
Chapter 1

Applying UML and Applying UML and

Patterns

The Need for Software Blueprints

• Knowing an object-oriented language and having
access to a library is necessary but not sufficient in
order to create object software.

• In between a nice idea and a working software, there
is much more than programming.is much more than programming.

• Analysis and design provide software “blueprints”,
illustrated by a modeling language, like the Unified
Modeling Language (UML).

• Blueprints serve as a tool for thought and as a form
of communication with others.

From Design to Implementation

Introduction to Requirements

• Requirements are system capabilities and conditions to
which the system must conform.

• Functional requirements

– Features and capabilities.

– Recorded in the Use Case model (see next), and in the
systems features list of the Vision artifact.

– Recorded in the Use Case model (see next), and in the
systems features list of the Vision artifact.

• Non-functional (or quality requirements)

– Usability (Help, documentation, …), Reliability (Frequency
of failure, recoverability, …), Performance (Response times,
availability, …), Supportability (Adaptability,
maintainability, …)

– Recorded in the Use Case model or in the Supplementary
Specifications artifact.

Use-Case Model: Writing Requirements in Context

Use cases and adding value

• Actor: something with behavior, such as a person,

computer system, or organization, e.g. a cashier.

• Scenario: specific sequence of actions and

interactions between actors and the system interactions between actors and the system

under discussion, e.g. the scenario of successfully

purchasing items with cash.

• Use case: a collection of related success and

failure scenarios that describe actors using a

system to support a goal.

Use Case Diagrams

Use-Case Model: Drawing System

Sequence Diagrams

System Behavior and UML Sequence

Diagrams

• It is useful to investigate and define the behavior
of the software as a “black box”.

• System behavior is a description of what the

system does (without an explanation of how it
does it).does it).

• Use cases describe how external actors interact
with the software system. During this interaction,
an actor generates events.

• A request event initiates an operation upon the
system.

System Behavior and System Sequence

Diagrams (SSDs)

• A sequence diagram is a picture that shows,

for a particular scenario of a use case, the

events that external actors generate, their

order, and possible inter-system events.order, and possible inter-system events.

• All systems are treated as a black box; the

diagram places emphasis on events that cross

the system boundary from actors to systems.

SSD and Use Cases

Naming System Events and

Operations

The set of all required system operations is

determined by identifying the system events.

• makeNewSale()

• addLineItem(itemID, quantity)• addLineItem(itemID, quantity)

• endSale()

• makePayment(amount)

Domain Model: Visualizing Concepts

Domain Models

• A Domain Model illustrates meaningful concepts
in a problem domain.

• It is a representation of real-world things, not
software components.

• It is a set of static structure diagrams; no • It is a set of static structure diagrams; no
operations are defined.

• It may show:
– concepts

– associations between concepts

– attributes of concepts

Domain Models

Strategies to Identify Conceptual Classes

• Use noun phrase identification.

– Identify noun (and noun phrases) in textual

descriptions of the problem domain, and consider

them as concepts or attributes.them as concepts or attributes.

– Use Cases are excellent description to draw for

this analysis.

• Use a conceptual class category list

– Make a list of candidate concepts.

Finding Conceptual Classes with Noun

Phrase Identification

The NextGen POS (partial) Domain Model

Adding Associations

Use a conceptual class category list

The Need for Specification or Description

Conceptual Classes

The Need for Specification or Description

Conceptual Classes

The Need for Specification or Description

Conceptual Classes

Finding Associations –Common

Associations List

Multiplicity

Multiplicity

Naming Associations

Adding Attributes

Valid Attribute Types

Domain Model Conclusion

Use-Case Model: Adding Detail with

Operation Contracts

Contracts

• Contracts are documents that describe system
behavior.

• Contracts may be defined for system
operations.operations.

– Operations that the system (as a black box) offers
in its public interface to handle incoming system
events.

• The entire set of system operations across all
use cases, defines the public system interface.

System Operations and the System

Interface

Example Contract: addLineItem

Contract CO2: addLineItem

Operation: addLineItem (itemID: ItemID, quantity: integer)

Cross References: Use Cases: Process Sale.

Pre-conditions: There is a sale underway.

Post-conditions:Post-conditions:

• A SalesLineItem instance sli was created. (instance creation)

• sli was associated with the Sale. (association formed)

• sli.quantity was set to quantity. (attribute modification)

• sli was associated with a ProductSpecification, based on
itemID match (association formed)

Pre- and Postconditions

• Preconditions are assumptions about the state of the

system before execution of the operation.

• A postcondition is an assumption that refers to the

state of the system after completion of the

operation.

– The postconditions are not actions to be

performed during the operation.

– Describe changes in the state of the objects in the

Domain Model (instances created, associations

are being formed or broken, and attributes are

changed)

addLineItem postconditions

• Instance Creation and Deletion

• After the itemID and quantity of an item have

been entered by the cashier, what new objects

should have been created?should have been created?

– A SalesLineItem instance sli was created.

addLineItem postconditions

• Attribute Modification

• After the itemID and quantity of an item have

been entered by the cashier, what attributes

of new or existing objects should have been of new or existing objects should have been

modified?

• sli.quantity was set to quantity (attribute

modification).

addLineItem postconditions

• Associations Formed and Broken

• After the itemID and quantity of an item have

been entered by the cashier, what

associations between new or existing objects associations between new or existing objects

should have been formed or broken?

– sli was associated with the current Sale

(association formed).

– sli was associated with a ProductSpecification,

based on itemID match (association formed).

Writing Contracts leads to Domain

Model Updates

• It is also common to discover the need to

record new concepts, attributes or

associations in the Domain Model.associations in the Domain Model.

Guidelines for Contracts

Interaction Diagram Notation

Introduction

Introduction

Example Collaboration Diagram:

makePayment

How to Read the makePayment

Collaboration Diagram

Illustrating Classes and Instances

Creation of Instances

Conditional Messages

Mutually Exclusive Conditional

Paths

Iteration or Looping

Design Model: Determining

Visibility

Visibility Between Objects

Visibility

• How do we determine whether one resource
(such as an instance) is within the scope of
another?

• Visibility can be achieved from object A to object
B in four common ways:B in four common ways:
– Attribute visibility: B is an attribute of A.

– Parameter visibility: B is a parameter of a method of
A.

– Local visibility: B is a (non-parameter) local object in a
method of A.

– Global visibility: B is in some way globally visible.

Visibility

Attribute Visibility

• Attribute visibility from A to B exists when B is
an attribute of A.

• It is a relatively permanent visibility,
becausenit persists as long as A and B exist.becausenit persists as long as A and B exist.

• In the addLineItem collaboration diagram,
Register needs to send message
getSpecification message to a ProductCatalog.
Thus, visibility from Register to ProductCatalog
is required.

Attribute Visibility

Design Model: Creating Design

Class Diagrams

Domain Model vs. Design Model

Classes

Adding Navigability and Dependency

Relationships

