

DEPARTMENT OF NATIONAL EDUCATION YOGYAKARTA STATE UNIVERSITY FACULTY OF MATHEMATICS AND NATURAL SCIENCE

Address: Karangmalang, Yogyakarta – 55281

Phone: 0274 – 586168 Psw. 217

COURSE SYLLABUS

Faculty : Mathematics and Natural Science

Department : Natural Science Education Course / Code : Integral Calculus / MAT 307

Credits : Theory: 2 SKS Practice: 1 SKS

Semester : 2nd

Prerequisite/Code : Differential Calculus / MAT 306

Lecturer : Ariyadi Wijaya, M.Sc

I. Course Description :

Integral calculus covers the topics of indefinite and definite integrals, the properties of integral, the fundamental theorem of integral, applications of definite integral, the transcendent function, techniques of integration, and improper integrals.

II. Standard Competency:

Students are expected to be able to: (1) determine the indefinite integral of a function; (2) determine the definite integral using the fundamental theorem of integral; (3) determine the definite integral using techniques of integration; (4) solve integration problems; and (5) determine improper integrals

III. Lesson strategies:

- Expository
- Discussion

IV. Lesson Plan

Lesson	Basic Competencies	Topic	Lesson Strategies	Refe	erences
1-4	Determining the indefinite integral of a function and solve differential equation	The indefinite integral and introduction of differential equation		[A]: 308	299–
5-6	Calculating definite integrals using the fundamental theorem of integral	The definite integral The fundamental theorem of integral		[A]: 356	337–
7-10	Determining the integral of logarithmic functions, exponential functions, and trigonometric functions.	The integral of transcendent function		[A]: 483 [A]: 539	449– 534–
11-13	Determining the integral of functions using substitution methods and integration by parts	Techniques of integration		[A]: 533 [A]: 557	525- 547 -
14-15	Determining the integral of functions using trigonometric and partial integration	Techniques of integration		[A]: 546	541–
16-17	Integrating rational functions	Techniques of integration		[A]: 567	558–
18		EXAM		•	
19-20	Finding the area of flat surfaces	The area of flat surfaces		[A]: 308	299–
21-22	Finding the volume of solid of revolution	The volume of solid of revolution		[A]: 356	337–

	using disk methods and ring methods				
23-24	Finding the volume of solid of revolution			[A]: 483	449–
	using shell method or cylinder method.			[A]: 539	534–
25-26	Finding the length of curves	Length of curves		[A]: 533	525-
				[A]: 557	547 -
27-28	Finding the area of the surface of rotated curves	The surface of revolution		[A]: 546	541-
29		EXAM	1		
30-32	Finding moment and center of gravity	Moment and center of gravity		[A]: 567	558–

V. References

- [A] Varberg Dale dan Purcell E.J. (2001). Kalkulus Jilid 1 (Edisi VII), Batam: Interaksa
- [B] Leithold, L. (1986). The Calculus with Analytic Geometry. Harper & Row Publisher.
- [C] Lang, S. (1986). A First Course in Calculus (fifth edition). USA: Springer

VI. Evaluation :

Number	Components of Evaluation	Percentage (%)
1	Participation	
2	Tasks	
3	Mid Semester Exam 1	
4	Mid Semester Exam 2	
5	Final Exam	
Total		100%

	Yogyakarta,
Head of Department	Lecturer,
NIP	NIP