
Series Editor KENNETH H. ROSEN
DISCRETE MATHEMATICS AND ITS APPLICATIONS

An INTRODUCTION to

CRYPTOGRAPHY
Second Edition

© 2007 by Taylor & Francis Group, LLC

Juergen Bierbrauer, Introduction to Coding Theory

Kun-Mao Chao and Bang Ye Wu, Spanning Trees and Optimization Problems

Charalambos A. Charalambides, Enumerative Combinatorics

Henri Cohen, Gerhard Frey, et al., Handbook of Elliptic and Hyperelliptic Curve Cryptography

Charles J. Colbourn and Jeffrey H. Dinitz, The CRC Handbook of Combinatorial Designs

Steven Furino, Ying Miao, and Jianxing Yin, Frames and Resolvable Designs: Uses,
Constructions, and Existence

Randy Goldberg and Lance Riek, A Practical Handbook of Speech Coders

Jacob E. Goodman and Joseph O’Rourke, Handbook of Discrete and Computational Geometry,
Second Edition

Jonathan L. Gross and Jay Yellen, Graph Theory and Its Applications, Second Edition

Jonathan L. Gross and Jay Yellen, Handbook of Graph Theory

Darrel R. Hankerson, Greg A. Harris, and Peter D. Johnson, Introduction to Information
Theory and Data Compression, Second Edition

Daryl D. Harms, Miroslav Kraetzl, Charles J. Colbourn, and John S. Devitt, Network Reliability:
Experiments with a Symbolic Algebra Environment

Leslie Hogben, Handbook of Linear Algebra

Derek F. Holt with Bettina Eick and Eamonn A. O’Brien, Handbook of Computational Group Theory

David M. Jackson and Terry I. Visentin, An Atlas of Smaller Maps in Orientable and
Nonorientable Surfaces

Richard E. Klima, Neil P. Sigmon, and Ernest L. Stitzinger, Applications of Abstract Algebra
with Maple™ and MATLAB®, Second Edition

Patrick Knupp and Kambiz Salari, Verification of Computer Codes in Computational Science
and Engineering

William Kocay and Donald L. Kreher, Graphs, Algorithms, and Optimization

Donald L. Kreher and Douglas R. Stinson, Combinatorial Algorithms: Generation Enumeration
and Search

Series Editor

Kenneth H. Rosen, Ph.D.

and

DISCRETE
MATHEMATICS
ITS APPLICATIONS

© 2007 by Taylor & Francis Group, LLC

Continued Titles

Charles C. Lindner and Christopher A. Rodgers, Design Theory

Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone, Handbook of Applied
Cryptography

Richard A. Mollin, Algebraic Number Theory

Richard A. Mollin, Codes: The Guide to Secrecy from Ancient to Modern Times

Richard A. Mollin, Fundamental Number Theory with Applications

Richard A. Mollin, An Introduction to Cryptography, Second Edition

Richard A. Mollin, Quadratics

Richard A. Mollin, RSA and Public-Key Cryptography

Carlos J. Moreno and Samuel S. Wagstaff, Jr., Sums of Squares of Integers

Dingyi Pei, Authentication Codes and Combinatorial Designs

Kenneth H. Rosen, Handbook of Discrete and Combinatorial Mathematics

Douglas R. Shier and K.T. Wallenius, Applied Mathematical Modeling: A Multidisciplinary
Approach

Jörn Steuding, Diophantine Analysis

Douglas R. Stinson, Cryptography: Theory and Practice, Third Edition

Roberto Togneri and Christopher J. deSilva, Fundamentals of Information Theory and
Coding Design

Lawrence C. Washington, Elliptic Curves: Number Theory and Cryptography

© 2007 by Taylor & Francis Group, LLC

Series Editor KENNETH H. ROSEN
DISCRETE MATHEMATICS AND ITS APPLICATIONS

Boca Raton London New York

Chapman & Hall/CRC is an imprint of the
Taylor & Francis Group, an informa business

RICHARD A. MOLLIN

An INTRODUCTION to

CRYPTOGRAPHY
Second Edition

© 2007 by Taylor & Francis Group, LLC

Chapman & Hall/CRC
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2007 by Taylor & Francis Group, LLC
Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-10: 1-58488-618-8 (Hardcover)
International Standard Book Number-13: 978-1-58488-618-1 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reprinted
material is quoted with permission, and sources are indicated. A wide variety of references are
listed. Reasonable efforts have been made to publish reliable data and information, but the author
and the publisher cannot assume responsibility for the validity of all materials or for the conse-
quences of their use.

No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any
electronic, mechanical, or other means, now known or hereafter invented, including photocopying,
microfilming, and recording, or in any information storage or retrieval system, without written
permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC)
222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that
provides licenses and registration for a variety of users. For organizations that have been granted a
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Mollin, Richard A., 1947-
An Introduction to Cryptography / Richard A. Mollin. -- 2nd ed.

p. cm. -- (Discrete mathematics and its applications)
Includes bibliographical references and index.
ISBN-13: 978-1-58488-618-1 (acid-free paper)
ISBN-10: 1-58488-618-8 (acid-free paper)
1. Coding theory--Textbooks. I. Title. II. Series.

QA268.M65 2007
003’.54--dc22 2006049639

Visit the Taylor & Francis Web site at

http://www.taylorandfrancis.com

and the CRC Press Web site at

http://www.crcpress.com

© 2007 by Taylor & Francis Group, LLC

http://www.copyright.com
http://www.taylorandfrancis.com
http://www.crcpress.com
http://www.copyright.com
http://www.copyright.com

To Kathleen Ellen — my Soul Mate.

© 2007 by Taylor & Francis Group, LLC

Contents

Preface . ix

1 Mathematical Basics 1
1.1 Divisibility . 1
1.2 Primes, Primality Testing, and Induction 6
1.3 An Introduction to Congruences 17
1.4 Euler, Fermat, and Wilson 35
1.5 Primitive Roots . 44
1.6 The Index Calculus and Power Residues 51
1.7 Legendre, Jacobi, & Quadratic Reciprocity 58
1.8 Complexity . 67

2 Cryptographic Basics 79
2.1 Definitions and Illustrations 79
2.2 Classic Ciphers . 91
2.3 Stream Ciphers . 109
2.4 LFSRs . 115
2.5 Modes of Operation . 122
2.6 Attacks . 127

3 DES and AES 131
3.1 S-DES and DES . 131
3.2 AES . 152

4 Public-Key Cryptography 157
4.1 The Ideas Behind PKC . 157
4.2 Digital Envelopes and PKCs 165
4.3 RSA . 172
4.4 ElGamal . 181
4.5 DSA — The DSS . 187

5 Primality Testing 189
5.1 True Primality Tests . 189
5.2 Probabilistic Primality Tests 198

vii
© 2007 by Taylor & Francis Group, LLC

viii

5.3 Recognizing Primes . 204

6 Factoring 207
6.1 Classical Factorization Methods 207
6.2 The Continued Fraction Algorithm 211
6.3 Pollard’s Algorithms . 214
6.4 The Quadratic Sieve . 217
6.5 The Elliptic Curve Method (ECM) 220

7 Electronic Mail and Internet Security 223
7.1 History of the Internet and the WWW 223
7.2 Pretty Good Privacy (PGP) 227
7.3 Protocol Layers and SSL . 241
7.4 Internetworking and Security — Firewalls 250
7.5 Client–Server Model and Cookies 259

8 Leading-Edge Applications 263
8.1 Login and Network Security 263
8.2 Viruses and Other Infections 273
8.3 Smart Cards . 286
8.4 Biometrics . 294

Appendix A: Fundamental Facts . 298

Appendix B: Computer Arithmetic . 325

Appendix C: The Rijndael S-Box . 335

Appendix D: Knapsack Ciphers. 337

Appendix E: Silver-Pohlig-Hellman Algorithm 344

Appendix F: SHA-1 . 346

Appendix G: Radix-64 Encoding . 350

Appendix H: Quantum Cryptography. 352

Solutions to Odd-Numbered Exercises . 358

Bibliography . 377

About the Author . 413

© 2007 by Taylor & Francis Group, LLC

Preface
The second edition of the original introductory undergraduate text for a

one-semester course in cryptography is redesigned to be more accessible. This
includes the decision to include many items of contemporary interest not con-
tained in the first edition, such as electronic mail and Internet security, and some
leading-edge applications. The former comprises the history of the WWW, PGP,
protocol layers, SSL, firewalls, client-server models, and cookies, all contained
in Chapter 7. The latter encompasses login and network security, viruses and
other computer infections, as well as smart cards and biometrics, making up
the closing Chapter 8 of the main text. In the appendices, we retained the data
on fundamental mathematical facts. However, instead of leading each chapter
with mathematical background to each of the cryptographic concepts, we have
placed all mathematical basics in Chapter 1, and we have placed all crypto-
graphic basics in Chapter 2. In this fashion, all essential background material
is grounded at the outset.

Symmetric and public-key cryptosystems comprise Chapters 3 and 4, re-
spectively, with the addition of the digital signature standard at the end of
Chapter 4, not contained in the first edition. In order to make the presenta-
tion of DES more palatable to the reader, we have included a new discussion of
S-DES (“baby DES”) as a preamble to DES in Chapter 3.

We maintain the coverage of factoring and primality testing in Chapters 5
and 6, respectively. However, we include a wealth of new aspects of “recogniz-
ing” primes in Chapter 5, including the recent discovery of an unconditional
deterministic polynomial-time algorithm for primality testing. Furthermore,
instead of the more advanced number field sieve, which we have excluded in
this edition, we have placed the elliptic curve method in Chapter 6. We have,
nevertheless, excluded the chapter on advanced topics — the more advanced
elliptic curve cryptography, the coverage of zero knowledge — and have placed
quantum cryptography in an appendix but deleted the more advanced expo-
sition on quantum computing. This has reduced the number of entries in the
bibliography because the first edition had a large number of references to those
advanced topics and points to the greater accessibility of this edition. We have
added Pollard’s two algorithms, the p−1 and rho factoring methods in Chapter
6, and lead the chapter with classical factoring methods with more breadth than
the first edition.

Other than Appendix A on mathematical facts, we have included eight other
appendices on computer arithmetic, which was part of Chapter 1 of the first edi-
tion; the Rijndael S-Box, also an appendix in the first edition; knapsack ciphers,
which was part of Chapter 3 of the first edition; the Silver-Pohlig-Hellman Algo-
rithm; the SHA-1 algorithm; and radix-64 encoding, the latter three not included
in the first edition, and quantum cryptography in the concluding Appendix H.

The numbering system has been changed from the global approach in the
first edition to the standard numbering found in most texts. The use of footnotes
has been curtailed in this edition. For instance, the mini-biographies are placed

ix
© 2007 by Taylor & Francis Group, LLC

x An Introduction to Cryptography

in highlighted boxes as sidebars to reduce distraction and impinging on text of
footnote usage. Footnotes are employed only when no other mechanisms will
work. Also, the bibliography contains the page(s) where each entry is cited,
another new inclusion.

A course outline for the second edition would be to cover the Chapters 1–6
and, if time allows, include topics of interest from Chapters 7–8. The instructor
may include or exclude material, depending upon the needs and background of
the students, that is deemed to be more advanced, as flagged by the symbol:
�. Use of the material from the appendices, as needed, is advised.

There are more than 300 exercises in this edition, and there are nearly sixty
mini-biographies, both of which exceed the first edition. (As with the first edi-
tion, the more challenging exercises are marked with the � symbol.) Similarly
the index, consisting of roughly 2,600 entries, surpasses the first edition. As
with the first edition, solutions of the odd-numbered exercises are included at
the end of the text, and a solutions manual for the even-numbered exercises is
available to instructors who adopt the text for a course. As usual, the website
below is designed for the reader to access any updates and the e-mail address
below is available for any comments.

� Acknowledgments The author is grateful for the proofreading done
by the following people, each of whom lent their own valuable time: John
Burke (U.S.A.) Jacek Fabrykowski (U.S.A.) Bart Goddard (U.S.A.) and Thomas
Zaplachinski (Canada) a former student, now cryptographer. Thanks also to
John Callas of PGP corporation for comments on Section 7.2, which helped
update the presentation of PGP.

August 10, 2006
website: http://www.math.ucalgary.ca/˜ramollin/

e-mail: ramollin@math.ucalgary.ca

© 2007 by Taylor & Francis Group, LLC

http://math.ucalgary.ca
mailto:ramollin@math.ucalgary.ca

Chapter 1

Mathematical Basics

In this introductory chapter, we set up the basics for number theoretic con-
cepts in the first seven sections and the basics for complexity in the last section.
This will provide us with the foundations to study the cryptographic notions
later in the book. Indeed, this material, together with Appendices A–B, com-
prise all the requisite background material in number theory and algorithmic
complexity needed throughout the text.

1.1 Divisibility

For background on notation, sets, number systems, and other fundamental
facts, the reader should consult Appendix A.

