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BINARY OPERATION 

 We are all familiar with addition and multiplication of two numbers. Both 

of them combine two numbers and then give one numbers as the result. In this 

topic, we abstract this operation. 

Definition 2.1 Let S be non void set. A binary operation ∗ on set S is a function    

∗  : S × S →  S .  

 Based on the above definition, we know that a binary operation on S 

assigns to each ordered pair of elements of S exactly one element of S. Binary 

operations are usually represented by symbols like *, ο ,+, × , instead of letter f, g, 

h, and so on. Moreover the image of (a,b) under a binary operation * is written       

a ∗ b  instead of * (a, b) 

Example : 

a. An ordinary addition ( + ) and multiplication ( × ) on the set Z of integer 

and the set R of real number is the most familiar example of binary 

operation 

b. An ordinary subtraction on the set Z of integer, the set Q of rational 

number, and the set R of real number is binary operation, but an ordinary 

subtraction on the set N of natural number is not binary operation, 

because it is not function, for example 5 – 9 = -4 ∉ N. 

c. A function ∗ on the set Z of integer defined by a ∗ b = a + b – 1 for all a, b 

∈ Z is  binary operation. 



d. Let X be any set and A, B both are the subset of X. We know that A ∩ B,   

A ∪ B and A – B also subset of X. Hence,  intersection, union and 

difference are all binary operation on the set P(X) . 

Properties of Binary Operation 

 Based on the definition of binary operation, the following theorem give us   

detailed explanation about the definition means. 

Theorem : If ∗ : S × S → S is a binary operation on set S, then the following 

condition must be satisfied. 

(i) if x ∈ S and y ∈ S, then x ∗ y ∈ S 

(ii) if x = y ∈ S and s = t ∈ S, then x ∗ s = y ∗ t. 

(iii) if x = y ∈ S, then x ∗ z = y ∗ z and  z ∗ x = z ∗ y for all z ∈ S. 

Proof:    

 if   α : A → B is a function, then  x = y ∈ A ⇒ α(x) = α(y). 

(i) If x ∈ S and y ∈ S, then (x, y) ∈ S × S. Since ∗ is a function from S × S 

to S, then  ∗ (x, y) = x ∗ y ∈ S. 

(ii) If x = y ∈ S and s = t ∈ S, then (x, s ) = ( y, t ) ∈ S × S. Since ∗ is a 

function from S × S to S, then  ∗ (x, s) = ∗ ( y, t ) ⇔ x ∗ s = y ∗ t. 

(iii) From (ii) and z = z we have ∗ (x,z) = ∗ (y, z) ⇔ x ∗ z = y ∗ z and  

∗ (z,x) = ∗ (z, y) ⇔ z ∗ x = z ∗ x. 

  

 The above theorem give us an important properties of binary operation. In 

part (i), it says that the order of  x ∗ y is very important. We do not assume that x ∗ 

y is the same as y ∗ x.  

 Statement (ii) says that if x = y  and s = t  we can substitute y for x and  t 

for s in the expression x ∗ s and we obtain the expression y ∗ t which is equal to    



x ∗ s.  The last part of the above theorem says that we can multiply both sides of 

an equation on the right or left by the same element. 

 

Definition :  Let ∗ be a binary operation on set S. 

(a) The binary operation ∗ is called  associative  if  x ∗ ( y ∗ z ) = ( x ∗ y ) ∗ z, 

for all x, y, z ∈ S 

(b) The binary operation ∗ is called commutative if x ∗ y = y ∗ x  for all x,y ∈ S 

(c) An element e ∈ S is called identity with respect to ∗ if x ∗ e = e ∗ x = x for 

all x ∈ S.  

(d) An element a ∈ S is called idempotent with respect to ∗ if a ∗ a = a. 

(e) Suppose that there exist an identity element e in S with respect to  ∗ . For 

some a ∈ S, an element b ∈ S is called inverse of a  with respect to ∗ if         

a ∗ b = b ∗ a = e. 

