Chapter 1

Applying UML and
Patterns

The Need for Software Blueprints

Knowing an object-oriented language and having
access to a library is necessary but not sufficient in
order to create object software.

In between a nice idea and a working software, there
is much more than programming.

Analysis and design provide software “blueprints”,

illustrated by a modeling language, like the Unified
Modeling Language (UML).

Blueprints serve as a tool for thought and as a form
of communication with others.

From Design to Implementation

m_'l. estigation . _JJ-;:F.LgInt { nnflr;l-:tmn
of the problem cical solution code
| Book | public class Book {
Book _ pubdic void print();
{concept) ““_'3' private String title:
print{)]
Dipmain concep Kepresentaiion m Hepresentation o an

analvsis of concepts objeck mented
programming language

Introduction to Requirements

 Requirements are system capabilities and conditions to
which the system must conform.

* Functional requirements
— Features and capabilities.

— Recorded in the Use Case model (see next), and in the
systems features list of the Vision artifact.

* Non-functional (or quality requirements)

— Usability (Help, documentation, ...), Reliability (Frequency
of failure, recoverability, ...), Performance (Response times,
availability, ...), Supportability (Adaptability,
maintainability, ...)

— Recorded in the Use Case model or in the Supplementary
Specifications artifact.

Use-Case Model: Writing Requirements in Context
Use cases and adding value

Actor: something with behavior, such as a person,
computer system, or organization, e.g. a cashier.

Scenario: specific sequence of actions and
interactions between actors and the system
under discussion, e.g. the scenario of successfully
purchasing items with cash.

Use case: a collection of related success and
failure scenarios that describe actors using a
system to support a goal.

Use Case Diagrams

Frimary actors to
the left: have user goals.

Mo

Gashler

NextGen

——

T

Prr:-cess Sale ———

*-hh_____‘;,.f"’
Handle retums
Hﬂ%

P —

. Process Rent
\\"'\-\.__ __,.;-""'j"\-\'

e —

Supporting actors to
the right: they provide

a service.

Payment
Authorization
Service

Alternative notation

I\

for ¥

<=aclor==
Tax Calculator

computer sysiem actor

Use-Case Model: Drawing System
Sequence Diagrams

System Behavior and UML Sequence
Diagrams

It is useful to investigate and define the behavior
of the software as a “black box”.

System behavior is a description of what the
system does (without an explanation of how it
does it).

Use cases describe how external actors interact
with the software system. During this interaction,
an actor generates events.

A request event initiates an operation upon the
system.

System Behavior and System Sequence
Diagrams (SSDs)

* Asequence diagram is a picture that shows,
for a particular scenario of a use case, the
events that external actors generate, their
order, and possible inter-system events.

e All systems are treated as a black box; the
diagram places emphasis on events that cross
the system boundary from actors to systemes.

SSD and Use Cases

Simple cash-only Process Sale Scenarno

1.

Eu f2 B3

[|

Customer arrives a a FOS checkowt
with goods to purchase

Cashier starts a new sale.

Cashier enters 1em identmner.
System records salz2 line item, and
presents item cescription, price and
running total.

cashier repeats steps 3-4 until
indicates done.

. a3ystem presents total with taxes

calculated.

' I “Syslam
.Cashier
5 makeNewSale() X
addLineltem{itemIL, quantit'_-,flj
description, total '
P chisfish et Bt SO
Imore tems]

SN, SN SR S

change due, reczipl

cndSale()
DU total vith taxes
| makePayment(amount) -4

Naming System Events and
Operations

The set of all required system operations is
determined by identifying the system events.

makeNewSale()
addLineltem(itemID, quantity)
endSale()

makePayment(amount)

Domain Model: Visualizing Concepts

Domain Models

A Domain Model illustrates meaningful concepts
in a problem domain.

It is a representation of real-world things, not
software components.

It is a set of static structure diagrams; no
operations are defined.

It may show:

— COﬂCGptS

— associations between concepts

— attributes of concepts

Domain Models

A Domain Model is a

item description of things in

the real world.

A Domain Model is not
Stocked-in a description of the
: software design.

Store

address A concept is an idea,

namme thing, or object.

Strategies to Identify Conceptual Classes

* Use noun phrase identification.

— Identify noun (and noun phrases) in textual
descriptions of the problem domain, and consider
them as concepts or attributes.

— Use Cases are excellent description to draw for
this analysis.

* Use a conceptual class category list

— Make a list of candidate concepts.