Definition 1.1 Division

If a, b ∈ Z, b �= 0, then to say that b divides a, denoted by b|a, means that
a = bx for a unique x ∈ Z, denoted by x = a/b. Note that the existence and
uniqueness of x implies that b cannot be 0. We also say that a is divisible by b.
If b does not divide a, then we write b � a and say that a is not divisible by b.
We say that division by zero is undefined.

We may classify integers according to whether they are divisible by 2, as
follows.

Definition 1.2 Parity

If a ∈ Z, and a/2 ∈ Z, then we say that a is an even integer. In other words,
an even integer is one which is divisible by 2. If a/2 �∈ Z, then we say that a is
an odd integer. In other words, an odd integer is one which is not divisible by
2. If two integers are either both even or both odd, then they are said to have
the same parity. Otherwise they are said to have opposite or different parity.

1
© 2007 by Taylor & Francis Group, LLC

2 1. Mathematical Basics

In order to prove our first result, we need a concept that will be valuable
throughout.

Definition 1.3 The Floor Function
If x ∈ R, then there is a unique integer n such that n ≤ x < n + 1. We say

that n is the greatest integer less than or equal to x, sometimes called the floor
of x, denoted by �x� = n.

The reader may test understanding of the floor function by solving Exercises
1.12–1.19 on pages 4–5. Indeed, we will need one of those exercises to establish
the following algorithm, which is of particular importance for divisibility.

Theorem 1.1 The Division Algorithm

If a ∈ N and b ∈ Z, then there exist unique integers q, r ∈ Z with 0 ≤ r < a,
and b = aq + r.

Proof. There are two parts to prove, the first of which is existence, and the
second of which is uniqueness.

Given a ∈ N, b ∈ Z, we may form �b/a� = q ∈ Z. Therefore, b = aq + r with
q, r ∈ Z. If r ≥ a, then b = a�b/a�+ r ≥ a�b/a�+ a > a(b/a− 1) + a = b, where
the last inequality follows from Exercise 1.15 (which says that x−1 < �x� ≤ x).
This is a contradiction, which establishes that r < a.

If r < 0, then b = a�b/a� + r ≤ a(b/a) + r = b + r < b, where the first
inequality follows from Exercise 1.15 again. This contradiction establishes that
0 ≤ r < a. We have shown the existence of the integers q and r as required.
The final step is to show uniqueness.

If b = aqi + ri for i = 1, 2 with 0 ≤ ri < a, then we may subtract the
two equations to get a(q1 − q2) = r2 − r1. Since −a < −r1 < 0 < r2 < a,
r2 − a < r2 − r1 < a− r1. Dividing through the inequality by a, we deduce that
−1 < (r2 − r1)/a < 1. Since (r2 − r1)/a = q1 − q2 ∈ Z, q1 − q2 = 0. In other
words, q1 = q2 from which it follows that r1 = r2. This establishes uniqueness,
and we have the division algorithm. �

Now we look more closely at our terminology. To say that b divides a is
to say that a is a multiple of b and that b is a divisor of a. Also, note that
b dividing a is equivalent to the remainder upon dividing a by b is zero. Any
divisor b �= a of a is called a proper divisor of a. If we have two integers a and
b, then a common divisor of a and b is a natural number n which is a divisor of
both a and b. There is a special kind of common divisor that deserves singular
recognition. Properties of the following are developed in Exercises 1.20–1.30 on
page 5.

Definition 1.4 The Greatest Common Divisor
If a, b ∈ Z are not both zero, then the1.1 greatest common divisor or gcd of

a and b is the natural number g such that g|a, g|b, and g is divisible by any
common divisor of a and b, denoted by g = gcd(a, b).

1.1The word “the” is valid here since g is indeed unique. See Exercise 1.23.

© 2007 by Taylor & Francis Group, LLC

1.1. Divisibility 3

We have a special term for the case where the gcd is 1.

Definition 1.5 Relative Primality

If a, b ∈ Z, and gcd(a, b) = 1, then a and b are said to be relatively prime or
coprime. Sometimes the phrase a is prime to b is also used.

By applying the Division Algorithm, we get the following. The reader should
solve Exercise 1.20 on page 5 first, since we use it in the proof.

Theorem 1.2 The Euclidean Algorithm

Let a, b ∈ Z (a ≥ b > 0), and set a = r−1, b = r0. By repeatedly applying
the Division Algorithm, we get rj−1 = rjqj+1 + rj+1 with 0 < rj+1 < rj for
all 0 ≤ j < n, where n is the least nonnegative number such that rn+1 = 0, in
which case gcd(a, b) = rn.

Biography 1.1 Euclid of Alexandria
(ca. 300 B.C.) is the author of the Ele-
ments. Next to the Bible, the Elements
is the most reproduced book in recorded
history. Little is known about Euclid’s
life, other than that he lived and taught
in Alexandria. However, the folklore is
rich with quotes attributed to Euclid.
For instance, he is purported to have
been a teacher of the ruler Ptolemy I,
who reigned from 306 to 283 B.C. When
Ptolemy asked if there were an easier
way to learn geometry, Euclid ostensi-
bly responded that there is no royal road
to geometry. His nature as a purist
is displayed by another quotation. A
student asked Euclid what use could be
made of geometry, to which Euclid re-
sponded by having the student handed
some coins, saying that the student had
to make gain from what he learns.

Proof. The sequence {ri}, pro-
duced by repeated application of
the division algorithm, is a strictly
decreasing sequence bounded be-
low, and so stops for some nonneg-
ative integer n with rn+1 = 0. By
Exercise 1.20,

gcd(a, b) = gcd(ri, ri+1)

for any i ≥ 0, so in particular,
gcd(a, b) = gcd(rn, rn+1) = rn. �

It is easily seen that any com-
mon divisor of a, b ∈ Z is also a
divisor of an expression of the form
ax + by for x, y ∈ Z. Such an ex-
pression is called a linear combina-
tion of a and b. The greatest com-
mon divisor is a special kind of lin-
ear combination. By Exercise 1.22,
the least positive value of ax + by
for any x, y ∈ Z, is gcd(a, b).

We will also need a concept,
closely related to the gcd, as fol-
lows.

Definition 1.6 The Least Common Multiple

If a, b ∈ Z, then the1.2 smallest natural number which is a multiple of both a
and b is the least common multiple of a and b, denoted by lcm(a, b).

1.2Here the uniqueness of the lcm follows from the uniqueness of the gcd via Exercise 1.36.

© 2007 by Taylor & Francis Group, LLC

4 1. Mathematical Basics

For instance, if a = 22 and b = 14, then gcd(a, b) = 2, and lcm(a, b) = 154.
Properties of the lcm are developed in Exercises 1.31–1.34 and relative prop-

erties of the gcd and lcm are explored in Exercises 1.35–1.36.

Exercises

1.1. Prove that if a, b ∈ Z and ab = 1, then either a = b = 1 or a = b = −1.

1.2. Prove that if a ∈ Z and a|1, then either a = 1 or a = −1.

1.3. Prove that if a, b ∈ Z are nonzero with a|b and b|a, then a = ±b.

1.4. Prove each of the following.

(a) If a, b, c ∈ Z with a �= 0, and a|b, a|c, then a|(bx+cy) for any x, y ∈ Z.

(b) If a|b and b|c, then a|c for a, b, c ∈ Z, (a, b �= 0), called the Transitive
Law for Division.

1.5. Prove that the square of an odd integer bigger than 1 is of the form 8n+1
for some n ∈ N.

1.6. Prove that if a, b ∈ Z with a|b, then an|bn for any n ∈ N.

1.7. Prove that if a, b, c ∈ Z with a, c �= 0, then a|b if and only if ca|cb.
1.8. Prove that if a, b, c, d ∈ Z with a, c �= 0, a|b, and c|d, then ac|bd.

1.9. Find integers x, y such that 3x + 7y = 1.

1.10. Find the gcd of each of the following pairs.
(a) a = 22, b = 55. (b) a = 15, b = 113.

1.11. Find the least common multiple (lcm) of the following pairs.

(a) a = 15, b = 385.

(b) a = 28, b = 577.

(c) a = 73, b = 561.

(d) a = 110, b = 5005.

1.12. There is a function that is a close cousin of the greatest integer function
(see Definition 1.3 on page 2). It is the ceiling defined for all x ∈ R, as that
unique integer m ∈ Z such that x ≤ m < x + 1, denoted by �x�. It is also
called the least integer function. Prove that, if x ∈ R, then −�−x� = �x�.

1.13. With reference to Exercise 1.12, prove each of the following.

(a) For any x ∈ R, �x� = �x� + 1 if and only if x �∈ Z.

(b) �x+1/2� is the nearest integer to x. (When two integers are equally
near each other we choose the larger of the two as the nearest. The
function Ne(x) = �x + 1/2� is the nearest integer function.)

© 2007 by Taylor & Francis Group, LLC

1.1. Divisibility 5

1.14. Prove that, if n, m ∈ N with n ≥ m, then �n/m� is the number of natural
numbers that are less than or equal to n and divisible by m.

1.15. Establish the inequality x − 1 < �x� ≤ x.

1.16. Prove that �x + n� = �x� + n for any n ∈ Z.

1.17. Prove that �x� + �y� ≤ �x + y� ≤ �x� + �y� + 1.

1.18. Establish that �x� + �−x� =
{ 0 if x ∈ Z,

−1 otherwise.

1.19. Prove that, if n ∈ N and x ∈ R, then ��x�/n� = �x/n�.
1.20. Prove that if a, b ∈ Z with b = aq + r, then gcd(a, b) = gcd(a, r).

1.21. Prove that if a, b ∈ Z and c ∈ N, c divides both a and b, and c is divisible
by every common divisor of a and b, then c = gcd(a, b).

1.22. If a, b ∈ Z, g = gcd(a, b), then the least positive value of ax + by for any
x, y ∈ Z is g. (Hint: Use the Well-Ordering Principle cited on page 8.)

1.23. Given a, b ∈ Z, prove that gcd(a, b) is unique.

1.24. Show that for any m ∈ N, mg = gcd(ma,mb).

1.25. If a, b ∈ Z, prove that gcd(a, b) = a if and only if a|b.
1.26. Let a, b, c ∈ Z. Prove that if c|ab and gcd(b, c) = 1, then c|a. (This is

called Euclid’s Lemma.)

1.27. Given a, b ∈ Z, c ∈ N where c is a common divisor of a and b, prove that
gcd(a/c, b/c) = g/c.

1.28. If a, b ∈ Z, and g = gcd(a, b), show that gcd(a/g, b/g) = 1.

1.29. If a, b ∈ Z, prove that for any m ∈ Z, gcd(a, b) = gcd(b, a) = gcd(a, b+am).

1.30. If k, �, n ∈ N with n > 1, prove that gcd(nk − 1, n� − 1) = ngcd(k,�) − 1.�

1.31. Let � = lcm(a, b) for a, b ∈ Z. Prove that � = b if and only if a|b.
1.32. Prove that lcm(a, b) is a divisor of all common multiples of a and b.

1.33. With the same notation as in Exercise 1.31, prove that � ≤ ab.

1.34. If a, b, c ∈ Z and lcm(a, b) = �, show that If c|a and c|b, then
lcm(a/c, b/c) = �/c.

1.35. With the same notation as in Exercise 1.31, prove that if gcd(a, b) = g = 1,
then � = ab.

1.36. Let a, b ∈ N, � = lcm(a, b), and g = gcd(a, b). Prove that �g = ab.

© 2007 by Taylor & Francis Group, LLC

6 1. Mathematical Basics

1.2 Primes, Primality Testing, and Induction

Biography 1.2 The Greeks of
antiquity used the term arithmetic
to mean what we consider today
to be number theory, namely the
study of the properties of the nat-
ural numbers and the relation-
ships between them. They reserved
the word logistics for the study
of ordinary computations using
the standard operations of ad-
dition/subtraction and multiplica-
tion/division, which we call arith-
metic today. The Pythagoreans
(see Biography 1.3 on page 7) in-
troduced the term mathematics,
which to them meant the study of
arithmetic, astronomy, geometry,
and music. These became known
as the quadrivium in the Middle
Ages. See Appendix A for the
Fundamental Laws of Arithmetic.

Two of the features of this text are
the roles played by primality testing and
factoring in cryptography, which we will
study in detail later in Chapters 5 and
6. In this section, we set out the basic
notions behind these important areas, as
well as one of the fundamental tools of
study, the Principle of Mathematical In-
duction.

The definition of a prime number (or
simply a prime) is a natural number big-
ger than 1, that is not divisible by any
natural number except itself and 1. The
first recorded definition of a prime was
given by Euclid around 300 B.C. in his
Elements. However, there is some indi-
rect evidence that the concept of primal-
ity must have been known earlier to Aris-
totle (ca. 384–322 B.C.), for instance,
and probably to Pythagoras (see Biogra-
phy 1.3 on page 7). If n ∈ N and n > 1
is not prime, then n is called composite.