Example : 

1. An ordinary addition on the set of all integer is commutative binary 

operation 

2. Multiplication on the set of all square matrix is non commutative binary 

operation  

3. An ordinary multiplication on the set of real numbers is associative binary 

operation and an ordinary subtraction on the set of all integer is  an 

example of non associative binary operation, since 2 – (3 – 4 ) ≠ ( 2 – 3) – 4  

4. 0 and 1 respectively are identity of binary operation an ordinary addition    

( + ) and multiplication ( × ) in the set of all real number. The inverse of 2 

with respect to + is -2 and the inverse of 2 with resepect to × is ½ , since 

we know that 2 + (-2) = (-2) + 2 = 0 and 2 × ½ = ½ × 2 = 1. 

5. An identity e ∈ S for some binary operation ∗ is idempotent since e ∗ e = e  

 

 

 



Problems  

1. Assume that ∗ is a binary operation on the set S. Prove that : 

a. If e1 and e2 both are identities with respect to ∗ on S, then e1 = e2. 

b. If z1 and z2 both are zeros with respect to ∗ on S, then z1 = z2. 

2. Check whether the operation given below is binary operation or not: 

a. a ∗ b = a + b – 10  for all a, b ∈ Z . 

b. a  ⊕  b = a + b – ab for all  a, b ∈ Q . 

c. a ⊗ b = ½ ( a + b + ab ) for all a, b ∈ R  

d. a ∇ b = 1
ab

 for all a, b ∈ Q . 

3. Determine which are the operation in problem 2 is commutative and which 

are associative. 

4. Let  
  

, ,  and 1
0  
a b

M a b d ad
d

⎧⎛ ⎞ ⎫⎪= ∈ =⎨ ⎬⎜ ⎟
⎝ ⎠ ⎭⎪⎩

and the binary operation is 

matrix multiplication. Find the identity of M and check the binary 

operation is associative or not. 

5.  Let Q be the set of all rational number and defined an operation ∗ on Q  

as follow : 2 2*a c a c
b d b d

+
=

+
. 

a) Show that  ∗ is not binary operation on Q  

b) Show by give a specific example that this operation not permit 

substitusion. 

 

 

 



GROUP 

Definition:   A non empty set G together with a binary operation ∗ on G is called 

group, if satisfied the following condition : 

1. A binary operation ∗ is assosiatif 

2. There exist e ∈ G for all a ∈ G, such that e ∗ a = a ∗ e = a ( identity ) 

3. For all a ∈ G, there exist b ∈ G such that ab = ba = e ( invers ). 

If the binary operation is also commutative, then  group G is called abelian. 

Example : 

1. The set of all integer with usual addition  

2. R \ {0} with usual multiplication  

3. Set of all 2 × 2 matrices over integers under matrix addition  

4. The set G = { 1, -1} form a group under multiplication 

Lemma :  If G is group , then the following properties hold in group G : 

1. Identity element is unique 

2. Inverse of each element is unique 

3. For all a ∈ G, ( a-1)-1 = a 

4. ab = ac ⇒ b = c ( left cancelation )  

ab = cb ⇒ a = c ( right cancelation ) 

Proof : 

1. Suppose e1 and e2 both are identity in G.  

Since e1 is identity, then e1 e2 = e2 e1 = e2 …. (*) 

Since e2 is identity, then e1 e2 = e2 e1 = e1 ….. (**) 

From (*) and (**) we have e1 = e2. 

2. Let a be any element of G and suppose b and c both are inverse of a. 

We get  b = b e  = b ( a c )  = ( b a ) c =  e c = c. 



3. Let a be any element of G and b is the inverse of a. Then a b = e and ba = 

e. It show that b-1 = a, that is (a-1)-1 = a. 

4. ab = ac ⇒  a-1 a b = a-1 ac ⇒ e b = e c ⇒ b = c 

ab = cb ⇒   ab b-1  = cb b-1  ⇒  a e = ce ⇒  a = c. 

 

Theorem: If a,b are any two elements of a group G, then the equations ax = b 

and ya = b have unique solutions in G. 

Proof . 