Finding Conceptual Classes with Noun
Phrase Identification

1. This use case begins when = The fully addressed Use

a Customer arrives at a Cases are an excellent
POS checkout with items description to draw for this
analysis.

to purchase.

2. The Cashier starts a new = S0me of these noun

phrases are candidate

sale. concepts; some may be
3. Cashier enters item attnibutes of concepts.
identifier. = A mechanical noun-to-

concept mapping is not
possible, as words In a
natural language are
(sometimes) ambiguous.

The NextGen POS (partial) Domain Model

POS ltcm Storc Salc
.Sulﬂf' Cashier Customer Manager
Lineltem
o oyment Froduct Froduct
y Catalog Specification

Adding Associations

An association is a relationship
betweszn corcepts that indicates
some meaningful and interesting
connection.

POS Ftem:lrlds-n:urrent >

o
“Direction readng arrow” has no meaning
other than o indicate direction of reading
e dssocialion label.
Optional (often excluded)

Sale

o= .

Association name

Use a conceptual class category list

Concept Category Example

Physical or tangible objects POS

Specifications, designs, or

descriptions of things ProductSpecification
Places Store

Transactions Sale, Payment
Transaction line items SalesLineltem

Roles of people Cashier

Containers of other things Store, Bin

(See complete list in Larman 27, ed., pp. 134-135)

The Need for Specification or Description
Conceptual Classes

= What is wrong with this

picture?

» Consider the case
ltemn where all items are
description sold, and thus deleted
price from the computer

sernal number memaory.
itemID

= How much does an
item cost?

The Need for Specification or Description
Conceptual Classes

= The memory of the
item’s price was
attached to inventoried

ltern Instances, which were
description deleted.
price = Notice also that in this
serial number model there is
temiD duplicated data

(description, price,
itemID).

The Need for Specification or Description
Conceptual Classes

» Add a specification or
description concept when:

o Deleting instances of things
description they describe results in a

Froductspecification

!:nn'r:e loss of infarmation that
itemiD .)
needs to be maintained,
1 due to the incorrect
Describes association of information
' with the deleted thing.
ltem 1 ltreduces redundant or

duplicated information.

senal number

Finding Associations —Common
Associations List

Category

Examples

A is a physical part of B*

A is a logical part of B

A is physically contained in‘on B
A is logically contained in B

A1s a description of B

Als a line ttem of a transaction

or report B

A is known/logged/recorded/
captured in B

Als a member of B

Drawer - FOS5
SalesLineltem - Sale
FOs Store
ltemDescription - Catalog
ltemDescription - lteam

Sales| ineltem - Sale

Sale - POS
Cashier - Store

=lore

Multiplicity

Stocks

‘ mmtipucityj

ltem

Multiplicity defines how
many instances of a
type A can be
associated with one
instance of a type B, at
a particular moment in
time.

For example, a single
Instance of a Store can
be associated with
‘many” (zero or more)
[tem Instances.

Multiplicity

T Fero or more;
‘many”
]..*
T One or more
1..40
T One to forty
5
T Exactly five
3,9,8 T Exactly three, five
or eight.

Naming Associations

Store

1
Contains

'I w

POS

1
Captures

1..%

Paid-by

sae |5

Payment

MName an associaton based
0N a4 Tvpselame-VerbPhrase-
TypsHams format.

Association names should
start with a capital letter.

A verb phrase should be
constructed with hyphens.
The default direction to read

an association name is left
to nght, or top to bottom.

Adding Attributes

Sale

date

startTime: Time

Afttributes

An attribute I1s a logical data
value of an object.

Include the following
attributes: those for which
the requirements suggest or
imply a need to remember
information.

For example, a Sales
receipt normally includes a
date and time.

The Sale concept would
need a date and time
attnibute.

Valid Attribute Types

= Keep attributes simple.
= The type of an attnbute

Cashier

T should nat normally be a

name Not a simple complex domain concept,
currentRegister +--- atiribute such as Sale or Airport.

= Attributes in a Domain
Model should preferably be

7 Pure data values: Boolean.
Date, Number, String, ...

Cashier Register 1 Simple attributes: color,

name uses | number phone number, zip code,
1 1 universal product code

(UPC), ..

Domain Model Conclusion

i Records-sale-of

0..1 . Product Described-by Flm-,j_l,;'
Sales Catalog Specification
Lineltem Conlains descripbon
i 1 price
antit ’ itermiD
o ! Used-by f
- Descpbes
1.° T Store s Ifem
Contained-in Lgs-completed address otocks
1) name 1 .
Sale 1 Houses
date Captured-or 1.
lime 1 1 POS 1 Elarta-:l-l:rya Manager
1 1
Faid-by Initiated-by 1
1 1
Payment Customer Hﬁ'cmm“pf'ﬂ" Cashier
1

amount

Use-Case Model: Adding Detail with
Operation Contracts

Contracts

e Contracts are documents that describe system
behavior.

