code : Number Theory / MAT 312

Credits : Theory: 2 SKS Practice: - SKS

Semester : 2nd

Prerequisite/Code : -

Lecturer : Ariyadi Wijaya, M.Sc

I. Course Description :

This course focuses on the properties of integer number including divisibility, prime numbers, greatest common divisor, least common multiple, congruency, number theoretic functions, primitive root, and indices.

II. Standard Competency:

Students are expected to be able to: (1) explain the properties of integer numbers; (2) apply the properties of integer numbers, (3) prove mathematical statement.

III. Lesson strategies:

- Expository
- Discussion

IV. Lesson Plan

Week	Basic Competencies	Topic Lesson Strategies	References
1	Introduction to Number Theory	 Mathematical induction The Binomial Theorem 	A: 1 - 12
2 and	Divisibility	1. Algorithm	B: 35 - 41,

3			he properties of visibility		B: 80 - 89		
4	Integer representations and operations.	(d	ase-10 lecimal) on-decimal		B: 42 – 53		
5	Greatest common divisor and Least common multiple	2. Le	reatest ommon divisor east common ultiple		A: 13 – 25		
6	Fundamental Theorem of Arithmetic	2. Si	rime number ingle ctorization		A: 25-39		
7			EXAM				
8 and 9	Congruences	co 2. Li	itroduction to ongruences inear ongruences		A: 40-66		
10	Special Congruences	2. W	ermat's heorem 'ilson's heorem		A: 67-80		
11 and 12	Number Theoretic Function	2. M fo 3. G	he sum and umbers of visors lobius inversion ormula reatest integer unction		A: 81 – 103		
13	Euler's Phi Function and Euler's Theorem		uler's Phi unction uler's Theorem		A: 104 – 119		
14	EXAM						
15 and 16	Primitive Roots and Indices	in <i>m</i> 2. Pr 3. Tl	he order of an teger modulo rimitive roots he theory of dices		A: 120 – 144		
	EXAM						

V. References

- [A] Sukirman.2001. Teori Bilangan. Yogyakarta: FMIPA UNY
- [B] Rosen, Kenneth H. 1993. *Elementary Number Theory and Its Applications*. New York: Addison Wesley Publishing Company
- [C] Burton, M. David. 1986. *Elementary Number Theory Revised Printing*. Boston: Allyn and Bacon, Inc

VI. Evaluation

Number	Components of Evaluation	Percentage (%)
1	Participation	5
2	Tasks	15
3	Mid Semester Exam 1	20
4	Mid Semester Exam 2	20
5	Final Exam	40
Total		100%

	Yogyakarta,	
Head of Department	Lecturer,	
NIP	NIP	