Since each element in group G has unique inverse and the product of two 

elements of G in G then,for all a,b ∈ G, a-1b ∈ G. Substituting a-1b for x in the left 

hand side of the equation ax = b, we have : 

 a (a-1b) = (aa-1b)  = eb = b. 

Thus x = a-1 b satisfies the equation ax = b.  

To show that the solution is unique, let x1 and x2 both are the solutions. 

Then, ax1 = b and ax2 = b ⇒ ax1 = ax2 ⇒ x1 = x2. 

The similar way can be used to prove that the equation ya = b  has unique 

solution. 

 

Theorem :Let G be a group and m, n are any two integer. Then for all a ∈ G, 

am an = am+n and (am)n = amn. 

Proof . 

Case I. when m and n are positive integer 

am an =    ... 
m

a a a a    ... 
n

a a a a  =   ... 
m n

a a a a
+

 = am+n. 

Case II. when m and n are negative integer 

Let m = -k and n = -h. 

am an = a-k a-h = 1 1 1 1   ... 
k

a a a a− − − − 1 1 1 1  ... 
h

a a a a− − − −  = 1 1 1 1  ... 
k h

a a a a− − − −

+

 = (a-1)k+h 

 = a-k – h 

 = am+n. 

 



Case III. when m is positive and n is negative integer. 

Let n = - r for some positive integer r. Then,  

am an = am a-r =    ... 
m

a a a a 1 1 1 1  ... 
r

a a a a− − − −  = am-r = am + n. 

Hence all in the cases am  an = am+n  . 

 

Problems : 

1. In group G, if for all a, b ∈ G, ( ab)2 = a2 b2, prove that G is abelian. 

2. If a-1 = a for all a in group G, prove that G is abelian. 

3. Let G be a group and a ∈ G. Prove that if a2 = a, then a is  identity. 

4. Let G be a finite group with identity e. Prove that for any a ∈ G, there is a 

positive integer n such that an = e.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



COMPLEX AND SUBGROUP 

Definition : Let G be a group. Any non empty subset H of G is called complex of  

G. 

Example :   Let G = Z10 = { 0, 1, 2, …, 9 }. 

 H = { 0, 5 } is complex of G. 

K = { 0, 4, 8 } is complex of G. 

 As we know in the theory of set, we can define intersection ( ∩ ), union            

( ∪ ) and multiplication on complex as below.  

Definition : Let G be a group and H, K both  are the complex of G. Then,  

(i) H ∩ K = {  x / x ∈ H and x ∈ K } 

(ii) H ∪ K = { y / y ∈ H or y ∈ K } 

(iii) HK = { hk / h ∈ H and k ∈ K } 

(iv) H-1 = { h-1 / h ∈ H } 

(v) (HK)-1 = { (hk)-1 / h ∈ H and k ∈ K }. 

Example : 

Based on above  example  we have 

(i) H ∩ K = {0} 

(ii) H ∪ K = { 0, 4, 5, 8 } 

(iii) HK  = { 0, 3, 9 } 

(iv) H-1 = { 0, 5 } ; K-1 = { 0, 6, 2 }. 

(v) (HK)-1 = { 0, 7, 1 }. 

 

If H, K both are complex of G, then we can show that ( HK)-1 = K-1 H-1. 

( HK)-1 = { (hk)-1 / h ∈ H and k ∈ K }  

 = { k-1 h-1 /  k ∈ K  and h ∈ H } , since k, h ∈ G. 



 =  K-1 H-1. 

In the above example, we can see that if K is complex of group G and k1, k2 ∈ K, 

then k1k2 may be not in K. Now, we will see when the complex has the properties 

as in the group.  

 

Definition Let G be a group and H is a complex of G. If H form a group with the 

same binary operation on G, then H is called subgroup of G. 

Example . 

1. Let G = 
  

/ , , , , 0
  

a b
a b c d ad bc

c d
⎧ ⎫⎡ ⎤

∈ − ≠⎨ ⎬⎢ ⎥
⎣ ⎦⎩ ⎭

. 

 H=
  0

/ , , 0
0  
a

a d ad
d

⎧ ⎫⎡ ⎤
∈ ≠⎨ ⎬⎢ ⎥

⎣ ⎦⎩ ⎭
 is subgroup of G. 