The Factoring Problem is the deter-
mination of the prime factorization of a
given n ∈ N guaranteed by The Funda-
mental Theorem of Arithmetic (see Theorem 1.3 on page 9). This theorem says
that the primes in the factorization of a given natural number n are unique to
n up to order of the factors. Thus, the primes are the fundamental atoms or
multiplicative building blocks of arithmetic as well as its more elevated relative
the higher arithmetic, also known as number theory.

Eratosthenes (ca. 284–204 B.C.) gave us the first notion of a sieve, which was
what he called his method for finding primes. The following example illustrates
the Sieve of Eratosthenes. (In general, we may think of a sieve as any process
whereby we find numbers by searching up to a prescribed bound and eliminating
candidates as we proceed until only the desired solution set remains.)

Example 1.1 Suppose that we want to find all primes less than 30. First, we
write down all natural numbers less than 30 and bigger than 1, and cross out
all numbers (bigger than 2) that are multiples of 2, the smallest prime:

{2, 3, 4/, 5, 6/, 7, 8/, 9, 10//, 11, 12//, 13, 14//, 15, 16//, 17, 18//, 19, 20//, 21, 22//,

23, 24//, 25, 26//, 27, 28//, 29, 30//}.
Next, we cross out all numbers (bigger than 3) that are multiples of 3, the

© 2007 by Taylor & Francis Group, LLC

1.2. Primes, Primality Testing, and Induction 7

next prime: {2, 3, 5, 7, 9/, 11, 13, 15//, 17, 19, 21//, 23, 25, 27//, 29}. Then we cross out
all numbers (bigger than 5) that are multiples of 5, the next prime:1.3

{2, 3, 5, 7, 11, 13, 17, 19, 23, 25//, 29}.
What we have left is the set of primes less than 30.

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29}.

Biography 1.3 Pythagorus lived from
roughly 580 to 500 B.C., although little
is known about his life with any degree
of accuracy. He is not known to have
written any books, but his followers car-
ried on his legacy. The most famous re-
sult bearing his name, although known
to the Babylonians, is the theorem that
says that the square of the hypotenuse
of a right-angled triangle is equal to the
sum of the squares of the other two
sides. Nevertheless, Pythagorus is un-
doubtedly the first to prove this. He is
thought to have traveled to Egypt and
Babylonia and settled in Crotona on
the southeastern coast of Magna Grae-
cia, now Italy, where he founded a se-
cret society that became known as the
Pythagoreans. Their motto, number
rules the universe, reflected the mysti-
cism embraced by Pythagorus, who was
more of a mystic and a prophet than
a scholar. The Pythagoreans’ belief
that everything was based on the natural
numbers was deeply rooted. The degree
of their commitment to this belief is dis-
played by an anecdote about

√
2. Hip-

pasus was a Pythagorean who revealed
to outsiders the secret that

√
2 is ir-

rational. For this indiscretion, he was
drowned by his comrades.

The sieve of Eratosthenes illus-
trated in Example 1.1 clearly works
well, but it is highly inefficient. This
sieve represents the only known algo-
rithm from antiquity that could come
remotely close to what we call primal-
ity testing today. We should agree
upon what we mean by primality test-
ing. A primality test is an algorithm
the steps of which verify the hypoth-
esis of a theorem the conclusion of
which is: “n is prime.” (For now, we
may think loosely of an algorithm as
any methodology following a set of
rules to achieve a goal. More pre-
cisely, later, when we discuss complex-
ity theory, we will need the definition
of an algorithm as a well-defined [see
page 298 in Appendix A] computa-
tional procedure, which takes a vari-
able input and halts with an output.)

Arab scholars helped enlighten the
exit from Europe’s Dark Ages, and
they were primarily responsible for
preserving much of the mathematics
from antiquity, as well as for extend-
ing some of the ideas. For instance,
Eratosthenes did not address the issue
of termination in his algorithm. How-
ever, Ibn al-Banna (ca. 1258–1339)
appears to have been the first to ob-
serve that, in order to find the primes
less than n using the sieve of Eratos-
thenes, one can restrict attention to
prime divisors less than

√
n.

1.3We need not check any primes bigger than 5 since such primes are larger than
√

30. See
the above paragraph for the historical description of this fact.

© 2007 by Taylor & Francis Group, LLC

8 1. Mathematical Basics

The resurrection of mathematical interest in Europe during the thirteenth
century is perhaps best epitomized by the work of Fibonacci.

Biography 1.4 Fibonacci (ca.1180–1250) was known as Leonardo of Pisa, the
son of an Italian merchant named Bonaccio. He had an Arab scholar as his
tutor while his father served as consul in North Africa. Thus, he was well edu-
cated in the mathematics known to the Arabs. Fibonacci’s first and certainly his
best-known book is Liber Abaci or Book of the Abacus first published in 1202,
which was one of the means by which the Hindu-Arabic number system was
transmitted into Europe (see also Biography 1.9 on page 34). However, only
the second edition, published in 1228, has survived. In this work, Fibonacci
gave an algorithm to determine if n is prime by dividing n by natural num-
bers up to

√
n. This represents the first recorded instance of a Deterministic

Algorithm for primality testing, where deterministic means that the algorithm
always terminates with either a yes answer or a no answer. Also included in
his book was the rabbit problem described below.

� The Rabbit Problem

Suppose that a male rabbit and a female rabbit have just been born. Assume
that any given rabbit reaches sexual maturity after one month and that the
gestation period for a rabbit is one month. Furthermore, once a female rabbit
reaches sexual maturity, it will give birth every month to exactly one male and
one female. Assuming that no rabbits die, how many male/female pairs are
there after n months?

The answer is given by the Fibonacci Sequence {Fn}:

F1 = F2 = 1,

Fn = Fn−1 + Fn−2 (n ≥ 3)

where Fn is the nth Fibonacci Number. (A research journal devoted entirely
to the study of such numbers is the Fibonacci Quarterly.) The answer to the
rabbit problem is Fn pairs of rabbits (see Exercise 1.37 on page 15). Later, we
will see the influence of Fibonacci Numbers in the history of primality testing.

Before we turn to the notion of induction, we need the following important
topic.

� The Well-Ordering Principle

Every nonempty subset of N contains a least element.

This proof of the following fundamental result, which is sometimes called
the Unique Factorization Theorem for integers, demonstrates the power of the
Well-Ordering Principle. In advance, the reader should solve Exercise 1.38 on
page 15, which we use in the following proof.

© 2007 by Taylor & Francis Group, LLC

1.2. Primes, Primality Testing, and Induction 9

Theorem 1.3 The Fundamental Theorem of Arithmetic
Let n ∈ N, n > 1. Then n has a factorization into a product of prime powers

(existence). Moreover, if n =
∏r

i=1 pi =
∏s

i=1 qi, where the pi and qi are primes,
then r = s, and the factors are the same if their order is ignored (uniqueness).

Proof. We must first show that every natural number n > 1 can be written
as a product of primes. If there exists a natural number (bigger than 1) that
is not a product of primes, then there exists a smallest such one, by the Well-
Ordering Principle. If n is this number, then n must be composite since any
prime is trivially a product of a set of primes, namely itself. Let n = rs with
1 < r < n and 1 < s < n. Since n is the smallest, r and s are products of
primes. However, n = rs, so n is a product of primes, a contradiction.

Now we establish the uniqueness of such factorizations. Again we use proof
by contradiction to establish it. Let n > 1, and n =

∏r
i=1 pi =

∏s
i=1 qi be the

smallest natural number (bigger than 1) that does not have unique factorization.
Suppose that pi = qj for some i, j, then since the order of the factors does
not matter, we may let p1 = q1. If n = p1, then we are done, so assume
that n > p1. Since 1 < n/p1 < n, n/p1 has unique factorization, and so
n/p1 =

∏r
i=2 pi =

∏s
i=2 qi, with r = s and pi = qi for all i = 1, 2, . . . , r = s.

Since n = p1

∏r
i=2 pi = q1

∏s
i=2 qi, n has unique factorization, a contradiction.

Hence, pi �= qj for all i, j. However, by Exercise 1.38, since p1|
∏s

i=1 qi, then
p1|qj for some j. Therefore, p1 = qj , a contradiction, so we have established
unique factorization. �

For example, 617, 400 = 23 ·32 ·52 ·73. Before leaving the discussion of primes
it is worthy of note that one of the most elegant proofs to remain from antiquity
is Euclid’s proof of the infinitude of primes. Suppose that p1, p2, . . . , pn for
n ∈ N are all of the primes. Then set N =

∏n
j=1 pj . Since N + 1 > pj for any

natural number j ≤ n, then N + 1 must be composite. Hence, pj

∣∣ (N + 1) for
some such j by the Fundamental Theorem of Arithmetic. Since pj

∣∣ N , then
pj

∣∣ N + 1 − N = 1, a contradiction.

Any nonempty set, denoted by S �= ∅, with S ⊆ Z, having a least element
is said to be well-ordered. For instance, N is well-ordered. The Well-Ordering
Principle is sometimes called the Principle of the Least Element.

Later we will show that the Well-Ordering Principle is equivalent to the
following important principle.

� The Principle of Mathematical Induction

Suppose that S ⊆ N. If

(a) 1 ∈ S, and

(b) If n > 1 and n − 1 ∈ S, then n ∈ S,

then S = N.
In other words, the Principle of Mathematical Induction says that any subset

of the natural numbers that contains 1 and can be shown to contain n > 1

© 2007 by Taylor & Francis Group, LLC

10 1. Mathematical Basics

whenever it contains n − 1 must be N. Part (a) is called the induction step,
and the assumption that n ∈ S is called the induction hypothesis. Typically,
one establishes the induction step, then assumes the induction hypothesis and
proves the conclusion, that n ∈ S. Then we simply say that by induction, n ∈ S

for all n ∈ N (so S = N).

Induction, in practice, is illustrated in the following two results.

Theorem 1.4 A Summation Formula

n∑
j=1

j =
n(n + 1)

2
.

Proof. If n = 1, then
∑n

j=1 j = 1 = n(n + 1)/2, and the induction step is
secured. Assume that

n−1∑
j=1

j = (n − 1)n/2,

the induction hypothesis. Now consider

n∑
j=1

j = n +
n−1∑
j=1

j = n + (n − 1)n/2,

by the induction hypothesis. Hence,
n∑

j=1

j = [2n + (n − 1)n]/2 = (n2 + n)/2 = n(n + 1)/2,

as required. Hence, by induction, this must hold for all n ∈ N. �

Theorem 1.5 A Geometric Formula
If a, r ∈ R, r �= 0, 1, n ∈ N, then

n∑
j=0

arj =
a(rn+1 − 1)

r − 1
.

Proof. If n = 1, then
n∑

j=0

arj = a + ar = a(1 + r) = a(1 + r)(r − 1)/(r − 1) = a(r2 − 1)/(r − 1) =

a(rn+1 − 1)/(r − 1),

which is the induction step. By the induction hypothesis, we get,

n+1∑
j=0

arj = arn+1 +
n∑

j=0

arj = arn+1 + a(rn+1 − 1)/(r− 1) = a(rn+2 − 1)/(r− 1),

© 2007 by Taylor & Francis Group, LLC

1.2. Primes, Primality Testing, and Induction 11

as required. �

The sum in Theorem 1.5 is called a geometric sum where a is the initial
term and r is called the ratio.

There is another form of induction given in the following. We will show that
this form is actually equivalent to the first, but this is not obvious at first glance.
Moreover, perhaps even less obvious, both forms of induction will be shown to
be equivalent to the Well-Ordering Principle.

� The Principle of Mathematical Induction (Second Form)

Suppose that S ⊆ Z, and m ∈ Z with

(a) m ∈ S, and

(b) If m < n and {m,m + 1, . . . , n − 1} ⊆ S, then n ∈ S.

Then k ∈ S for all k ∈ Z such that k ≥ m.

An illustration of the use of this form of induction is as follows where we
employ Fibonacci numbers defined on page 8. In what follows,

g =
1 +

√
5

2
,

called the golden ratio. Since we use Exercise 1.39 on page 15 in the following,
the reader should solve it in advance.

Theorem 1.6 Fibonacci Dominates the Golden Ratio
For any n ∈ N, Fn ≥ gn−2.

Proof. We use the Principle of Induction in its second form. We need to
handle n = 1, 2 separately since Fn = Fn−1 + Fn−2 only holds for n ≥ 3. If
n = 1, then

Fn = 1 >
1
g

= g
n−2 =

2
1 +

√
5
.

Also, if n = 2, then F2 = 1 = g0 = gn−2. This establishes the induction
step. Now assume that Fm ≥ gm−2 for all m ∈ N with m ≤ n, the induction
hypothesis. By the induction hypothesis

Fn+1 = Fn + Fn−1 ≥ g
n−2 + g

n−3 = g
n−3(g + 1).

By Exercise 1.39, (g + 1) = g2, so

Fn+1 ≥ g
n−3

g
2 = g

n−1.

