Model Proses Perangkat Lunak

Ratna Wardani

Department of Electronic Engineering Yogyakarta State University

Materi

- S/W Process Model
- Tahapan S/W Process
- Model Proses 5/W
 - ✓ Model Waterfall
 - ✓ Model Prototype
 - ✓ Model Rapid Application Development (RAD)
 - ✓ Model Evolusioner
 - Pertambahan/Incremental
 - Spiral
 - ✓ Formal Method
 - ✓ Re-usable Model

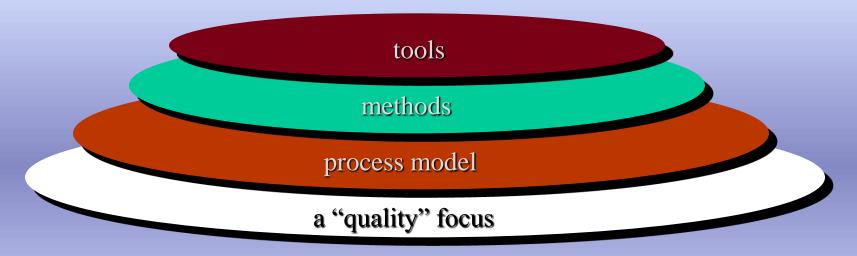
Definisi Proses Perangkat Lunak

Fritz Bauer

- ✓ Pembangunan dan Pengggunaan prinsip-prinsip rekayasa dalam rangka mendapatkan perangkat lunak yang ekonomis yang handal dan bekerja efisien pada komputer yang nyata
- IEEE (Institute of Electrical an Electronics Engineers)
 - ✓ Aplikasi pendekatan sistematik, disiplin, terquantifikasi pada pengembangan, operasi, perawatan perangkat lunak, yaitu aplikasi rekayasa pada perangkat lunak
 - ✓ Studi pendekatan sistematik, disiplin, terquantifikasi pada pengembangan, operasi, perawatan perangkat lunak

Proses Perangkat Lunak

Tujuan:


✓ Memodelkan tahapan atau aktivitas yang harus dilakukan dalam proyek pengembangan perangkat lunak

Aplikasi:

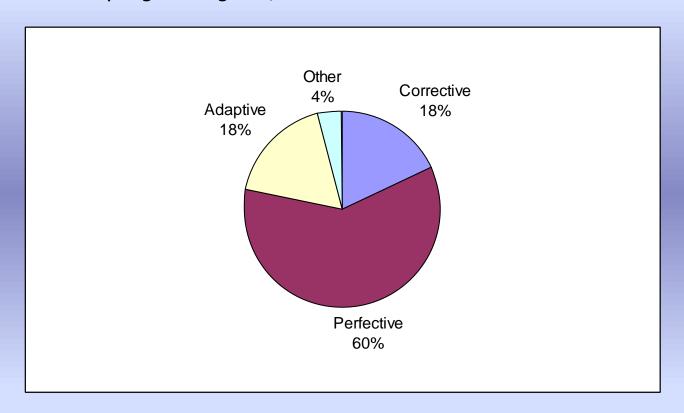
- ✓ Dengan mengikuti model proses, proyek pengembangan perangkat lunak harus dapat meningkatkan kualitas proses:
 - Dapat mengulang sukses terdahulu
 - Dapat di-manage → dokumentasi, distandarkan dan diorganisasikan
 - Dapat diukur → dapat dikontrol dengan pengukuran secara detil

RPL sebagai Teknologi Berlapis

Rekayasa Perangkat Lunak

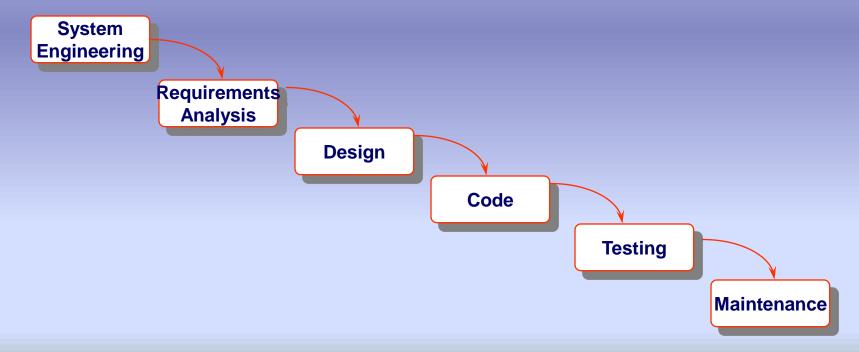
- Kualitas sebagai bangunan dasar
- Proses sebagai "perekat" dan kerangka kerja
- Metode sebagai teknik pengembangan
- Tools sebagai pendukung metode dan proses

