NUMBER THEORY

Ariyadi Wijaya

GCD

- Theorem:
"If $(a, b)=d$, then there are integer numbers so that $a x+b y=d "$
- Proof:

By using the Division Algorithm

GCD

- Theorem:
"If $d \mid a b$ and $(d, a)=1$ then $d \mid b$
- Proof:

Since $(d, a)=1$ then there are x and y so that $d x+a y=1$
$b(d x)+b(a y)=b \rightarrow d(b x)+y(a b)=b$
Since $d \mid a b$ so $d \mid y(a b)$ and since $d \mid d(b x)$, so d|b

GCD

- Theorem:

If $\mathrm{c} \mid \mathrm{a}$ and $\mathrm{c} \mid \mathrm{b}$ with $(\mathrm{a}, \mathrm{b})=\mathrm{d}$, then $\mathrm{c} \mid \mathrm{d}$

- Proof:
$(a, b)=d \rightarrow d=a x+b y$
Since c|a so c|ax
...(i)
Since $c \mid b$ then $c \mid b y$
From (i) and (ii):
$c|a x+b y \rightarrow c| d$

Least Common Multiple (LCM)

- Definition:

For non zero integers $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ it is said that they have common multiple b if $a_{i} \mid b$ for $\mathrm{i}=1,2,3, \ldots$, n

- Definition:

For non zero integers $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$, their LCM is the least number among the common multiples.
If k is the LCM of a and b, it can be written as [a,b]=k

LCM

- Theorem:

If m is a common multiple of a and b, so
[a,b] | m

- Proof:

If $[\mathrm{a}, \mathrm{b}]=\mathrm{k}$ so it will be proved that $\mathrm{k} \mid \mathrm{m}$ Assume that $k \nmid m$, so there are q and r so that $m=k q+r$ for $0<r<k$.. (i)
Since m is $a C M$ of a and b so $a \mid m$ and $b \mid m$... (ii)
k is the LCM of a and b so $a \mid k$ and $b \mid k$
From (i), (ii) and (iii), a|r and b|r, it is contrary to $0<r<k$ (namely k is the LCM).
:: k|m

LCM

- Theorem:

If $m>0$, then $[m a, m b]=m[a, b]$

- Theorem:

If a and b are positive integers, then $a, b=a b$

Exercise:

1. Prove that "if $a \mid b$ and $a>0$ then $(a, b)=a$ "
2. Prove that $((a, b), b)=(a, b)$
3. Prove that $(a, b) \mid(a+b, a)$
4. Is $(a, b) \mid[a, b]$ a correct statement? Explain
5. Prove that $[a, b]=(a, b)$ iff $a=b$