By the Principle of Induction (second form) we have proved that this holds for
all n ∈ N. �

Another application of induction is the following more general version of the
Euclidean algorithm (Theorem 1.2 presented on page 3).

© 2007 by Taylor & Francis Group, LLC

12 1. Mathematical Basics

Theorem 1.7 Extended Euclidean Algorithm .

Let a, b ∈ N, and let qi for i = 1, 2, . . . , n + 1 be the quotients obtained from
the application of the Euclidean Algorithm to find g = gcd(a, b), where n is the
least nonnegative integer such that rn+1 = 0. If s−1 = 1, s0 = 0, and

si = si−2 − qn−i+2si−1,

for i = 1, 2, . . . , n + 1, then

g = sn+1a + snb.

Proof. We use induction to prove that the remainders obtained by applica-
tion of the Euclidean algorithm satisfy

rn = sirn−i+1 + si−1rn−i for all i = 0, 1, . . . , n + 1.

If i = 0, then

sirn−i+1 + si−1rn−i = s0rn+1 + s−1rn = rn.

This is the induction step. The induction hypothesis for i > 0 is

rn = sirn−i+1 + si−1rn−i.

Now, by the definition of si+1

rn−isi+1 + sirn−i−1 = rn−i(si−1 − siqn−i+1) + sirn−i−1.

By rearranging, this equals

si(rn−i−1 − rn−iqn−i+1) + si−1rn−i,

and by the Euclidean algorithm, this equals

sirn−i+1 + si−1rn−i,

which is rn by the induction hypothesis. This completes the induction. Thus,
in particular, if i = n + 1, then

g = rn = sn+1r0 + snr−1 = sn+1a + snb.

�

It may seem that this second form of induction is stronger than the first,
but they are equivalent.

Theorem 1.8 Equivalence of the Forms of Induction

The first and second forms of the Principle of Mathematical Induction are
equivalent.

© 2007 by Taylor & Francis Group, LLC

1.2. Primes, Primality Testing, and Induction 13

Proof. The easy part is to show that the second form implies the first form.
Assume the validity of the second form. Suppose that we have a set S ⊆ N such
that 1 ∈ S, and n + 1 ∈ S whenever n ∈ S. In other words, we are assuming the
hypothesis of the first form. We must show that S = N, namely the conclusion
of the first form. Take m = 1 in part 1 of the hypothesis of the second form.
Therefore, part 2 of its hypothesis says that if n ≥ 1 and {1, 2, . . . , n} ⊆ S,
then n + 1 ∈ S. Since we are assuming the validity of the second form, we may
conclude that k ∈ S for all k ∈ Z such that k ≥ 1. In other words, S = N. We
have shown that the validity of the second form implies the validity of the first
form.

Conversely, we now assume the validity of the first form. Suppose that parts
(a)–(b), namely the hypotheses of the second form, hold. Thus,

(a) m ∈ S, and

(b) If m ≤ n and {m,m + 1, . . . , n} ⊆ S, then n + 1 ∈ S.

We must show that k ∈ S for all k ∈ Z such that k ≥ m. To do this,
we make some identifications. Consider the following schematic diagram. We
may think of each element in this schematic as a carrying or a mapping of each
element listed on the left to a single element on the right, namely a function
(see Definition A.6 on page 300).

m �−→ 1

m + 1 �−→ 2
...

k �−→ k − m + 1.

We may call this mapping f , and we say that f maps k to k − m + 1 for any
integer k ≥ m, denoted by

f(k) = k − m + 1.

Also, we write f(S) = T to represent the set T which is identified by f with
the subset of S containing all those integers k ≥ m. We have also symbolically
identified the set

Sk = {m,m + 1, . . . , k} ⊆ S

with the set
Tk−m+1 = {1, 2, . . . , k − m + 1} ⊆ N.

Now we may translate what parts 1 and 2 of the second form of induction say
under this map. If we set N = n−m + 1 for any given n ≥ m, then part 1 says
that 1 = f(m) ∈ T (since m ∈ S). Part 2 says that if {1, 2, . . . , N} ⊆ T, then

f(n + 1) = N + 1 ∈ T

© 2007 by Taylor & Francis Group, LLC

14 1. Mathematical Basics

(since Sn = {m,m+1, . . . , n} ⊆ S implies that n+1 ∈ S). In other words, 1 ∈ T,
and N + 1 ∈ T whenever N ∈ T. Thus, the Principle of Induction (first form)
allows us to conclude that T = N. We have shown that f(S) = T is identified
with N, and we recall that f(S) = T is just that set identified with the subset
of S consisting of all integers k ≥ m, namely f is a bijection between them. In
other words, since T = N, then we have the following schematic:

m ∈ S ←→ 1 ∈ T = N

m + 1 ∈ S ←→ 2 ∈ T = N

...

k ∈ S ←→ k − m + 1 ∈ T = N

for all k ≥ m. Also, since the double arrows represent bijections, then the
elements of S on the left are identified with the elements of T = N on the right.
Hence, via this bijection, k ∈ S for all k ≥ m. We have now demonstrated the
logical equivalence of the two forms of the Principle of Mathematical Induction.�

Remark 1.1 To understand why a seemingly stronger version of induction is
no more powerful than the original version, we must keep in mind the basic
principle behind induction. Once we have a beginning element m, in a set of
integers S, and once we show that n + 1 ∈ S for any given n ∈ S, with n ≥ m,
then all successors of m are in S. It does not matter if we start with m = 1 or
m = −1, 000. The fact remains that the Principle of Mathematical Induction,
in any of its forms (first, second or, via Theorem 1.9 below, the Well-Ordering
Principle) guarantees that all successors are also there.

Now we demonstrate that not only are the forms of induction equivalent but
also they are equivalent to the Well-Ordering Principle.

Theorem 1.9 Equivalence of Induction and Well Ordering

The Well-Ordering Principle is Equivalent to the Principle of Mathematical
Induction.

Proof. Assume that the Principle of Mathematical Induction holds. Let
S �= ∅, and S ⊆ N. Suppose that S has no least element. Then 1 �∈ S, so
2 �∈ S, and similarly 3 �∈ S, and so on, which implies that S = ∅ by induction, a
contradiction.

Conversely, assume the Well-Ordering Principle holds. Also, assume that
1 ∈ S, and that k ∈ S, whenever k − 1 ∈ S. If S �= N, then the Well-Ordering
Principle says that there is a least n ∈ N \ S. Thus, n − 1 ∈ S. However,
by assumption n ∈ S, a contradiction. Therefore, S = N, so the Principle of
Mathematical Induction holds. �

© 2007 by Taylor & Francis Group, LLC

1.2. Primes, Primality Testing, and Induction 15

Exercises

1.37. Prove that the solution to the rabbit problem on page 8 is Fn pairs of
rabbits.

1.38. If p is a prime and p|ab, prove that either p|a or p|b.
1.39. Let g be the golden ratio defined on page 11. Prove that g2 = g + 1.

1.40. Prove that if n ∈ N is composite, then n has a prime divisor p such that
p ≤ √

n.

1.41. Prove that all odd primes are either of the form 4n + 1 or 4n− 1 for some
n ∈ N.

1.42. Prove that if n ∈ N is a product of primes of the form 4m + 1, then n
must also be of that form.

1.43. Let a =
∏r

i=1 p
mi
i , b =

∏r
i=1 p

ni
i for integers mi, ni ≥ 0 and distinct primes

pi with 1 ≤ i ≤ r. Let ti = min{mi, ni} denote the minimum value of mi

and ni.

(a) Prove that gcd(a, b) =
∏r

i=1 p
ti
i .

(b) Prove that a|b if and only if mi ≤ ni (1 ≤ i ≤ r).

1.44. If p is prime and p|an. Prove that pn|an, where a ∈ Z and n ∈ N.

1.45. Suppose that there are no primes p such that p divides both a, b ∈ Z.
Prove that gcd(a, b) = 1.

1.46. For each n ∈ N the sum of the positive divisors of n is denoted by σ(n),
called the sum of divisors function. Prove that for a prime p and k ∈ N,
σ(pk) = (pk +1 − 1)/(p − 1).

1.47. With reference to Exercise 1.46, a number n ∈ N is called almost perfect
if σ(n) = 2n − 1. Prove that all powers of 2 are almost perfect. (It is
unknown if there are other almost perfect numbers.)

1.48. A natural number n is called perfect if it equals the sum of its proper
divisors (see page 2) (namely if σ(n) = 2n in the notation of Exercise
1.46). Prove that if 2n − 1 is prime, then n is prime and 2n−1(2n − 1) is
a perfect number. (See Biography 1.5 on page 16.)

1.49. Calculate σ(n) for each of the following n.
(a) 69. (b) 96.
(c) 100. (d) 64.
(e) 2k for k ∈ N. (f) 10000.

© 2007 by Taylor & Francis Group, LLC

16 1. Mathematical Basics

Biography 1.5 Saint Augustine of Hippo (354–430) is purported to have said
that God created the universe in six days since the perfection of the work is
signified by the perfect number 6, which is the smallest perfect number. Augus-
tine, who was considered to be the greatest Christian philosopher of antiquity,
merged the religion of the new testament with Platonic philosophy. Perfect
numbers were known to the ancient Greeks in Euclid’s time (see Biography 1.1
on page 3), although they knew of only the four smallest ones: 6, 28, 496, and
8128. They also attributed mystical properties to these numbers. Also note that
the moon orbits the earth every 28 days, another perfect number.

1.50. Numbers of the form Mn = 2n − 1 for n ∈ N, are called Mersenne num-
bers — see Biography 1.6. Prove that if Mn is prime, then n is prime.
(Compare with Exercise 1.48.)1.4

1.51. Let g′ = (1 − √
5)/2. Prove that the nth Fibonacci number (defined on

page 8) has an alternative definition in terms of the golden ratio (defined
on page 11), given by

Fn =
1√
5

[
g

n − g
′n]

.

1.52. Prove that the golden ratio has an alternative representation given by

g =

√
1 +

√
1 +

√
1 + · · ·.

(Hint: Use Exercise 1.39.)

Biography 1.6 Marin Mersenne (1588–1648) was born in Paris on September
8, 1588. He studied at the new Jesuit college at La Fleche (1604–1609) and
at the Sorbonne (1609–1611). He joined the mendicant religious order of the
Minims in 1611, and on October 28, 1613, he celebrated his first mass. After
teaching philosophy and theology at Nevers, he returned to Paris in 1619 to
the Minim Convent de l’Annociade near Place Royale where he was elected
Correcteur. This became his home base for the rest of his life. He died on
September 1, 1648, in Paris.

1.53. Let n = pq where p > q are odd primes. Prove that there are exactly two
ordered pairs of natural numbers (x, y) for which n = x2 − y2, namely

(x, y) ∈ {((p + q)/2, (p − q)/2), ((pq + 1)/2, (pq − 1)/2)}.

1.4See http://www.mersenne.org/ for the largest Mersennne prime, which is updated on a
regular basis.

© 2007 by Taylor & Francis Group, LLC

http://www.mersenne.org

1.3. An Intro duction to Congruences 17

1.3 An Introduction to Congruences

We now turn to a concept called congruences, invented by Gauss (see Biog-
raphy 1.7 on page 18). The stage is set by the discussion of divisibility given in
Section 1.1.

Gauss sought a convenient tool for abbreviating the family of expressions
a = b + nk, called an arithmetic progression with modulus n, wherein k varies
over all natural numbers, n ∈ N is fixed, as are a, b ∈ Z. He did this as follows.

Definition 1.7 Congruences

If n ∈ N, then we say that a is congruent to b modulo n if n|(a− b), denoted
by

a ≡ b (mod n).

On the other hand, if n � (a − b), then we write

a �≡ b (mod n)

and say that a and b are incongruent modulo n, or that a is not congruent to
b modulo n. The integer n is the modulus of the congruence. The set of all
integers that are congruent to a given integer m modulo n, denoted by m, is
called the congruence class or residue class of m modulo n. (Note that since the
notation m does not specify the modulus n, then the bar notation will always be
taken in context.)

Example 1.2 (a) Since 3|(82 − 1), 82 ≡ 1 (mod 3).

(b) Since 11|(16 − (−6)), 16 ≡ −6 (mod 11).

(c) Since 7 � (10 − 2), 10 �≡ 2 (mod 7).

(d) For any a, b ∈ Z, a ≡ b (mod 1), since 1|(a − b).

Now we develop results for modular arithmetic, namely an arithmetic for
congruences. The first result shows that congruences are a special kind of rela-
tion, which behaves much like equality.

Proposition 1.1 Let n ∈ N. Then each of the following holds.

(a) For each a ∈ Z, a ≡ a (mod n), called the reflexive property.

(b) For any a, b ∈ Z, if a ≡ b (mod n), then b ≡ a (mod n), called the symmetric
property.