Pandangan Umum tentang RPL


- Rekayasa: analisis, desain, konstruksi, verifikasi, dan manajemen entitas teknis (dan sosial)
 - ✓ Problem apa yang harus diselesaikan?
 - ✓ Karakteristik entitias apa yang digunakan untuk menyelesaikan masalah?
 - ✓ Bagaimana entitas (dan solusinya) direalisasikan?
 - ✓ Bagaimana entitas di konstruksi?
 - ✓ Pendekatan apa yang digunakan untuk menemukan kesalahan yang dibuat pada desain dan konstruksi entitas?
 - ✓ Bagaimana entitas didukung dalam jangka panjang, dimana koreksi, adaptasi, dan peningkatan selalu diminta pengguna pada entitas

Tahapan Umum Model Proses

- Fase definisi, fokus pada pertanyaan "apa"
- Fase pengembangan, fokus pada pertanyaan "bagaimana"
- Fase pemeliharaan, fokus pada "perubahan" :
 - ✓ Koreksi / corrective maintenance → memperbaiki kerusakan yang ditemukan
 - ✓ Adaptasi / Adaptive maintenance → beradaptasi terhadap perubahan lingkungan eksternal
 - ✓ Peningkatan /Prefective maintenance → perluasan kebutuhan fungsional original
 - ✓ Pencegahan / preventive maintenance → perubahan S/W agar mudah dikoreksi, disesuaikan dan dikembangkan


Pemeliharaan / Maintenance

Effort untuk pengembangan S/W dalam konteks Pemeliharaan

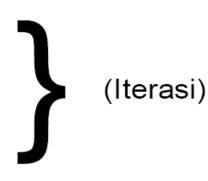
Waterfall

- ✓ Sekuensial linier, SDLC (System Development Life Cycle)
- ✓ Pendekatan tradisional dan paling luas dipakai
- ✓ Meski ada kelemahan, tapi menjadi dasar model proses
 RPL

Waterfall

- ✓ System Engineering: membangun persyaratan semua elemen sistem
- ✓ Requirement Analysis: identifikasi kebutuhan perangkat lunak
- ✓ Design: menerjemahkan kebutuhan ke representasi perangkat lunak (struktur data, arsitektur PL, representasi interface, detail prosedural/algoritma)
- ✓ Code: menerjemahkan desain dalam bahasa mesin
- ✓ Testing: pengujian fungsionalitas perangkat lunak
- ✓ Maintenance: perbaikan maupun perubahan yang diperlukan untuk mengakomodasi kebutuhan pengguna

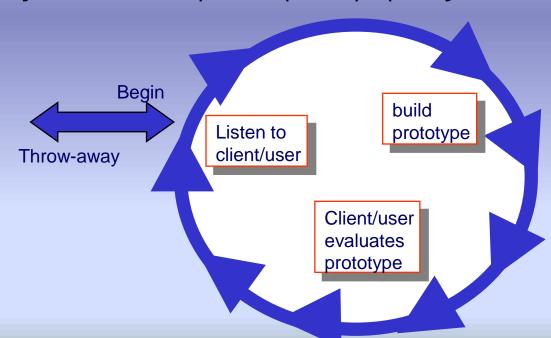
Waterfall


- ✓ Kelemahan:
 - Jarang sebuah proyek nyata mengikuti aliran sekuensial
 - Kesulitan pengguna dalam menyatakan kebutuhan di awal proses, sementara model ini membutuhkan spesifikasi kebutuhan di awal proses
 - Perlu kesabaran pengguna hingga proses selesai secara keseluruhan
 - Blocking state → tim proyek harus menunggu tim lain menyelesaikan tugasnya yang saling ketergantungan

Prototyping

- ✓ Kesulitan pengguna mendefinisakan input, proses, output yang diminta secara detail
- ✓ Developer tidak yakin terhadap efisiensi algoritma, kemampuan adaptasi terhadap sistem operasi, atau bentuk interaksi mesin dengan orang

