Human - Computer Interaction

Design Process

The HCI Design Process

User Interfaces are not just built by sitting down and drawing up designs for them

Just like building a car or a washing machine, the interface design goes through a series of steps
 This is called the User Centered Design Lifecycle

The HCI Design Process

The User Centered Design Lifecycle

- specifies the steps a team needs to go through to design and evaluate a user interface
- provides management control over the design
- A KEY point of the process is
 - The USER needs to be consulted again and again to see if we have the design RIGHT

The HCI Design Process

User Centered Design Lifecycle

- Task Analysis gathering user data
- Setting Usability Goals
- Early Design paper prototypes
- Early Evaluation quick user tests
- Prototyping computer prototypes
- Usability Analysis serious user testing

Overview of User-Centered Design

If goals not met.

1. Task Analysis 2. Set Usability Goals ► 3. Design User Interface 4. Evaluate Design Models 5. Build Prototypes 6. Test Prototypes 7. Evaluate Results of Test If goals met.

Goal-Oriented Design Process

- Research discovery about users and their needs
- Modeling usage and workflow patterns
- Requirements functional and technical necessities
- Framework interaction methodology
- Refinement analysis, inspection, validation, and modification

Vocabulary

Definitions of Terms

 Functionality
 Storyboard
 Paper Prototype
 Rapid Prototyping
 Usability Testing

Overview of User-Centered Design

If goals not met. √ 1. Task Analysis 2. Set Usability Goals ► 3. Design User Interface 4. Evaluate Design Models 5. Build Prototypes 6. Test Prototypes 7. Evaluate Results of Test If goals met.

Task Analysis

 what users will do with the product being designed

 the words that are used to name things in the users work place

- the tasks the user performs

Purpose of Task Analysis

Appropriate task descriptions will help designer think about better ways to do task Appropriate task descriptions will also capture information that may otherwise be lost in the new design

Overview of User-Centered Design

If goals not met.

1. Task Analysis $\sqrt{2}$. Set Usability Goals ► 3. Design User Interface 4. Evaluate Design Models 5. Build Prototypes 6. Test Prototypes 7. Evaluate Results of Test If goals met.

Characteristics of Usability Goals

- 1. Negotiated between users & designers
- 2. Public
- 3. Measurable
- 4. A design commitment

Negotiation of Usability Goals

Computerized workstation for radiologists and other physicians:

How long should their training be?

Quantitative Usability Goals

How do we judge satisfaction of radiologists with using the mouse?

Behavioral measures: Can they do it? Training time, errors, difficulties

Satisfaction measures: How do they like it?

Questionnaire for Mouse Use

Ν.

we would like your impression of now easy you								
found the following items:	Very				Very			
	easy			dĭ	fficult			
Clicking an image to select it.	1	2	3	45				
Dragging an image to the view box	1	2	3	45				
Scrolling in the right direction.	1	2	3	45				
Scrolling one item at a time.	1	2	3	45				
Moving the mouse between screens.	1	2	3	45				
Visually locating cursor after changing	<mark>,</mark> 1	2	3	45				
screens.								

Frequency of Response									
Based on 15 Physicians									
	/ery easy	Very difficu	, 1lt						
	1	2	3	4	5				
Clicking an image to select it.	9	3	3	0	0				
Dragging an image to the view box	0	5	1	0	0				
Scrolling in the right direction.		ר ק		U					
	δ	5	2	U	U				
Scrolling one item at a time.	5	2	5	1	2				
Moving the mouse between screens.	6	6	2	1	0				
Visually locating cursor after changing screens.	3	3	3	5	1				

Usability goal: 2/3 physicians should rate the feature 1 or 2.

Usability Measures

Time to learn
Speed of performance
Error rate
Retention over time
Subjective satisfaction

Overview of User-Centered Design

If goals not met.

1. Task Analysis 2. Set Usability Goals \rightarrow 3. Design User Interface 4. Evaluate Design Models 5. Build Prototypes 6. Test Prototypes 7. Evaluate Results of Test If goals met.