(c) For any a, b, c ∈ Z, if a ≡ b (mod n), and b ≡ c (mod n), then a ≡ c (mod n),
called the transitive property.

Proof. (a) If n ∈ N, then n|0 = a − a, so a ≡ a (mod n), which establishes
the reflexive property.

© 2007 by Taylor & Francis Group, LLC

18 1. Mathematical Basics

Biography 1.7 One of the
greatest mathematicians who
ever lived was Carl Friedrich
Gauss (1777–1855). At the
age of eight, he astonished his
teacher, Büttner, by rapidly
adding the integers from 1 to
100 via the observation that
the fifty pairs (j + 1, 100 − j)
for j = 0, 1, . . . , 49 each sum
to 101 for a total of 5050. At
the age of eleven, Gauss en-
tered a preparatory school for
university called a Gymnasium
in Germany. By the age of
fifteen, Gauss entered Brunswick
Collegium Carolinum funded by
the Duke of Brunswick. In 1795,
Gauss was accepted to Göttingen
University and by the age of
twenty achieved his doctorate.
The reader is referred to [61]
and [62] for a discussion of his
multitudinous achievements.
Gauss was married twice. He
married his first wife, Johanna
Ostoff, on October 9, 1805.
She died in 1809 after giving
birth to their second son. His
second wife was Johanna’s best
friend Minna, whom he married
in 1810. She bore him three
children. Gauss remained a
professor at Göttingen until the
early morning of February 23,
1855, when he died in his sleep.

(b) Let n ∈ N, a, b, c ∈ Z, a ≡ b (mod n),
so a − b = kn for some k ∈ Z. By rewrit-
ing, b − a = (−k)n, implying b ≡ a (mod n),
which establishes the symmetric property.

To prove part (c), we use Definition 1.7.
Since a ≡ b (mod n), and b ≡ c (mod n),
then n

∣∣ (a − b) and n
∣∣ (b − c). Therefore,

n
∣∣ (a − b) + (b − c) = (a − c),

which is to say

a ≡ c (mod n).

�

Remark 1.2 Proposition 1.1 shows that
congruence modulo n is an equivalence rela-
tion, which is defined to be a set R of ordered
pairs on S×S for a given set S satisfying the
reflexive, symmetric, and transitive proper-
ties. Moreover, the set {x : (x, a) ∈ R} is
called the equivalence class containing a. In
the case of congruences, this latter notion co-
incides with that of a congruence class.

The next result tells us that we can per-
form the basic operations of addition, sub-
traction, and multiplication with congru-
ences.

Proposition 1.2 Let n ∈ N and a, b, c, d ∈
Z. If a ≡ b (mod n) and c ≡ d (mod n), then
a+ c ≡ b+d (mod n), a− c ≡ b−d (mod n),
and ac ≡ bd (mod n).

Proof. Since there exist integers k, � ∈ Z
such that a = b + kn and c = d + �n, then
(grouping the ± into a single proof)

a± c = b + kn± (d + �n) = b± d + (k ± �)n,

so
a ± c ≡ b ± d (mod n).

Similarly,
ac ≡ (b + kn)(d + �n) ≡ bd (mod n).

�

The next result tells us how to divide using congruences.

© 2007 by Taylor & Francis Group, LLC

1.3. An Introduction to Congruences 19

Proposition 1.3 If gcd(c, n) = g, then

ac ≡ bc (mod n)

if and only if
a ≡ b (mod n/g).

Proof. If ac − bc = kn for some k ∈ Z, then (a − b)c/g = kn/g. By Exercise
1.28 on page 5, gcd(c/g, n/g) = 1. Therefore, (n/g) divides (a − b), namely

a ≡ b (mod n/g).

Conversely, if a ≡ b (mod n/g), then there exists an integer d ∈ Z such that
a = b + dn/g, so ac = bc + d(c/g)n. Hence, ac ≡ bc (mod n). �

Notice that Proposition 1.3 tells us that we cannot simply divide through
by c if gcd(c, n) = g > 1, since the modulus must be taken into consideration.
Only when g = 1 may we divide through and leave the modulus unchanged.

Some additional properties of congruences are given in the next result.

Proposition 1.4 Let a, b, c ∈ Z, m,n ∈ N, and a ≡ b (mod n). Then each of
the following holds.

(a) am ≡ bm (mod mn).

(b) am ≡ bm (mod n).

(c) If m divides n, then a ≡ b (mod m).

Proof. (a) Given that a ≡ b (mod n), a − b = kn for some integer k. Mul-
tiplying by m, we get (a − b)m = knm, so am − bm = (km)n, namely am ≡ bm
(mod n).

(b) Since n|(a − b), then

n|(a − b)(am−1 + am−2b + · · · + bm) = am − bm.

In other words,
am ≡ bm (mod n).

(c) Since a = b + kn for some k ∈ Z and n = �m for some � ∈ N, then
a = b + k�m, so a − b = (k�)m, whence a ≡ b (mod m). �

Propositions 1.1–1.4 can be employed to establish a modular arithmetic.
First we need another couple of notions.

Gauss used the congruence notation to replace the assertion: a and b are in
the same arithmetic progression with difference a multiple of n by the statement:
a is congruent to b modulo n, denoted by a ≡ b (mod n), which is the content of
Definition 1.7, namely a ≡ b (mod n), if and only if a = b + nk for some k ∈ Z.
Thus, a ≡ b (mod n) if and only if a = b with modulus n. Therefore, it makes
sense to have a canonical representative.

© 2007 by Taylor & Francis Group, LLC

20 1. Mathematical Basics

Definition 1.8 Least Residues

If n ∈ N, a ∈ Z, and a = nq + r where 0 ≤ r < n is the remainder when a
is divided by n, given by Theorem 1.1, the Division Algorithm, then r is called
the least (nonnegative) residue of a modulo n, and the set {0, 1, 2, . . . , n− 1} is
called the set of least nonnegative residues modulo n.

We now show that for all n ∈ N, congruence modulo n partitions the integers
Z into disjoint subsets (see Definition A.4 on page 299). We need to show that
every m ∈ Z is in exactly one residue class modulo n. (Note that Definition 1.8
justifies the use of the term residue class, given in Definition 1.7.) Since m ∈ m,
then m is in some congruence class. We must prove that it is in no more than
one such class.

If m ∈ m1 and m ∈ m2, both m ≡ m1 (mod n) and m ≡ m2 (mod n). Thus,
m1 ≡ m2 (mod n) by Proposition 1.1 (c), so m1 = m2, and we are done.

As well as the above being true, it is also true that for any n ∈ N, and
0 ≤ i ≤ j ≤ n − 1, i ≡ j (mod n) if and only if i = j. To see this, we observe
that j − i = mn for some m ∈ Z by definition, so n

∣∣ (j − i). If j − i > 0, then
n ≤ (j − i). Since j < n and −i ≤ 0, it follows that j − i = j + (−i) < n,
contradicting that n ≤ (j − i). Hence, i = j. We have shown that there are
exactly n congruence classes for each n ∈ N.

Example 1.3 There are four congruence classes modulo 4, namely

0 = {. . . ,−4, 0, 4, . . .},
1 = {. . . ,−3, 1, 5, . . .},
2 = {. . . ,−2, 2, 6, . . .},

and
3 = {. . . ,−1, 3, 7, . . .},

since each element of Z is in exactly one of these sets.

In order to motivate the next notion we let r ∈ Z, n ∈ N, and consider the
set {r, r + 1, . . . , r + n− 1}. If r + i ≡ r + j (mod n) for 0 ≤ i ≤ j ≤ n− 1, then
i ≡ j (mod n), so by the same argument as above i = j. This shows that the
r + j for 0 ≤ j ≤ n − 1 are n distinct congruences classes. Moreover, if m ∈ Z,
then by the argument given after Definition 1.8, m must be in exactly one of the
n congruence classes. In other words, m ≡ r + j (mod n) for some nonnegative
integer j < n. This motivates the following.

Definition 1.9 Complete Residue System

Suppose that n ∈ N is a modulus. A set of integers

T = {r1, r2, . . . , rn}

© 2007 by Taylor & Francis Group, LLC

1.3. An Introduction to Congruences 21

such that every integer is congruent to exactly one element of T modulo n is
called a complete residue system modulo n. In other words, for any a ∈ Z,
there exists a unique ri ∈ T such that a ≡ ri (mod n). The set

{0, 1, . . . , n − 1}
is a complete residue system, called the least residue system modulo n.

For example, T = {−4,−3,−2,−1} is a complete residue system modulo 4.
Also, T = {0, 1, 2, 3} is the least residue system modulo 4. In fact, as proved in
the discussion preceding Definition 1.9, any set of n consecutive integers forms
a complete residue system modulo n. By choosing r = 0 in that discussion, we
get the least residues.

Example 1.4 The least residue system modulo 4 is T = {0, 1, 2, 3}. Suppose
that we want to calculate the addition of 3 and 2 in {0, 1, 2, 3}. First, we must
define what we mean by this addition. Define

a ⊕ b = a + b

where + is the ordinary addition of integers. Since 3 represents all integers of
the form 3 + 4k, k ∈ Z and 2 represents all integers of the form 2 + 4�, � ∈ Z,

3 + 4k + 2 + 4� = 5 + 4(k + �) = 1 + 4(1 + k + �).

Hence, 3 ⊕ 2 = 1 = 3 + 2.
Similarly, we may define

a ⊗ b = a · b,
where · is the ordinary multiplication of integers. The reader may verify that
2 ⊗ 3 = 2 = 2 · 3. Notice as well that since

a − b = a + (−b) = a ⊕−b,

then 2 ⊕−3 = 3 = 2 − 3, for instance.

Example 1.4 illustrates the basic operations of addition and multiplication
in {0, 1, . . . , n − 1} for any n ∈ N, namely

a ⊕ b = a + b and a ⊗ b = a · b,
where ⊕ and ⊗ are well defined since + and · are well defined. Since it would be
cumbersome to use the notations of ⊕, and ⊗ in general, we maintain the usage
of + for ⊕ and · for ⊗,where we will understand that the the result of the given
operation is in the appropriate residue class. The following result formalizes
this for us in general. The reader is encouraged to review the fundamental laws
for arithmetic beginning on page 302, so that we will see that these seemingly
trivial laws have a generalization to the following important scenario.

© 2007 by Taylor & Francis Group, LLC

22 1. Mathematical Basics

Theorem 1.10 Modular Arithmetic

Let n ∈ N and suppose that for any x ∈ Z, x denotes the congruence class
of x modulo n. Then for any a, b, c ∈ Z the following hold.

(a) a ± b = a ± b. (Modular additive closure)

(b) ab = ab. (Modular multiplicative closure)

(c) a + b = b + a. (Commutativity of modular addition)

(d) (a + b) + c = a + (b + c). (Associativity of modular addition)

(e) 0 + a = a + 0 = a. (Additive modular identity)

(f) a + −a = −a + a = −a + a = 0. (Additive modular inverse)

(g) ab = ba. (Commutativity of modular multiplication)

(h) (ab)c = a(bc). (Associativity of modular multiplication)

(i) 1a = a1 = a. (Multiplicative modular identity)

(j) a(b + c) = ab + a · c. (Modular Distributivity)

Proof. Part (a) is a consequence of Proposition 1.2, and part (b) is a conse-
quence of Proposition 1.4 part (a). Part (c) can be established using part (a)
which we just proved since

a + b = a + b = b + a = b + a.

In other words, the commutativity property is inherited from the integers Z.
Part (d) also follows from part (a) since

(a + b) + c = a + b + c = a + b + c = a + (b + c) = a + (b + c).

Part (e) is a consequence of parts (c) and (a) since

0 + a = a + 0 = a + 0 = a,

where the first equality holds by part (c) and the second equality holds by part
(a). The first equality of part (f) follows from parts (a) and (c) in exactly the
same fashion, whereas the second part follows from part (b). Part (g) follows
from the ordinary commutativity of multiplication of integers and part (b), since

ab = ab = ba = ba.

Part (h) may now be deduced from part (b) and ordinary associativity of the
integers since

(ab)c = (ab)c = (ab)c = a(bc) = a(bc) = a(bc).

© 2007 by Taylor & Francis Group, LLC

1.3. An Introduction to Congruences 23

Part (i) is a simple consequence of parts (b), (g), and the multiplicative identity
of the integers since

1a = 1 · a = a · 1 = a.

Lastly, part (j) is a consequence of parts (a), (b), and the ordinary distributivity
of multiplication over addition given that

a(b + c) = a(b + c) = a(b + c) = ab + ac = ab + ac = ab + a · c.

�

Parts (a)–(b) of Theorem 1.10 tell us that the bar operation is well defined
under addition and multiplication. The remaining properties of this theorem
tell us that there is an underlying structure. Any set that satisfies the (named)
properties (a)–(j) of Theorem 1.10 is called a commutative ring with identity.
Now we look at a specific such ring that has important consequences.

