


 Development is organized in a series of short,  
fixed-length mini-projects called iterations 

 Iterations are also incremental 

 Successive enlargement and refinement of a system 

 Feedback and adaptation evolve the specification, 
design and code 

 How might iterative development be different from 
prototyping? 

 Output of each iteration need not be experimental 
or a throw-away prototype 

 Each iteration tries to be a production-grade subset  
of final system 



 Le mieux est l’ennemi du bien 
    - Voltaire 

 (The best is the enemy of the good.) 
 Why? 
 Avoid “Paralysis by Analysis” – kills budget 

without significant benefit 
 Classic mistake: Too much time and money 

wasted in the “fuzzy front end” 



 Each iteration involves choosing a small 
subset of requirements, and quickly 
designing, implementing and testing 

 Early feedback (from users, developers and 
tests) drives development 



 Requirements are capabilities and 
conditions to which the system and the 
project must conform 

 

 A prime challenge of requirements analysis 
is to find, communicate, and remember 
what is really needed, in the form that 
clearly speaks to the client and 
development team members.   



 A story of using a system fulfilling a goal 
◦ E.g., Deposit cash 
◦ A use case story consists of a set of alternative scenarios 

 
 Actors are capable of active behavior  

◦ E.g., Person, computer system, organization 

 
 Primary actors have goals that use case accomplish 

◦ E.g., Customer, Clerk 
 

 Supporting actors help use case accomplish goal 
◦ E.g., Bank, Database 



See alistar.cockburn.us 
 Use case name 
 Scope 
 Level (user-goal or subfunction) 
 Actors: Primary, Secondary 
 Stakeholders and interests (who cares about this use case,  

and what do they want?) 
 Preconditions (what must be true on start) 
 Postconditions or Success guarantee (what must be true on 

successful completion)  
 Main success scenario (typical path, happy path) 
 Extensions (alternate scenarios of success and failure) 
 Special requirements (related non-functional requirements) 
 Technology and data variations list (varying I/O methods) 
 Frequency of occurrence  
 Miscellaneous  



 Cockburn: Elementary Business Process (EBP) guideline: 
◦ “A task performed by one person in one place at one time,  

in response to a business event, which adds measurable  
business value and leaves the data in a consistent state.” 
 

 Naively, can you apply the “boss test” for an EBP? 
◦ Boss: “What do you do all day?” 
◦ Me: “I logged in!” 
◦ Is Boss happy? 

 

 Size: An EBP-level use case usually is composed of 
several steps, not just one or two. 

 
 



 Which of following meets EBP & size guidelines? 

 

◦ Negotiate a Supplier Contract 

◦ Rent Videos 

◦ Log In 

◦ Start Up 

 

 The others can also be modeled as use cases  
◦ But focus first on essential cases (EBP level) 



 Keep use case names simple: Verb object 
◦ Deposit money.   

◦ Not: Deposit money into checking.  Why not? 

 Accomplish a user’s goal 
◦ Invalid PIN is not a use case.   Why not? 

 Include Secondary Actors (e.g., Bank) 

 Avoid ambiguity 
◦ E.g., in the ATM problem, System could be 

the machine or the Bank’s back-end server 

 Start Up and Shut Down are use cases 
◦ Why do we usually not include them at first? 



 A use case diagram is not a flow chart 

 Steps in the use case (such as enter PIN)  
are not necessarily use cases.  Why not? 

 

 Keep each step and alternative simple;  
e.g., don’t validate PIN and balance in same 
step (and same alternative scenario) 

 

 Transactions (such as deposit money and 
withdraw cash) are candidate use cases. Why? 

 

 



 UML has use case diagrams 

 

 Use cases are text, not diagrams 

 

 But a short time drawing a use case 
diagram provides a context for: 
◦ identifying use cases by name 

◦ creating a “context diagram” 

 

 Again, a use case diagram is not a flow chart! 



Video Store Information System

Rent Videos

. . .

Clerk

Show computer system actors

with an alternate notation to

human actors.

primary actors on

the left

supporting actors

on the right

Prefer use cases at the EBP level.

«actor»

Credit

Authorization

Service



14 

 Use cases describe functional requirements 

 Supplementary Specification (SS) captures 

non-functional reqs (URPS+): 

 Vision and Scope 

 Features list 

 Glossary (Data Dictionary) 

 Business Rules 

 Risk plan 

 Iteration Plan 



15 

 Feature is a behavioral function a system can do 

 A feature is an externally visible service 
◦ E.g., system does investment rate of return 

◦ System does credit risk analysis 

 Why is a feature list useful when developing  

a Vision and Scope document? 

 Prefer short (10-12) feature list of most valuable 

benefits 

 
 

 



 



 Contains a list of known and expected risks 

 Business, technical, resource, and schedule 
risks identified by probability and severity 

 All significant risks should have a response  
or mitigation plan 



Rank requirements as: 
 High (score high on all rankings; hard to add late) 

 Medium (affects security domain) 

 Low 

by:  

 Risk (includes both technical complexity and other factors, such as 
uncertainty of effort and usability) 

 Coverage (all major parts of the system are tackled in early iterations) 

 Criticality (refers to functions the client considers of high business 
value) 

 

 
Ranking is done before each iteration 



 Describes what to do in each iteration of product 

 Usually first iteration implements core functionality  

 Need to consider risks and make estimates 

◦ Eliminate biggest risk first 

◦ Worst risk is usually that the final product will 
not meet the most important requirement 

◦ Estimate what can be accomplished in 2-3 weeks 



 There is a funnel of cost estimates 
◦ The earlier the estimate, the less accurate it is. 

Inception, Analysis, Design, Construction, next phase, etc… 

+/- 100% +/-50% +/- 25% +/-10% 

Some inception estimates are +400/-75% 