Designing the User Interface

- Basic Interface Operation decided at this stage
 - input/output devices selected (mouse, touch screen, keyboard)
 - Basic functions the interface is to perform are set
 - Often designs are copied (stolen) from similar interfaces

Designing the User Interface
 Conceptual Models selected for interface

- Expectations of how parts of the interface are to "look and feel" to user established
- Models match those supplied by user
- Importance and grouping of functions decided
 - What buttons appear together
 - The sequence of steps needed to do a task decided

Selecting Interface Features

- Usually a designer has little choice
 Much of what is designed depends on software already in use
 - Microsoft Word 6.0 follows Microsoft Word 5.1 with only some functionality added
 - Most Input/Output Devices of today involve mice and keyboard

Setting Interface Constraints

- The functionalities for the design come from the task analysis
 - Users participate in the selection of the tasks they want the system to do
 - Much paper illustration is done at this stage because the users do not know what the system is capable of

|||||

Example: Designing the Radiograph Viewing System
Mice and a large viewing screen were selected

Doctors rarely type and usually dictate their results

- Radiograms are usually large and need the highest resolution possible

Example: Designing the Radiograph Viewing System

Alternative designs included:

- A voice notation system (too expensive)
- A touch screen (too expensive and resolution not fine enough)
- Pull Down Menus were initially selected
 - Doctors did not like moving the mouse
 - Doctors often did not see the menus

Example: Designing the Radiograph Viewing System

- The Conceptual Model of a "Radiograph Light Table" used in the design
 - Doctors were highly familiar with the functioning of the light table
 - Doctors had trouble understanding the zoom function - this was resolved by placing a virtual magnifying glass over the radiogram

Example: Designing the Radiograph Viewing System
The type of viewing the doctor conducted on the radiogram depended on the type of problem being scanned for

- Doctors wanted to measure tumors but not broken bones
- Menu functions were organized according to the type of radiogram and purpose of scan

Overview of User-Centered Design

If goals not met.

1. Task Analysis 2. Set Usability Goals ► 3. Design User Interface $\sqrt{4}$. Evaluate Design Models 5. Build Prototypes 6. Test Prototypes 7. Evaluate Results of Test If goals met.

Evaluating Design Models

- Various Quick Methods Exist for Evaluating Designs that are not yet built
 - Cognitive Walkthroughs
 - Heuristic Evaluation
 - User Walkthroughs
 - Back of the Envelope Modeling
 - Computer Simulations

Cognitive Walkthroughs

Designers imagine using the system by viewing a drawing of each planned screen display

– Three questions are asked

- is the correct action evident? affordance
- will the user connect the action to what they are trying to do? - mapping
- will the user interpret the system's response correctly? feedback

User Walkthroughs

Users are given set of hand drawn displays and shown the accomplishment of different tasks with the interface

- Users ask questions and are videotaped
- Questions are asked of the user such
 - What do you think this does?
 - What would you select to do this task?
 - What do you think just happened?

Overview of User-Centered Design

If goals not met.

1. Task Analysis 2. Set Usability Goals → 3. Design User Interface 4. Evaluate Design Models $\sqrt{5}$. Build Prototypes 6. Test Prototypes 7. Evaluate Results of Test If goals met.

Rapid Prototyping

- Computer Programs exist that allow us to quickly build a graphical user interface
 These programs are called
 - User Interface Management Systems (UIMS)
- Rapid Prototyping Systems
 User Interface Design Systems (UIDS
 A good example of a UIDS is
 Visual Basic

Rapid Prototyping

Partial Program in Visual Basic that puts a button on the screen

Private sub cmdPush Click() 'Display the Exit Button IblMessage.Caption = "Exit" End Sub

Advantages of Rapid Prototyping

Without it we wouldn't be able to evaluate the user interface and CHANGE IT!!!

- In Addition
 - saves programming costs
 - used to document design
 - used to communicate to management & users
 - used to generate new design ideas

Overview of User-Centered Design

If goals not met.

1. Task Analysis 2. Set Usability Goals → 3. Design User Interface 4. Evaluate Design Models 5. Build Prototypes $\sqrt{6}$. Test Prototypes 7. Evaluate Results of Test If goals met.

Usability Testing

Real users are given realistic tasks to perform on a prototype of the computer system being built
 Observations of the users collect

<u>– user errors</u>

– user performance time

- user misunderstandings

Usability Testing

Questionnaires administered to the users collect

user satisfaction with the interface
user's understanding of the interface
missing capabilities in the interface

Overview of User-Centered Design

If goals not met.

1. Task Analysis 2. Set Usability Goals → 3. Design User Interface 4. Evaluate Design Models 5. Build Prototypes 6. Test Prototypes √ 7. Evaluate Results of Test If goals met.

Evaluating the Results of the Usability Tests

The results are compared to the usability goals set earlier in the project The results should be quantitative - they need to be compared to the earlier minimum performance levels that were set The usability study may also indicate new problems

Evaluating the Results of the **Usability** Tests If usability goals are not met: - Change design, or - Negotiate change in usability goals (if change is too costly) If usability goals are met - Freeze design, or - Negotiate change in usability goals if new problems uncovered