Definition 1.10 The Ring Z/nZ

For n ∈ N, the set

Z/nZ = {0, 1, 2, . . . , n − 1}

is called the Ring of Integers Modulo n, where m denotes the congruence class
of m modulo n. (Occasionally, when the context is clear and no confusion can
arise when talking about elements of Z/nZ, we will eliminate the overline bars.)

Notice that since {0, . . . , n − 1} is the least residue system modulo n, then
every z ∈ Z has a representative in the ring of integers modulo n, namely
an element j ∈ {0, . . . , n − 1} such that z ≡ j (mod n). The ring Z/nZ will
play an important role in the cryptographic applications that we study later
in the text. There are other structures hidden within the properties listed in
Theorem 1.10 that are worth mentioning, since we will also encounter them
in our cryptographic travels. Any set satisfying the properties (a), (d)–(f) is
called an additive group, and if additionally it satisfies (c), then it is called an
additive abelian group. A fortiori, Z/nZ is an additive abelian group as is Z.
Any set satisfying (a)–(f), (h) and (j) is called a ring , and if in addition it
satisfies (g), then it is a commutative ring. As we have seen, any set satisfying
all of the conditions (a)–(j) is a commutative ring with identity. In general, we
would use symbols other than the bar operation and possibly binary symbols
other than the multiplication and addition symbols, but the listed properties
in Theorem 1.10 would remain essentially the same for the algebraic structures
defined above.

There is a multiplicative property of Z that Z/nZ does not have. On page
303, the Cancellation Law for Z is listed. This is not the case for Z/nZ in
general. For instance, 2 ·3 ≡ 2 ·8 (mod 10), but 3 �≡ 8 (mod 10). In other words,
2 · 3 = 2 · 8 in Z/10Z, but 3 �= 8 in Z/10Z. We may ask for conditions on n

© 2007 by Taylor & Francis Group, LLC

24 1. Mathematical Basics

under which a modular law for cancellation would hold. In other words, for
which n ∈ N does it hold that:

for any a, b, c ∈ Z/nZ with a �= 0, ab = ac if and only if b = c? (1.1)

By Proposition 1.3, (1.1) cannot hold if gcd(a, n) > 1. When gcd(a, n) = 1,
there is a solution x ∈ Z to ax ≡ 1 (mod n) (see Exercise 1.64 on page 32). This
motivates the following.

Definition 1.11 Modular Multiplicative Inverses

Suppose that a ∈ Z, and n ∈ N. A multiplicative inverse of the integer a
modulo n is an integer x such that ax ≡ 1 (mod n). If x is the least positive
such inverse, then we call it the least multiplicative inverse of the integer a
modulo n, denoted by x = a−1.

In the illustration of the Egg Basket problem on page 30, the linear con-
gruences all have coefficient 1 for x. However, by using modular multiplicative
inverses, we can solve more general systems of linear congruences.

Example 1.5 Suppose that we wish to solve the system of linear congruences

2x ≡ 1 (mod 3), 3x ≡ 1 (mod 5), and 3x ≡ 2 (mod 7).

Since 2−1 ≡ 2 (mod 3), 3−1 ≡ 2 (mod 5), and 3−1 ≡ 5 (mod 7), then the system
of congruences becomes

x ≡ 2 (mod 3), x ≡ 2 (mod 5), and x ≡ 3 (mod 7),

for which x = 17 is clearly seen to be the least nonnegative solution modulo
105.

Example 1.6 Consider n = 11 and a = −3, and suppose that we want to find
the least multiplicative inverse of a modulo n. Since −3 ·7 ≡ 1 (mod 11) and no
smaller natural number than 7 satisfies this congruence, then a−1 = 7 modulo
11.

Example 1.7 If n = 22 and a = 6, then no multiplicative inverse of a modulo
n exists since gcd(a, n) = 2. Asking for a multiplicative inverse of such a value a
modulo n is similar to asking for division by 0 with ordinary division of integers.
In other words, this is undefined.

Since any composite n has a prime p < n dividing it, then this means that
(1.1) holds for all a ∈ Z/nZ, a �= 0, if and only if n is prime. Another way of
stating this is as follows. Every nonzero z ∈ Z/nZ has a multiplicative inverse
if and only if n is prime.

If the existence of multiplicative inverses is satisfied for any given element
along with (b), (h)–(i) of Theorem 1.10 for a given set, then that set is called a

© 2007 by Taylor & Francis Group, LLC

1.3. An Introduction to Congruences 25

multiplicative group. In addition, if the set satisfies (g) of Theorem 1.10, then
it is called an abelian multiplicative group. Hence, (Z/nZ)∗ is a multiplicative
abelian group if and only if n is prime. Notice that Z is not a multiplicative
group since any nonzero a ∈ Z with a �= ±1 has no multiplicative inverse.

There is one property that is held by Z that is of particular importance
to the ring Z/nZ. There are mathematical structures S that have what are
called zero divisors. These are elements s, t ∈ S such that both s and t are
nonzero, yet st = 0. For instance, in the ring Z/6Z, 2 · 3 = 0, so this ring has
zero divisors. The integers Z have no zero divisors. What is the situation for
Z/nZ with respect to zero divisors? If n is composite, then there are natural
numbers n > n1 > 1 and n > n2 > 1 such that n = n1n2. Hence, n1n2 = 0 in
Z/nZ. Therefore, Z/nZ has no zero divisors if and only if n is prime. Any set
that satisfies all the conditions (a)–(j) of Theorem 1.10 together with having no
zero divisors and having multiplicative inverses for all of its nonzero elements is
called a field. Hence, we have established the following.

Theorem 1.11 The Field Z/pZ

If n ∈ N, then Z/nZ is a field if and only if n is prime.

In Theorem A.7 on page 313, we employed the notation F ∗ to denote the
multiplicative group of nonzero elements of a given field F . In particular, when
we have a finite field Z/pZ = Fp of p elements for a given prime p, then

(Z/pZ)∗ denotes the multiplicative group of nonzero elements of Fp.

This is tantamount to saying that (Z/pZ)∗ is the group of units in Fp, and
(Z/pZ)∗ is cyclic by Theorem A.7. Thus, this notation and notion may be
generalized as follows. Let n ∈ N and let the group of units of Z/nZ be denoted
by (Z/nZ)∗. Then

(Z/nZ)∗ = {a ∈ Z/nZ : 0 ≤ a < n and gcd(a, n) = 1}. (1.2)

The structure of (Z/nZ)∗ is going to be of vital importance as we move through
the text. Moreover, we will be interested only in finite groups, rings and fields,
except for the obvious infinite cases such as Z and Q.

Now we go on to look at some of the consequences of this notion of modular
division, which is implicit in the above. Definition 1.11 gives us the means to do
modular division since multiplication by a−1 is equivalent to division in Z/nZ.

A classic example in the use of multiplicative inverses is the following.

� The Coconut Problem

Three sailors and a monkey are shipwrecked on an island. The sailors pick
n coconuts as a food supply and place them in a pile. During the night, one of
the sailors wakes up and goes to the pile to get his fair share. He divides the
pile into three, and there is a coconut left over, which he gives to the monkey.

© 2007 by Taylor & Francis Group, LLC

26 1. Mathematical Basics

He then hides his third and goes back to sleep. Each of the other two sailors
does the exact same thing, by dividing the remaining pile into three, giving the
leftover coconut to the monkey and hiding his third. In the morning, the sailors
divide the remaining pile into three and give the monkey its fourth coconut.
What is the minimum number of coconuts that could have been in the original
pile?

We begin by observing that the first sailor began with a pile n ≡ 1 (mod 3)
coconuts. The second sailor began with a pile of

m1 =
2(n − 1)

3
≡ 1 (mod 3)

coconuts, and the third sailor began with a pile of

m2 =
2(m1 − 1)

3
≡ 1 (mod 3)

coconuts, after which the three of them divided up the remaining pile of

m3 =
2(m2 − 1)

3
≡ 1 (mod 3)

coconuts. We calculate m3 and get

m3 =
8
27

n − 38
27

≡ 1 (mod 3).

We now solve for n by multiplying through both sides and the modulus by 27,
then simplifying to get 8n ≡ 65 (mod 81). (Note that each of n, m1, m2, and
m3 must be natural numbers.) Since the multiplicative inverse of 8 modulo 81
is 71, namely 8−1 ≡ 71 (mod 81), then n ≡ 8−1 · 65 ≡ 71 · 65 ≡ 79 (mod 81),
and the smallest solution is 79.

The reader may now solve Exercise 1.101 on page 43 for another version of
the coconut problem.

Theorem 1.12 Chinese Remainder Theorem
Let ni ∈ N for natural numbers i ≤ k ∈ N be pairwise relatively prime, set

n =
k∏

j=1

nj

and let ri ∈ Z for i ≤ k. Then the system of k simultaneous linear congruences
given by

x ≡ r1 (mod n1),

x ≡ r2 (mod n2),

...

x ≡ rk (mod nk),

has a unique solution modulo n.

© 2007 by Taylor & Francis Group, LLC

1.3. An Introduction to Congruences 27

Proof. If Nj = n/nj (1 ≤ j ≤ k), then gcd(Nj , nj) = 1. Also, by Definition
1.11 on page 24, there is a multiplicative inverse Mj of Nj modulo nj . Therefore,

MjNj ≡ 1 (mod nj).

Hence for any m ≤ k,

x ≡
k∑

j=1

rjMjNj ≡ rm (mod nm),

which means that x is a solution of the system of linear congruences modulo
n. Furthermore, if x1 and x2 are solutions of this system, then for each j ≤ k,
x1 ≡ x2 ≡ rj (mod nj), so nj |(x1−x2) and since gcd(ni, nj) = 1, n|(x1−x2). In
other words, x1 ≡ x2 (mod n). Therefore, the simultaneous solution is unique
modulo n. �

Example 1.8 In the example given by Sun Tsŭ, Example 1.5, we set n =
n1n2n3 = 105 with n1 = 3, n2 = 5, and n3 = 7. Also, let r1 = 2, r2 = 2, and
r3 = 3. Then the least multiplicative inverse of N1 = n/n1 = 35 modulo n1 = 3
is M1 = 2. The least multiplicative inverse of N2 = n/n2 = 21 modulo n2 = 5 is
M2 = 1, and the least multiplicative inverse of N3 = n/n3 = 15 modulo n3 = 7
is M3 = 1. Hence,

x =
3∑

j=1

rjMjNj = 2 · 2 · 35 + 2 · 1 · 21 + 3 · 1 · 15 = 227,

as calculated by Sun Tsŭ. By reducing x = 227 modulo n = 105, we get x0 = 17,
as in Example 1.5, the unique solution modulo n.

One may wonder about the situation where the moduli are not relatively
prime. In 717 A.D. a priest named Yih-hing generalized Theorem 1.12 in his
book t’ai-yen-lei-schu as follows. The reader should solve Exercises 1.22 on
page 5 and 1.75 on page 33, which are used in the following proof.

Theorem 1.13 Generalized Chinese Remainder Theorem

Let nj ∈ N, set � = lcm(n1, n2, . . . , nk), and let rj ∈ Z be any integers for
j = 1, 2, . . . , k. Then the system of k simultaneous linear congruences given by

x ≡ r1 (mod n1),

x ≡ r2 (mod n2),

...

x ≡ rk (mod nk),

© 2007 by Taylor & Francis Group, LLC

28 1. Mathematical Basics

has a solution if and only if

gcd(ni, nj)
∣∣ (ri − rj) for each pair of natural number i, j ≤ k.

Moreover, if a solution exists, then it is unique modulo �. Additionally, if there
exist integer divisors mj ≥ 1 of nj with � = m1 ·m2 · · ·mk such that the mj are
pairwise relatively prime, and there exist integers

sj ≡ 0 (mod �/mj) and sj ≡ 1 (mod mj) for 1 ≤ j ≤ k,

then

x =
k∑

j=1

sjrj

is a solution of the above congruence system.

Proof. In view of Exercise 1.75, and induction, we need only prove the result
for k = 2. If x ≡ rj (mod nj), for j = 1, 2, then x = rj + ujnj (j = 1, 2).
Therefore,

r1 − r2 = u2n2 − u1n1.

Thus, if g = gcd(n1, n2), then

r1 − r2 = g(u2n2/g − u1n1/g).

We have shown that if a solution exists, then g
∣∣ (r1 − r2). Conversely if

g
∣∣ (r1 − r2), then there is an integer z such that r1 = r2 + gz. Also, by Exercise

1.22, there are a, b ∈ Z such that g = an1 + bn2. Thus,

r1 = r2 + z(an1 + bn2) = r2 + zan1 + zbn2.

If we set
x = r1 − zan1 = r2 + zbn2,

then
rj ≡ x (mod nj) for j = 1, 2.

This establishes the necessary and sufficient condition for existence. We now
establish uniqueness.

Suppose that

x ≡ rj (mod nj) and y ≡ rj (mod nj) for 1 ≤ j ≤ k.