* Contracts may be defined for system
operations.
— Operations that the system (as a black box) offers

in its public interface to handle incoming system
events.

* The entire set of system operations across all
use cases, defines the public system interface.

System Operations and the System
Interface

= In the UML the system
as a whole can be
represented as a class.

System = Contracts are writter
makeNewsalz() for each system
addLineltem(itemID, quantity) operation to describe

endSale(] its behavior.
makeFaymert()

Example Contract: addLineltem

Contract CO2: addLineltem

Operation: addLineltem (itemlID: ItemlID, quantity: integer)
Cross References: Use Cases: Process Sale.

Pre-conditions: There is a sale underway.
Post-conditions:

A SalesLineltem instance sli was created. (instance creation)
* sliwas associated with the Sale. (association formed)

* sli.quantity was set to quantity. (attribute modification)

* sliwas associated with a ProductSpecification, based on
itemID match (association formed)

Pre- and Postconditions

* Preconditions are assumptions about the state of the
system before execution of the operation.

* A postcondition is an assumption that refers to the
state of the system after completion of the
operation.

— The postconditions are not actions to be
performed during the operation.

— Describe changes in the state of the objects in the
Domain Model (instances created, associations
are being formed or broken, and attributes are

changed)

addLineltem postconditions

* |Instance Creation and Deletion

e After the itemID and quantity of an item have
been entered by the cashier, what new objects
should have been created?

— A SalesLineltem instance sli was created.

addLineltem postconditions

e Attribute Modification

e After the itemID and quantity of an item have
been entered by the cashier, what attributes

of new or existing objects should have been
modified?

* sli.quantity was set to quantity (attribute
modification).

addLineltem postconditions

 Associations Formed and Broken

» After the itemID and quantity of an item have
been entered by the cashier, what
associations between new or existing objects
should have been formed or broken?

— sli was associated with the current Sale
(association formed).

— sli was associated with a ProductSpecification,
based on itemID match (association formed).

Writing Contracts leads to Domain
Model Updates

e |tis also common to discover the need to
record new concepts, attributes or
associations in the Domain Model.

Guidelines for Contracts

Use Case:
Proress Sale

makcMNewSale])

addLineltem
(IlemlD, qudnlily)

endsale()

.

Use Case

makeFPayment()

System
Senuence
Diagram

Operation:
makeNewsale
System o
makeNewSale() Operation;
addLine ltem{itemID, quantity) || addLineltem
endsalz)
makePaymeant() Nooralion:
endsale
Cperation:
makePayment
System
Operations Contracts

Interaction Diagram Notation

| message1()

ClassAlnsiance

Introduction

1. message2()
' 2. messaged()

ClassBInsiance

Interaction diagrams
llustrate how cbjects

Interact via messages.

Colleboration diagrams

llustrate object
interactions in a graph

or network format.

ClassAlnsiance

Introduction

message()
L

ClassBlnstance

message2(|

message3(|

N, SR,

Sequence diagrams
Illustrate interactions In

a kind of fence format.
Set of all operation
contracts defines
system behavior.

Ve will create an
iInteraction diagram for
each operation
contract.

Example Collaboration Diagram:
makePayment

dureciion of message \

first internal message

allem—

makePaymenticzsh Tendered) .

parameter

- 2
L

Register

1: I:I:IELZEF'E].-EEEII:EEE:].I. Tendered, |

ank line

first message instance ‘

=

A

#

object Ereatinﬂ

= 11: create(cash Tendarzd)

- Sale ‘

:Payinenl

How to Read the makePayment
Collaboration Diagram

makeFPayment(cashTendered)

Reqister

- makePayment(cashTendered)

Sale

1.71: create{cashTendered)

L

‘Payment

The message
makePayment is sent to an
Instance of Register. The
sender I1s not identified.

The Register instance
sends the makePayment
message to a Sale
Instance.

The Sale instance creates
an instance of a Payment.

lllustrating Classes and Instances

Sale

Class

sodle

L=

Instance

s1-Sale feeeeeee

o,

Mamed instancea

To show an instance of
a class, the regular
class box graphic

symbol is used, but the
name Is underlined.