K=
  

/ , , , 0
0  
a b

a b d ad
d

⎧ ⎫⎡ ⎤
∈ ≠⎨ ⎬⎢ ⎥

⎣ ⎦⎩ ⎭
 is subgroup of G. 

 

2. Let (G , * ) = ( { 1, 2, 3, 4, 5, 6 }, × ( mod 7) ). 

L = ( 1, 2, 4 } is subgroup of G . 

 

 To check whether a complex of group is subgroup or not, we can check all 

the three axioms in group. But the following theorems give us more simple 

methods to check a complex is subgroup or not. 

 

Theorem : A complex H of group G is subgroup of G if and only if : 

(i) ∀ a, b ∈ H ⇒ ab ∈ H. 

(ii) ∀ a ∈ H ⇒ a-1 ∈ H. 

Proof . 

If H is subgroup of G, then ab ∈ H and a-1 ∈ H for all a, b ∈ H. Conversely, let 

ab ∈ H and a-1 ∈ H for all a, b ∈ H. Suppose that a,b, c ∈ H. By ( i), (ab) c ∈ H 



and a ( b c ) ∈ H. But, a,b, c ∈ G, then (ab) c = a ( bc ). Thus the closure and 

associative properties hold.  

 Since ab-1 ∈ H for all a,b ∈ H, then aa-1 = e ∈ H. Thus H has an identity. 

The inverse of element of H is in H by (ii). Hence H satisfies all the conditions in 

group. Therefore H is subgroup of G. 

Theorem : A complex H of group G is subgroup of G if and only if ab-1 ∈ H for 

all a, b ∈ H. 

Proof . 

 It clear that if H is subgroup of G, then ab-1 ∈ H for all a,b ∈ H. Suppose 

that ab-1 ∈ H for all a,b ∈ H. For all a ∈ H, then aa-1 = e ∈ H. Thus H has an 

identity. Now, for any a ∈ H , ea-1 = a-1 ∈ H. Hence for each element a ∈  H has 

inverse.  

 If a,b, c ∈ H, then a,b, c ∈ G. Hence the associative property hold in H. 

Finally, since for a,b ∈ H,  a, b-1  ∈ H, then we have  a (b-1 )-1 = ab ∈ H. Hence 

the closure property hold in H.  

 

Example : 

(i) We want to show that H=
  0

/ , , 0
0  
a

a d ad
d

⎧ ⎫⎡ ⎤
∈ ≠⎨ ⎬⎢ ⎥

⎣ ⎦⎩ ⎭
 is subgroup of 

 G = 
  

/ , , , , 0
  

a b
a b c d ad bc

c d
⎧ ⎫⎡ ⎤

∈ − ≠⎨ ⎬⎢ ⎥
⎣ ⎦⎩ ⎭

. 

Let h1 = 
  0

, , , 0
0  
a

a d ad
d

⎡ ⎤
∈ ≠⎢ ⎥

⎣ ⎦
and h2 = 

  0
, , ,  and 0

0  
b

b c bc
c

⎡ ⎤
∈ ≠⎢ ⎥

⎣ ⎦
 

1
1 b

1 2 1

  0   0  0
0  0  0  

a
b

d
c c

a
h h H

d
− ⎡ ⎤⎡ ⎤⎡ ⎤
= = ∈⎢ ⎥⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. 

Thus H is subgroup of G. 

(ii) Let G be a group and Z(G) = { x ∈ G / xg = gx for all g ∈ G }. Since    

e ∈ Z(G), it clear that Z(G) is complex of G. Let x1, x2 ∈ Z(G). 



(x1 x2 ) g = x1 ( x2 g) 

  = x1 ( g x2 ) 

  = (x1 g) x2 

  = (g x1 ) x2 

  = g ( x1 x2 ). 

Hence x1 x2 ∈ Z(G). 