Then x − y ≡ 0 (mod nj) for each such j. This means that �
∣∣ (x − y). Hence,

any solution x is unique modulo �.
The last statement of the theorem is clear since if such mj and sj exist, then

x =
k∑

j=1

sjrj ≡ rj (mod mj) for 1 ≤ j ≤ k

© 2007 by Taylor & Francis Group, LLC

1.3. An Intro duction to Congruences 29

has a unique solution modulo � by the Chinese Remainder Theorem 1.12, and
the proof is secured. �

Yin-hing designed Theorem 1.13 to solve the following problem.

� The Units of Work Problem

Determine the number of completed units of work when the same number x
of units to be performed by each of four sets of 2, 3, 6, and 12 workers performing
their duties for certain numbers of whole days such that there remain 1, 2, 5, and
5 units of work not completed by the respective sets. We assume further that
no set of workers is lazy, namely each completes a nonzero number of units of
work.

Here we are looking to solve

x ≡ 1 (mod 2), x ≡ 2 (mod 3), x ≡ 5 (mod 6), and x ≡ 5 (mod 12).

Since � = lcm(2, 3, 6, 12) = 12, then we let

m1 = m2 = 1, m3 = 3, and m4 = 4.

Thus, s1 = s2 = 0 since m1 = m2 = 1. Also, s3 = 4 since s3 ≡ 0 (mod 4) and
s3 ≡ 1 (mod 3); and s4 = 9, since s4 ≡ 0 (mod 3) and s4 ≡ 1 (mod 4). Since
(r1, r2, r3, r4) = (1, 2, 5, 5), then x =

∑4
j =1 rjsj = 5·4+5·9 = 65 ≡ 17 (mod 12).

Biography 1.8 Brahmagupta was
considered to be the greatest of the
Hindu mathematicians. In 628 he
wrote his masterpiece on astronomy
Brahma-sphuta-siddhanta or The re-
vised system of Brahma, which had
two chapters devoted to mathematics.
He is also credited with first studying
the equation x2 − py

2 = 1 for a
prime p. The Arab mathematician
al-Khowarizmi based some of his work
on the Arabic translation of Brah-
magupta’s work (see Biography 1.9 on
page 34).

Note that we cannot choose x = 5
since this would mean that no units
of work had been completed by the
last two sets of workers. For x = 17,
the completed units of work must be
8 · 2 = 16 for the first set since they
do not complete one unit, 5 · 3 = 15
for the second set since they do not
complete two units, 2 · 6 = 12 for the
third set since they do not complete
five units, and 1·12 = 12 for the fourth
set for the same reason. Hence, the
total completed units of work is 55,
and Yin-hing’s problem is solved.

Another classic illustration of The-
orem 1.13 is the following, which
is due to the Hindu mathematician
Brahmagupta.

� The Egg Basket Problem

Suppose that a basket has n eggs in it. If the eggs are taken from the
basket 2, 3, 4, 5, and 6 at a time, there remain 1, 2, 3, 4, and 5 eggs in the basket,
respectively. If the eggs are removed from the basket 7 at a time, then no eggs

© 2007 by Taylor & Francis Group, LLC

30 1. Mathematical Basics

remain in the basket. What is the smallest value of n such that the above could
occur?

Essentially, this problem asks for a value of x such that

x ≡ j = rj (mod j + 1) for j = 1, 2, 3, 4, 5 and x ≡ 0 (mod 7).

Since � = lcm(2, 3, 4, 5, 6, 7) = 420, then we may choose

m1 = 1,m2 = 3,m3 = 4,m4 = 5,m5 = 1, and m6 = 7.

Thus, s1 = s5 = 0, since m1 = m5 = 1. Also,

s2 = 280 since s2 ≡ 0 (mod 140) and s2 ≡ 1 (mod 3).

Similarly, we calculate that

s3 = 105 since s3 ≡ 0 (mod 105) and s3 ≡ 1 (mod 4).

and
s4 = 336 since s4 ≡ 0 (mod 84) and s4 ≡ 1 (mod 5).

We need not calculate s6 since r6 = 0 given that x ≡ 0 (mod 7). Hence, by
Theorem 1.13,

x0 =
6∑

j=1

rjsj = 2 · 280 + 3 · 105 + 4 · 336 = 2219.

To get the smallest value modulo �, we reduce 2219 modulo 420 to get

2219 − 420�2219/420� = 2219 − 420 · 5 = 119,

which is the solution to Brahmagupta’s Problem.

The reader may now go to Exercises 1.64–1.66 to test understanding of the
solutions of systems of linear congruences.

The next aspect of modular arithmetic that we will need later in the text
is called modular exponentiation. For b, r ∈ N, this involves the finding of a
least nonnegative residue of br modulo a given n ∈ N, especially when the given
natural numbers r and n are large. There is an algorithm for doing this that is
far more efficient than repeated multiplication of b by itself.

© 2007 by Taylor & Francis Group, LLC

1.3. An Introduction to Congruences 31

The Repeated Squaring Method

Given d, n ∈ N, d > 1, x ∈ Z, and

d =
k∑

j=0

dj2j , dj ∈ {0, 1},

the goal is to find xd (mod n).
First, we initialize by setting c0 = x if d0 = 1 and set c0 = 1 if d0 = 0. Also,
set x0 = x, j = 1, and execute the following steps:

(1) Compute xj ≡ x2
j−1 (mod n).

(2) If dj = 1, set cj = xj · cj−1 (mod n).

(3) If dj = 0, then set cj ≡ cj−1 (mod n).

(4) Reset j to j + 1. If j = k + 1, output

ck ≡ xd (mod n),

and terminate the algorithm. Otherwise, go to step (1).

The above algorithm will be valuable in Section 6.5 where we look at the el-
liptic curve factoring method, for instance, as well as in other areas. The reader
may conclude this section by looking at Exercise 1.83 on page 34, which is a
practical application of the repeated squaring method for modular exponentia-
tion.

Exercises

1.54. Prove that if a ∈ Z is odd, then a2 ≡ 1 (mod 8).

1.55. Prove that if a ∈ Z is even, then a2 ≡ 0 (mod 4).

In Exercises 1.56–1.62, find the unique solution for each modulus in the given
systems of linear congruences.

1.56. x ≡ 2 (mod 3), x ≡ 3 (mod 5), x ≡ 1 (mod 11).

1.57. x ≡ 1 (mod 7), x ≡ 2 (mod 13), x ≡ 3 (mod 17).

1.58. x ≡ 1 (mod 3), x ≡ 7 (mod 7), x ≡ 1 (mod 10).

1.59. x ≡ 1 (mod 3), x ≡ 5 (mod 19), x ≡ 1 (mod 7).

1.60. x ≡ 2 (mod 3), x ≡ 2 (mod 5), x ≡ 3 (mod 7), x ≡ 4 (mod 11).

© 2007 by Taylor & Francis Group, LLC

32 1. Mathematical Basics

1.61. x ≡ 1 (mod 13), x ≡ 2 (mod 17), x ≡ 3 (mod 19), x ≡ 4 (mod 23).

1.62. x ≡ 5 (mod 29), x ≡ 4 (mod 31), x ≡ 3 (mod 37), x ≡ 2 (mod 41), x ≡ 1
(mod 43).

1.63. Let a ∈ Z and n ∈ N. Exactly one of the following holds. Prove it and
provide counterexamples for the other two.

(a) If a ≡ ±1 (mod p) for all primes p dividing n, then a2 ≡ 1 (mod n).
(b) If a2 ≡ 1 (mod n), then a ≡ ±1 (mod p) for all primes p dividing n.
(c) The congruence a ≡ ±1 (mod p) for all primes p dividing n holds if

and only if a2 ≡ 1 (mod n).

1.64. Let a, b ∈ Z, n ∈ N. Prove that ax ≡ b (mod n) has a solution if and only
if gcd(a, n)

∣∣ b.

(Hint: Use Theorem 1.7 on page 12.)

1.65. With reference to Exercise 1.64, let g = gcd(a, n), and suppose that x = x0

is a solution of ax ≡ b (mod n). Prove that a given y ∈ Z is a solution of
ay ≡ b (mod n) if and only if x0 ≡ y (mod n/g).

1.66. If x is a solution to ax ≡ b (mod n), show that exactly one solution x0 of
the congruence is in the least residue system modulo n/g, and that x0 is
the unique solution modulo n/g of that congruence.

(Exercises 1.64–1.66 provide necessary and sufficient conditions for the
existence of solutions to congruences ax ≡ b (mod n), called linear con-
gruences.)

1.67. Find all n ∈ N for which the following congruences hold.
(a) 25 ≡ 2 (mod n). (b) −1 ≡ 5 (mod n).
(c) 1 ≡ −7 (mod n). (d) 10 ≡ 6 (mod n).

1.68. Prove that if a, b ∈ Z, n ∈ N and a ≡ b (mod n), then gcd(a, n) = gcd(b, n).

1.69. Prove that if a, b ∈ Z, n, m ∈ N, and m|n with a ≡ b (mod n/m), then
there exists a nonnegative integer j ≤ m such that

a ≡ b + (m − j)n/m (mod n).

1.70. Prove that for all n ∈ N, T = {0, 1, . . . , n − 1} is a complete residue system
modulo n. Furthermore, prove that any set of n consecutive integers
determines a complete residue system modulo n.

1.71. Let T = {r1, . . . , rn} be a complete residue system modulo n ∈ N.

(a) Suppose a ∈ N with gcd(a, n) = 1. Prove that for any b ∈ Z,

{ar1 + b, . . . , arn + b}
is a complete residue system modulo n.

© 2007 by Taylor & Francis Group, LLC

1.3. An Introduction to Congruences 33

(b) If S = {s1, . . . , sm} is a complete residue system modulo m ∈ N,
prove that if gcd(m,n) = 1, then {mri + nsj : ri ∈ T, sj ∈ S} forms
a complete residue system modulo mn.

1.72. Prove that there exist arbitrarily long blocks of consecutive natural num-
bers, no one of which is squarefree. (For n to be squarefree means that
there is no prime p such that p2 divides n. Thus, in particular, 1 is square-
free.)

(Hint: Use the Chinese Remainder Theorem.)

1.73. Given two relatively prime integers x1 and x2, and any two arbitrary
integers y1 and y2, prove that there exists an integer z such that dividing
z by x1 and x2, we obtain the remainders y1 and y2, respectively.

(Hint: Use the Chinese Remainder Theorem. This result is a reason that
it is called a remainder theorem.)

1.74. Prove that each natural number n can be uniquely represented in the form
n = m2� where m, � ∈ N and � is squarefree. (See Exercise 1.72.)

1.75. If a, b, ni ∈ N for i = 1, 2, . . . , k, and � = lcm(n1, n2, . . . , nk), prove that
a ≡ b (mod nj) for each i if and only if a ≡ b (mod �).

1.76. A prime p is called a Wilson prime if (p−1)! ≡ −1 (mod p2) (see Biography
1.10). Find all Wilson primes less than 564.

(Other than the ones that the reader will find in the solution to this ex-
ercise, there are no other known ones less than 5 · 108. See [20]. It is
conjectured that there are infinitely many Wilson primes.)

1.77. Find all incongruent solutions modulo the given modulus in each of the
following.
(a) 5x ≡ 1 (mod 9). (b) 4x ≡ 5 (mod 27).
(c) 10x ≡ 3 (mod 11). (d) −x ≡ 9 (mod 49).
(e) 3x ≡ 17 (mod 103). (f) 103x ≡ 3 (mod 211).

1.78. (a) Find x, y ∈ Z such that 19x + 31y = 1.

(b) Find 19−1 (mod 31).

1.79. If a ∈ Z and p is prime, prove that a is its own multiplicative inverse
modulo p if and only if a ≡ 1 (mod p) or a ≡ −1 (mod p).

(In the above case a is said to be a self-multiplicative inverse.)

1.80. Prove that
∑n−1

j=1 j3 ≡ 0 (mod n) for n ∈ N if and only if n �≡ 2 (mod 4).

1.81. Let a−1 be the inverse of the integer a modulo n ∈ N, and let b−1 be the
inverse of the integer b modulo n. Prove that a−1b−1 is the inverse of ab
modulo n.

© 2007 by Taylor & Francis Group, LLC

34 1. Mathematical Basics

1.82. Let b ∈ N and let m be the product of all natural numbers less than b and
relatively prime to b (for instance if b is prime, then m = (b − 1)!). Prove
that if b is one of the forms 4, pt, or 2pt, where t ∈ N and p > 2 is prime,
then m ≡ −1 (mod b). (Hint: Use Exercise 1.79.)

1.83. Use the repeated squaring method on page 31 to find the least nonnegative
residue of 361 modulo 101.

1.84. For given pairwise relatively prime natural numbers n1, n2, . . . , n�, prove�
that

Z/nZ ∼= Z/n1Z ⊕ · · · ⊕ Z/n�Z,

where n = n1 · n2 · · ·n�.