Additionally a class

name should be
preceded by a colon.

An instance name can
be used to uniquely
identify the instance.

msg1 ()

l

‘Reqgister

Creation of Instances

1: create (cagnier) .

=

newly created instancq

The language
iIncdlependent creation
message Is create,
being sent to the
Instance being created.

The create message
may include
parameters, indicating
passing or Initial values.

msgt ()

}

‘Heqgister

Conditional Messages

1: [new sale]
sreate (cashier)

A conditional message
15 shown by following a
sequence number with
a conditional clause in

sguare brackets, similar
to the iteration clause.

The message is sent
only if the clause
evaluates to true.

Mutually Exclusive Conditional
Paths

laand 1b are mutually

' o exclusive conditional paths.
unconditional

after either msg() | [Both are sequence number 1
ormsga) Llasst since either could be the first
L internal message.
2 msgs() | * ’
msg1 {)» 1a: [test] msg2() -+
ClassA ‘ClassB
|| 1o [not test1] msg4() | 121 msga()

‘ClassD | 1b.1:msga{) — ClassC

msgi()

'

‘Feqister

Iteration or Looping

lteration;

-
. N
Recurrence values ﬂmIﬁEd“

1*"Ii -= nextLineltem()-

Saleslineltam

_—

msg1{)

'

0 =1 10]

lteration clause ‘L‘

li -= nextLineltem():. SalesLineltem

=ale

‘Heqgister

lteration I1s indicated by
following the sequence
number with a star ®

This expresses that the

message Is being sent
repeatedly, in a loop, to the

rece|ver.

It i1s also possible to Include

an iteration clause
indicating the recurrence

values.

Design Model: Determining
Visibility

Visibility Between Objects

addLineltem{itemiD, quantity) The getSpecification
J message sent from a
Registerto a
Register ProductCatalog, implies
that the ProductCatalog
{ iInstance is visible to the

Register instance.
1: spec = get3pecification{itemI D)

‘ProductCatalog

Visibility

e How do we determine whether one resource
(such as an instance) is within the scope of
another?

 Visibility can be achieved from object A to object
B in four common ways:

— Attribute visibility: B is an attribute of A.

— Parameter visibility: B is a parameter of a method of
A.

— Local visibility: B is a (non-parameter) local object in a
method of A.

— Global visibility: B is in some way globally visible.

Visibility

addLineltem{itemID, quantity)

|

‘Reqister

|

1: spec = getSpecification(itemID)

‘ProductCatalog

The Regiser must have
visibility to the
ProductCatalog.

A typical visibility
solution is that a
reference to the
ProductCatalog
Instance is maintained

as an attribute of the
Register.

Attribute Visibility

e Attribute visibility from A to B exists when B is
an attribute of A.

* |tis a relatively permanent visibility,
pecausenit persists as long as A and B exist.

* |n the addLineltem collaboration diagram,
Register needs to send message
getSpecification message to a ProductCatalog.
Thus, visibility from Register to ProductCatalog
Is required.

Attribute Visibility

addLineltem(itemID, quantity) Class Register { =
\ private ProductCatalog catalog;
‘ Reqister public void addLineltem (..} { ...}
¥

¥

ublic void addLineltem (itemlD itemID, ==~
1: spec = getYpecification(itemiD) P {int quantity) { '

spec = catalog. getSpecification(itemiD);
‘ProductCatalog T

Design Model: Creating Design
Class Diagrams

Domain Model vs. Design Model

- Reqgister Sale
Domain Model
L Captures 1 | Date
- | isComplete - Boolean
time
Register Sale
, Date
Design Model
° T 1 Captures 1 i_ED::mplete:Emﬂlean
addLineltemi. ..} = time
makeLinelteam()

Adding Navigability and Dependency
Relationships

- Uses
Siore 3 — _
address : Address 1 Producpecicatior
1| name : Tex description : Text
ProductZatalog puoc : Moncy
addSale(Contains | temID: temiD
. i i
1 Looks=-in .| getSpecification;) o -
T _.:' : P
Houses -
| 1 .. - Hiugtrates non-attribute visioility Describes
Reogster 1 _
- Sale " Sale_inelem
Captures Contains
= 1 { | Date -Cate = quantity : Integer
endodle]| isiComplete - Boolean| n
enerltem) time - Time getSubtetal(]
MmEke™ayment becomelorplete;)
makeLineliemi}
H.:k:F'a':.:lmnnt-:': Fayment
?Euﬂ'mjl" 1 amount | Mongy
Logs-competed _ Paickby 1