X1 ∈ Z(G)  ⇒ x1 g = g x1 for all g ∈ G 

   ⇒ ( x1 g ) -1 = ( g x1 )-1 

   ⇒ g-1 x1
-1 = x1

-1 g-1  for all g-1 ∈ G 

   ⇒ x1
-1 ∈ G. 

Therefore Z(G) is subgroup of G and Z(G) is called center of group G. 

(iii) Let G be a group and H be a subgroup of G. For some a ∈ G, the set 

aHa-1 = { aha-1 / h ∈ H } is subgroup of G. 

Since H is subgroup of G, then e ∈ H, therefore aea-1 = e ∈ H. So H is 

a complex of G. 

Now, take any x, y ∈ aHa-1, thus x = ahia-1 and y = ahja-1. 

xy-1 = (ahia-1) (ahja-1) 

  = (ahi)(a-1a)( hja-1) 

  = a( hihi) a-1 

  = a hk a-1 

  ∈ aHa-1. 

Hence aHa-1 is subgroup of G. 

 

 

 

 

 

 

 

 



COSET  
 

 In the previous chapter we have discussed about subgroup and complex of 

group. Now, we will discuss a special type of complex called coset. 

Definition :Let H be a subgroup of group G and a is any element of G. Then,  

(i) Ha = { ha/ h ∈ H } is called right coset of H in G. 

(ii) aH = { ah/ h ∈ H } is called left coset of H in G. 

 We know that if H is subgroup of G then H is not empty since e ∈ H. 

Since He = H and eH = H then H is a coset of G. Therefore no coset of G is an 

empty set. If group G is abelian, then aH = { ah / h ∈ H } = { ha/ h ∈ H } = Ha. 

Hence if G abelian , then the right coset is equal with the left coset. 

Some examples of coset are given below : 

Example : 

Given G = Z 12 = { 0, 1, 2, … , 11 } under addition modulo 12 . 

Let H = { 0, 3, 6, 9 } be a subgroup of G.The all coset of H in G are : 

H + 0 = { 0, 3, 6, 9 }= H + 3 = H + 6 = H +9 

H + 1 = { 1, 4, 7, 10 } = H + 4 = H + 7 = H+ 10 

H + 2 = {2, 5, 8, 11} = H + 5 = H + 8 = H + 11 

 

Properties of Coset : 

Let  G be a group and H be a subgroup of G, then : 

1. If a ∈ H, then Ha = H and  aH = H. 

2. If a,b ∈ G, then Ha = Hb ⇔ ab-1 ∈ H  

3. If a,b ∈ G, then aH = bH ⇔ b-1 a ∈ H  

4. If a,b ∈ G, then Ha ∩ Hb = ∅ or  Ha = Hb. 

5.  
a G

G Ha
∈

= ∪  



NORMAL SUBGROUP 

Definition Let N be a subgroup of a group G. N is called a normal subgroup of 
G  iff , . 

Example : 

1. All subgroups of abelian groups are normal. 
2. S3={(1), (1  2), (1  3), (2  3), (1  2  3), (1  3  2)}, is a symmetry group of 

three. N={(1), (1  2  3), (1  3  2)} is a subgroup of S3. 
(1 2) N = {(1  2), (2  3), (1  3)} = (1  3) N = (2  3) N 

N (1  2)  = {(1  2), (1  3), (2  3)} = N (1  3) = N (2  3) 

The facts above showed that every left coset N are equal to every right 
coset N, so . 

3. , , ,     with matrix multiplication are 

an abelian group. 
0

0    0  . Show that N is a subgroup of M. If 
0

0  and , then  
0

0  .   and 

 . 0
0  . 

Because AB = BA ,  and , so BN = NB,  , such 
that N normal subgroup of M 

Remember: 

1. From definition above gN=Ng doesn’t mean that  then gn = ng. 
2. If G is a group, then G and each {e} is a trivial normal subgroup of G. 
3. Group G ≠ {e} that doesn’t have normal subgroup called simple group. 

from definition above,  iff , . gN = Ng can be replaced by 
gNg-1= N with gNg-1={gNg-1|n N}. So gN = Ng can be replaced by 

, . Such that, we get theorem : 

Theorem  : N subgroup of G , then  iff  and , . 