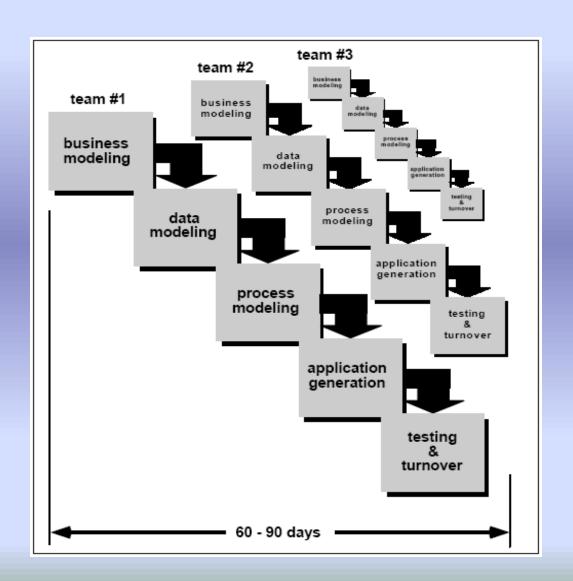
Prototyping (Tahapan)


- Pengumpulan kebutuhan dan perbaikan (awal)
- Quick Design
- Pembentukan Prototype
- Evaluasi Pelanggan
- Perbaikan Prototype

Produk S/W (Akhir)

Prototyping

- ✓ Kelemahan:
 - Customer melihat prototipe tersebut sebagai versi dari software.
 - Developer membuat implemetasi yang kompromitas dengan tujuan untuk memperoleh prototipe pekerjaan secara cepat

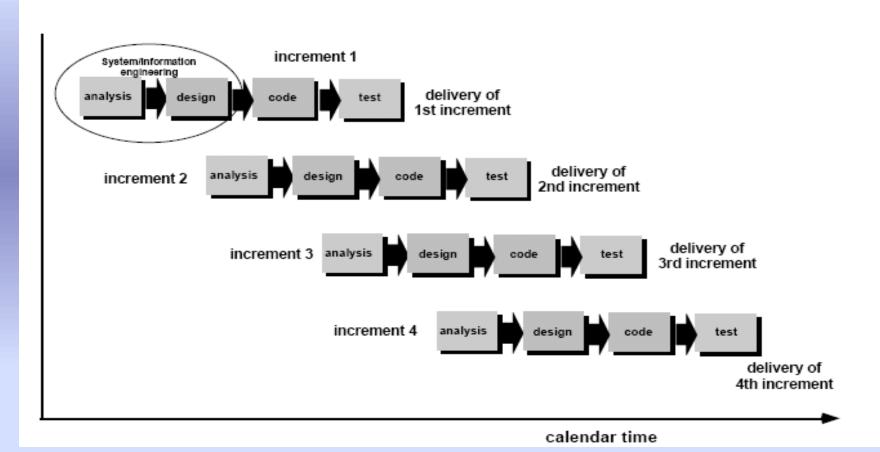


RAD

- ✓ model proses pembangunan PL yang incremental.
- ✓ menekankan pada siklus pembangunan yang pendek/singkat.
- ✓ mengadopsi model waterfall dan pembangunan dalam waktu singkat dicapai dengan menerapkan component based construction.
- ✓ waktu yang singkat adalah batasan yang penting untuk model ini.
- ✓ jika kebutuhan lengkap dan jelas maka waktu yang dibutuhkan untuk menyelesaikan secara komplit software yang dibuat adalah misalnya 60 sampai 90 hari

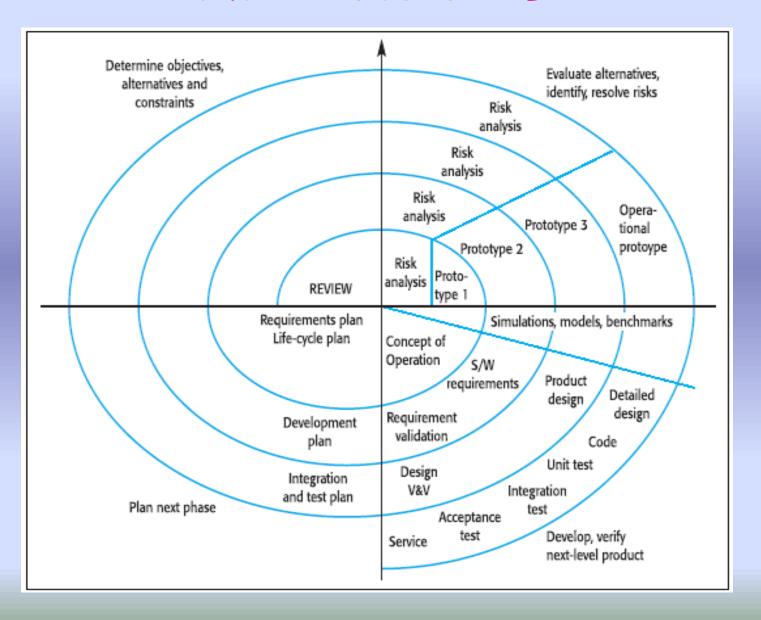
RAD

✓ Model:

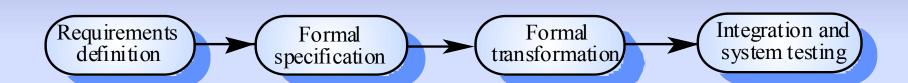

RAD

- ✓ Kelemahan:
 - Tidak cocok untuk proyek skala besar
 - Proyek bisa gagal karena waktu yang disepakati tidak dipenuhi
 - Sistem yang tidak bisa dimodularisasi tidak cocok untuk model RAD
 - Proyek dengan resiko teknis yang tinggi kurang cocok untuk model RAD

Incremental

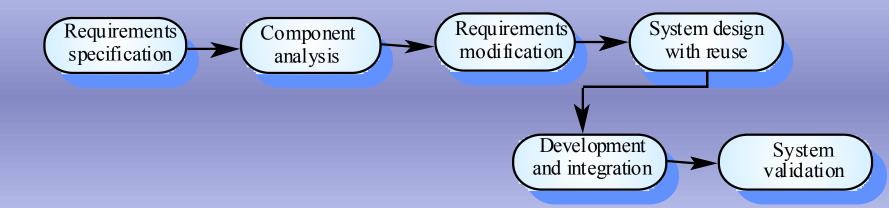

- ✓ Pengembangan sistem berdasarkan model sistem yang dipecah sehingga model pengembangannya secara increment/bertahap.
- ✓ Kebutuhan pengguna diprioritaskan dan prioritas tertinggi dimasukkan dalam awal increment
- ✓ Mengkombinasikan elemen-elemen dari waterfall dengan sifat iterasi/perulangan.
- ✓ Produk yang dihasilkan pada increment pertama bukanlah prototype, tapi produk yang sudah bisa berfungsi dengan spesifikasi dasar.
- ✓ Mampu mengakomodasi perubahan secara fleksibel

Evolutionary Model (Incremental)


Spiral

- ✓ Proses digambarkan sebagai spiral.
- ✓ Setiap loop mewakili satu fase dari software process.
- ✓ Loop paling dalam berfokus pada kelayakan dari sistem, loop selanjutnya tentang definisi dari kebutuhan, loop berikutnya berkaitan dengan desain sistem dan seterusnya

Pengembangan Sistem Formal


- ✓ Spesifikasi matematis perangkat lunak yang secara formal diterjemahkan ke dalam implementasi
- ✓ Memungkinkan perekayasa PL mengkhususkan, mengembangkan dan memverifikasi sistem dengan notasi matematis yang tepat
- ✓ Mengurangi ambiguitas, ketidaklengkapan dan ketidakkonsistenan
- ✓ Bahasa Z adalah salah satu tools untuk spesifikasi formal

- Pengembangan Sistem Formal
 - ✓ Kelemahan:
 - Memerlukan waktu yang lama dan mahal
 - Memerlukan keahlian khusus dan pelatihan untuk mengaplikasikannya
 - Sulit untuk mengkomunikasikan dengan pemakai
 - Untuk sebagian besar sistem, metode ini tidak memberikan keuntungan biaya atau kualitas yang signifikan dibandingkan dengan pendekatan yang lain.

- Pengembangan Berorientasi Re-Usable
 - ✓ Sistem dibangun dari komponen yang sudah ada
 - ✓ Bergantung pada sejumlah besar komponen perangkat lunak yang dapat dipakai ulang, yang bisa didapat, dan berapa kerangka kerja integrasi untuk komponenkomponen ini.
 - ✓ Komponen-komponen ini disebut COTS (Commercial Off-The-Shelf Systems/Sistem Siap Beli Komersial) yang dapat digunakan untuk memberikan fungsionalitas khusus seperti format teks, perhitungan numerik,dll.

Pengembangan Berorientasi Re-Usable

- Pengembangan Berorientasi Re-Usable
 - ✓ Keuntungan :
 - Mengurangi besarnya perangkat lunak yang akan dikembangkan
 - Memperkecil biaya dan resiko
 - Memungkinkan penyelesaian perangkat lunak dengan cepat