

Ratna Wardani

Inferensi

Definisi:

Diberikan sejumlah premis A, B, C, D, ... masing-masing dapat berupa pernyataan yang panjang. Dari premis-premis tersebut dapat disimpulkan K.

Dapat dituliskan :

A, B, C, D, ..., H C K

Aturan Inferensi

 E.J Lemmon (1965) mendefinisikan 9 aturan inferensi dalam Logika Proposisional

Asumsi

Sembarang pernyataan dapat ditambahkan sebagai asumsi pada sembarang langkah penjabaran sebuah argumen

Modus Ponendo Ponens (MPP)

- Diberikan premis berupa sebuah pernyataan konditional A → B, dan premis A sebagai penegasan atas antesedennya, maka konklusinya adalah B
 - $\bigcirc A \rightarrow B, A \mid B$
 - Ex. 1
 Jika Napoleon orang Perancis maka Napoleon orang Eropa
 Napoleaon orang Perancis
 - ∴ Napoleon orang Eropa
 - Ex.2Jika ada api maka ada asapBenar bahwa ada api∴ Ada asap

Modus Tollendo Tollens (MTT)

- Diberikan premis berupa sebuah pernyataan konditional A → B, dan premis ¬B sebagai sangkalan atas konsekuennya, maka konklusinya adalah ¬A
 - $\bigcirc A \rightarrow B, \neg B \mid \neg A$
 - Ex. 1
 Jika Napoleon orang Perancis maka Napoleon orang Eropa
 Napoleaon bukan orang Eropa
 - .. Napoleon bukan orang Perancis
 - Ex.2

Jika ada bug pada program maka program tidak berjalan dengan baik

Program berjalan dengan baik

∴ tidak ada bug

Double Negation

Diberikan premis P, prinsip ini membawa kita kepada konklusi ¬¬P. Demikian juga sebaliknya, diberikan premis berupa sangkalan rangkap ¬¬P, prinsip ini mengijinkan kita untuk mengambil P sebagai konklusi.

- Ex. 1Hari ini hujan
 - ... Tdak benar hari ini tidak hujan

Conditional Proof

- Misalkan sebuah pernyataan B tergantung pada pernyataan A, maka prinsip ini mengijinkan kita untuk membuat konklusi bahwa A → B.
 - \bigcirc A, B \vdash A \rightarrow B
 - Ex. 1
 Ingin dibuktikan bahwa A \rightarrow B \vdash ¬B \rightarrow ¬A

 1. A \rightarrow B
 asumsi diketahui
 2. ¬B
 asumsi dipilih
 3. ¬A
 MTT (1,2)
 4. ¬B \rightarrow ¬A
 CP (2,3)

Conditional Proof

O Ex. 2

Ingin dibuktikan bahwa $P \rightarrow (Q \rightarrow R) \vdash Q \rightarrow (P \rightarrow R)$

- 1. $P \rightarrow (Q \rightarrow R)$
- 2. Q
- 3. P
- $4. Q \rightarrow R$
- 5. R
- $6.P \rightarrow R$
- 7. Q \rightarrow (P \rightarrow R)

- asumsi diketahui
- asumsi dipilih
- asumsi dipilih
- MPP (1,3)
- MPP (2,4)
- CP (3,5)
- CP (2,6)

Introduksi -AND

- Diberikan dua pernyataan A dan B. Aturan inferensi ini mengijinkan untuk mengambil A \(\triangle B \) sebagai konklusi.
 - \bigcirc A, B \vdash A \land B
 - Ex. 1

Ingin dibuktikan bahwa
$$(P \land Q) \rightarrow R \vdash P \rightarrow (Q \rightarrow R)$$

asumsi diketahui

asumsi dipilih

3. Q

asumsi dipilih

 $4. P \wedge Q$

Introduksi-And (2,3)

5. R

MPP(1,4)

6. $Q \rightarrow R$

CP(3,5)

7. $P \rightarrow (Q \rightarrow R)$

CP (2,6)

Eliminasi -AND

 Diberikan dua pernyataan A dan B. Aturan inferensi ini mengijinkan untuk mengambil A ataupun B sebagai konklusi.

$$\bigcirc A \land B \mid A$$
 atau $A \land B \mid B$

○ Ex. 1
Ingin dibuktikan bahwa Q \rightarrow R \models (P \land Q) \rightarrow (P \rightarrow R)
1. Q \rightarrow R asumsi diketahui
2. P \land Q asumsi dipilih
3. P eliminasi-And (2)
4. Q eliminasi-And (2)
5. R MPP(1,4)
6. P \land R Introduksi-And (3,5)
7. (P \land Q) \rightarrow (P \rightarrow R) CP (2,6)

Introduksi -OR

 Diberikan pernyataan A sebagai premis. Aturan inferensi ini mengijinkan untuk mengambil A v B sebagai konklusi, apapun pernyataan B.

 $\bigcirc A \vdash A \lor B$

Ex. 1

A := "Ratu Maria Antoinette dihukum guilotine" Introduksi-Or

A ∨ B := "Ratu Maria Antoinette dihukum guilotine atau dihukum kursi listrik"

dengan

B := "Ratu Maria Antoinette dihukum kursi listrik"

Eliminasi -OR

- Diberikan A V B serta sebuah bukti atas C dengan dasar A sebagai asumsi, serta sebuah bukti C dengan dasar B sebagai asumsi.
 Maka aturan dg inferensi ini diambil C sebagai konklusi
 - $\bigcirc A \mid A \lor B$
 - Fx. 1 Ingin dibuktikan bahwa P $\vee \neg Q$, P \rightarrow R, S \rightarrow Q, $\neg S \rightarrow$ R $\mid \vdash$ R 1. P ∨ ¬Q asumsi diketahui $2. P \rightarrow R$ asumsi diketahui $3. S \rightarrow Q$ asumsi diketahui $4. \neg S \rightarrow R$ asumsi diketahui 5 P asumsi 6. R MPP (2,5) 7. ¬Q asumsi 8. ¬S MTT (3,7) MPP (4,8) 9. R 10.R Eliminasi-Or (1,6,9)

Reductio ad Absordum (RAA)

- Sebuah pernyataan disebut kontradiksi jika dapat ditulis P → ¬P. Misal dari asumsi A dan asumsi lain dapat dijabarkan sebuah kontradiksi. Maka aturan inferensi mengijinkan kita mengambil ¬A sebagai konklusi.
 - \bigcirc A \vdash A \vee B
 - Ex. 1 Ingin dibuktikan bahwa $P \rightarrow R, R \rightarrow S, S \rightarrow \neg Q \vdash \neg (P \land Q)$ $1.P \rightarrow R$ asumsi diketahui $2. R \rightarrow S$ asumsi diketahui 3. S $\rightarrow \neg Q$ asumsi diketahui 4. P ∧ Q asumsi 5. P Eliminasi-And (4) 6 R MPP (1,5) 7. S MPP (2,6) 8. Q Eliminasi-And (4) 9. ¬¬О DN (8) 10. ¬S MTT (3,9) 11. ¬(P ∧ Q) RAA (4,7,10)

Latihan

- Buktikan dengan inferensi (beserta penjelasan) bahwa argumen berikut adalah valid
 - 1. Edi atau Andi yang membuat program
 - 2. Andi menggunakan bahasa Prolog
 - 3. Jika Andi tidak menguasai bahasa Pascal maka bukan Andi yang membuat program itu
 - 4. Jika Andi menguasai bahasa Pascal maka Andi tidak menggunakan bahasa Prolog
 - 5. Jadi Edi yang membuat program itu