Proof: 

Let  , then gN = Ng ,  such that gNg-1 = N. 

If  , then  



  

   ,  

otherwise, 

If  and , , then 

 

 

because  then 

 

from , , because , then 

  

 

 

But  then 

 

so 

 

Example : 

1. , , ,     with matrix multiplication are a 

group. If , , ,    1 then  

N is a subgroup of M, because if ,  , then | | | || | 1 and 
| | 1, that is  and . Further, if  then | | 0 and 
| |

| |  such that | | | || || | | || |
| |

| | 1 
that’s mean . So  

2. , , , , , ,  is a dihedral group level of four.  and  
are isometric transformation of a square. 

 = ¼ rotation anticlockwise 
 = reflection of side axis and the diagonal of square. , , ,  is a 

subgroup normal of D4. 



3. 0 , ,    0  with matrix multiplication are a 

group. 1
0 1    is a subgroup of M 

if 0  so 
0

 if 1
0 1  so  

0
1
0 1

1

0
1  

1
0 1

 

It show that  , such that . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



HOMOMORPHISM 

 

Definiton  

Let G be a group . A mapping f : G → G is called homorphism if for all a, b in G, 

f(ab) = f(a) f(b). 

 

From this definition, we can say that homomorphism is a mapping that preserve 

operation of group  

Example: 

(R+, ×) is a group of positive real numbers under multiplication, and (R, +) 

is a group of real numbers under addition.  

φ : R+ → R defined by φ (x) = ln x, ∀ x ∈ R+. 

Since, if a,b ∈ R+, φ (ab) = ln ab= ln a + ln b = φ (a) + φ (b), then φ is a 

homomorphism. 

 

 

Definition  

1. Two group G and G’ is called homomorphic, if there is a homomorphism 

from G onto G’. 

2. Two group G and G’ is called isomorphic, if there is isomorphism from G 

onto G’. 

 

 

Theorem  (Cayley Theorem) 

Every finite group G isomorphic with a subgroup of subgroup of symmetric group 

Sn. 

Based on this definition, we can say that every finite group can be written as a 

permutation group  

 

 



Theorem  

If f  is homomorphism of group G to group G’, then 

1. f (e) = e’ , e and e’ consecutively are identity element of G and G’ 

2. f  (a-1) = f (a)-1,  ∀ a ∈ G 

Proof: 

Let f be a homomorphism from G to G’. for all a ∈ G , ae = a, then f (ae) = f (a),  

that is f (ae) = f (a) e’.  

By cancelation properties in G’, we get f (e) = e’ 
 

Also, for all a ∈ G , aa-1 = e = a-1a, then f (aa-1) = f (e) = f (a-1a), then f (a) f (a-1) 

= e = f (a). So, f (a-1) = f (a)-1. 

 

Theorem  

If f is a homomorphism of group G to group G’, then the image f is subgroup G’. 

 

Definition  

If f is a homomorphism of group G to group G’, then kernel of f (denoted by I) 

defined by 

I = {x ∈ G | f (x) = e’} 

 

Theorem  

If f is homomorphism of group G to group G’, then kernel of f is subgroup normal 

of G 

Proof: 

Let kernel of f is I = {x ∈ G | f (x) = e’}, then I ⊂ G and since f (e) = e’, then e ∈ I. 

I ≠ φ. 

Then I is a complex of G. 

If a,b ∈ I, then f (a) = f (b) = e’, then 

f (ab-1) = f (a) f (b-1) = f (a) f (b)-1 = e’e’-1 = e’. 

It means ab-1 ∈ I. So, I is subgroup of G. 



If k ∈ I and a ∈ G, then 

f (aka-1) = f (a) f (k) f (a-1) = f (a) e’ f (a) -1 = f (a) f (a) -1 = e’ 

It means aka-1∈ I, so I  G. 

 

Theorem  

If f is homomorphism of group G to group G’ with kernel K, then the set of 

domain of x ∈G’ by f in G is right coset Ka with a ∈ G and f (a) = x 

 

 

 

 

 

 

 

 

 

 

 

 

 