(See Appendix A for a discussion of the abstract algebra needed for this
exercise. This exercise is a restatement of the Chinese Remainder Theorem
1.12, which may be used to prove this result.)

Biography 1.9 Mohammed ibn Musa al-Khowarizmi was an Arab scholar to
whom we owe the introduction of the Hindu-Arabic number system. In around
825 A.D. he completed a book on arithmetic, which was later translated into
Latin in the twelfth century under the title Algorithmi de numero Indorum.
This book is one of the best-known means by which the Hindu-Arabic number
system was introduced to Europe after being introduced into the Arab world
(also see Biography 1.4 on page 8). This may account for the widespread,
although mistaken, belief that our numerals are Arabic in origin. Not long
after Latin translations of his book began appearing in Europe, readers began to
attribute the new numerals to al-Khowarizmi and began contracting his name,
concerning the use of these numerals, to algorism, and ultimately to algorithm.
Also, al-Khowarizmi wrote a book on algebra, Hisab al-jabr wa’lmuqābala. The
word algebra is derived from al-jabr or restoration. In the Spanish work Don
Quixote, which came much later, the term algebrist is used for a bone-setter or
restorer. Al-Khowarizmi lived during the caliphate of al-Mamun (809–833 A.D.)
who had a vision in which he was visited by Aristotle. After this encounter he
was driven to have the Greek classics translated into Arabic. Among them were
Ptolemy’s Almagest and the complete volumes of Euclid’s Elements.

Biography 1.10 John Wilson was born on August 6, 1741, in Applethwaite,
Westmoreland, England. On July 7, 1764, he was elected as a Fellow of Peter-
house, Cambridge, where he studied. On March 13, 1782, he was elected Fellow
of the Royal Society, and was appointed king’s counsel on April 24 of that year.
The latter was part of his legal career, which he began on January 22, 1763.
On November 15, 1786, he was knighted for his numerous accomplishments.
Wilson married Mary Ann Adair on April 7, 1788, and the marriage produced
a son and two daughters. However, he died only five years later, on October
18, 1793, in Kendal, Westmoreland, where grew up.

© 2007 by Taylor & Francis Group, LLC

1.4. Euler, Fermat, and Wilson 35

1.4 Euler, Fermat, and Wilson

The following famous result was conjectured by John Wilson (see Biography
1.10 on page 34) on the basis of some heuristic evidence. See Exercise 1.76 on
page 33 for Wilson’s other claim to fame. The reader, in advance of reading the
next result, should solve Exercise 1.79 on page 33, which is used in the proof.

Theorem 1.14 Wilson’s Theorem
If p is a prime, then

(p − 1)! ≡ −1 (mod p).

Biography 1.11 The Swiss mathemati-
cian Leonard Euler (1707–1783) studied
under Jean Bernoulli (1667–1748). Eu-
ler was extremely prolific. He published
over five hundred papers during his life-
time, and another three hundred and fifty
have appeared posthumously. It took al-
most fifty years for the Imperial Academy
to finish publication of his works after
his death. Euler had spent the years
1727–1741 and 1766–1783 at the Impe-
rial Academy in St. Petersburg under the
invitation of Peter the Great. Euler lost
the sight in his right eye in 1735, and
he was totally blind for the last seven-
teen years of his life. Nevertheless, he
had a phenomenal memory, and so his
mathematical output remained high. In
fact, about half of his works were written
in those last seventeen years. He con-
tributed not only to number theory, but
also to other areas of mathematics such
as graph theory. It may even be argued
that he essentially founded that branch of
mathematics. He died on September 18,
1783.

Proof. The result is trivial if
p ≤ 3, so we assume that p > 3.
By Definition 1.11 on page 24, any
a ∈ Z with 2 ≤ a ≤ p − 2 has a
unique a−1 ∈ Z with 2 ≤ a−1 ≤ p−2
where

aa−1 ≡ 1 (mod p).

By Exercise 1.79, a = a−1 if and
only if a = 1 or a = p − 1. There-
fore, the product of the values a−1

for 2 ≤ a−1 ≤ p− 2 is just the prod-
uct of the integers a = 2, 3, . . . , p− 2
in some order. Therefore, after pos-
sible rearrangement of those values
of a, we have

(p − 2)! ≡ 1 (mod p).

Thus,

(p − 1)! ≡ (p − 1) ≡ −1 (mod p),

which secures the result. �

The first to actually prove Theo-
rem 1.14 was Lagrange (see Biogra-
phy 1.12 on page 36).

Example 1.9 If p = 17, then for
each a ∈ N with 2 ≤ a ≤ 15, we have

2 · 9 ≡ 3 · 6 ≡ 4 · 13 ≡ 5 · 7 ≡ 8 · 15 ≡ 10 · 12

≡ 11 · 14 ≡ 1 (mod 17).

Therefore, 16! ≡ 16 ≡ −1 (mod 17).

© 2007 by Taylor & Francis Group, LLC

36 1. Mathematical Basics

Lagrange also proved the following.

Theorem 1.15 The Converse of Wilson’s Theorem
If n ∈ N and (n − 1)! ≡ −1 (mod n), then n is a prime.

Proof. If p
∣∣ n is a prime and p < n, then p

∣∣ (n − 1)!. Thus, given that
(n − 1)! ≡ −1 (mod n), we have

0 ≡ (n − 1)! ≡ −1 (mod p),

a contradiction. �

Biography 1.12 Joseph-Louis Lagrange (1736–1813) was born on January
25, 1736, in Turin, Sardinia-Piedmont (now Italy). Although Lagrange’s pri-
mary interests as a young student were in classical studies, his reading of an
essay by Edmund Halley (1656–1743) on the calculus converted him to math-
ematics. While still in his teens, Lagrange became a professor at the Royal
Artillery School in Turin in 1755 and remained there until 1766 when he suc-
ceeded Euler (see Biography 1.11 on page 35) as director of mathematics at the
Berlin Academy of Science. Lagrange left Berlin in 1787 to become a member
of the Paris Academy of Science, where he remained for the rest of his profes-
sional life. In 1788 he published his masterpiece Mécanique Analytique, which
may be viewed as both a summary of the entire field of mechanics to that time
and an establishment of mechanics as a branch of analysis, mainly through the
use of the theory of differential equations. When he was fifty-six, he married
a young woman almost forty years younger than he, the daughter of the as-
tronomer Lemonnier. She became his devoted companion until his death in the
early morning of April 10, 1813, in Paris.

Another famous result that is linked to Exercise 1.79 on page 33 in the proof
of Theorem 1.14 is the following proved by Fermat (see Biography 1.13 on page
37). Moroever, since Exercise 1.71 on page 32 is employed in the following proof,
the reader should solve it in advance.

Theorem 1.16 Fermat’s Little Theorem
If a ∈ Z, and p is a prime such that gcd(a, p) = 1, then

ap−1 ≡ 1 (mod p).

Proof. By part (a) of Exercise 1.71,

p−1∏
k=1

ak ≡
p−1∏
k=1

k (mod p).

However,
p−1∏
k=1

ak ≡ ap

p−1∏
k=1

k ≡ ap−1(p − 1)! (mod p).

© 2007 by Taylor & Francis Group, LLC

1.4. Euler, Fermat, and Wilson 37

Hence, ap−1 ≡ 1 (mod p). �

When p > 2 and p � a ∈ Z, we see that b = a(p−1)/2 is its own multiplicative
inverse modulo p, since b2 = ap−1 ≡ 1 (mod p).

Notice that Theorem 1.16 tells us that a−1 ≡ ap−2 (mod p), when p � a, so
this provides a means for computing inverses in Z/pZ.

Biography 1.13 Pierre Fermat (1607–1665) is most often listed in the his-
torical literature as having been born on August 17, 1601, which was ac-
tually the baptismal date of an elder brother, also named Pierre Fermat,
born to Fermat’s father’s first wife, who died shortly thereafter. Fermat,
the mathematician, was a son of Fermat’s father’s second wife. Note also
that Fermat’s son gave Fermat’s age as fifty-seven on his tombstone —
see http://library.thinkquest.org/27694/Pierre%20de%20Fermat.htm, for in-
stance. Fermat attended the University of Toulouse and later studied law at
the University of Orléans where he received his degree in civil law. By 1631,
Fermat was a lawyer as well as a government official in Toulouse. This entitled
him to change his name to Pierre de Fermat. He was ultimately promoted to the
highest chamber of the criminal court in 1652. Throughout his life Fermat had
a deep interest in number theory and incisive ability with mathematics. There
is little doubt that he is best remembered for Fermat’s Last Theorem (FLT).
(FLT says that

xn + yn = zn

has no solutions x, y, z, n ∈ N for n > 2. This has recently been solved after
centuries of struggle by Andrew Wiles. See [73].) However, Fermat published
none of his discoveries. It was only after Fermat’s son Samuel published an
edition of Bachet’s translation of Diophantus’s Arithmetica in 1670 that his
father’s margin notes, claiming to have had a proof, came to light. The attempts
to prove FLT for over three centuries have led to discoveries of numerous results
and the creation of new areas of mathematics. Fermat died on January 12,
1665, in Castres, France.

Fermat’s Little Theorem, which is worthy of the description a gem, was gener-
alized by Euler. In order to understand how he did this, we need to introduce
another concept that bears Euler’s name.

Definition 1.12 Euler’s φ-Function

For any n ∈ N the Euler φ-function, also known as Euler’s Totient (see
Biography 1.14 on the following page), φ(n) is defined to be the number of m ∈ N
such that m < n and gcd(m,n) = 1.

Note that Gauss introduced the symbol φ(n) (see [35, Articles 38–39, pp.
20–21]), and Euler used the symbol πn to denote φ(n)—the Totient

Example 1.10 If p is prime, then all j ∈ N with j < p is relatively prime to p,
so φ(p) = p − 1.

© 2007 by Taylor & Francis Group, LLC

http://www.thinkquest.org

38 1. Mathematical Basics

Example 1.11 Let n ∈ N. Then the cardinality of (Z/nZ)∗ is φ(n). See (1.2)
on page 25 and Exercise 1.84 on page 34.

Biography 1.14 James Joseph Sylvester (1814–1897) gave the name totient
to the function φ(n). He defined the totatives of n to be the natural num-
bers m < n relatively prime to n. Sylvester was born in London, England, on
September 3, 1814. He taught at University of London from 1838 to 1841 with
his former teacher Augustus De Morgan (1806–1871). Later he left mathemat-
ics to work as an actuary and a lawyer. This brought him into contact with
Arthur Cayley (1821–1895) who also worked the courts of Lincoln’s Inn in Lon-
don, and thereafter they remained friends. Sylvester returned to mathematics,
being appointed professor of mathematics at the Military Academy at Woolrich
in 1854. In 1876 he accepted a position at the newly established Johns Hop-
kins University. He founded the first mathematical journal in the U.S.A., the
American Journal of Mathematics. In 1883, he was offered a professorship at
Oxford University. This position was to fill the chair left vacant by the death
of the Irish number theorist Henry John Stephen Smith (1826–1883). When
his eyesight began to deteriorate in 1893, he retired to live in London. Nev-
ertheless, his enthusiasm for mathematics remained until the end as evidenced
by the fact that in 1896 he began work on Goldbach’s Conjecture (which says
that every even integer n > 2 is a sum of two primes). He died in London on
March 15, 1897, from complications involving a stroke.

� Applications of Euler’s Totient

Theorem 1.17 The Arithmetic of the Totient

If n =
∏k

j=1 p
aj

j where the pj are distinct primes, then

φ(n) =
k∏

j=1

(paj

j − p
aj−1
j) =

k∏
j=1

φ(paj

j).

Proof. We perform induction on k, where

n =
k∏

j=1

p
aj

j .

First we prove that the result holds for k = 1. Those natural numbers less than
or equal to pa and divisible by p are precisely those j = ip for i = 1, 2, . . . , pa−1,
so there are pa−1 of them. Hence,

φ(pa) = pa − pa−1.

Now we may assume that k > 1, and

φ(M) =
k−1∏
j=1

(paj

j − p
aj−1
j),

© 2007 by Taylor & Francis Group, LLC

1.4. Euler, Fermat, and Wilson 39

where

M =
k−1∏
j=1

p
aj

j .

Claim 1.1 If n ∈ N and p is prime, then

φ(pn) =
{

pφ(n) if p|n,
(p − 1)φ(n) otherwise.

In order to calculate the value φ(pn), we look at each of the range of numbers

in + 1, in + 2, . . . , in + n, for i = 0, 1, . . . , p − 1.

If we eliminate all of the values j from these intervals that satisfy gcd(n, j) > 1,
then we have pφ(n) integers left. If p|n, then this is all of those values relatively
prime to pn. However, if p � n, then we must also eliminate all those values
ip for i = 1, 2, . . . , n. Of these, those ip with gcd(i, n) > 1 have already been
eliminated. Hence, there are just φ(n) more to eliminate, namely

φ(pn) = pφ(n) − φ(n) = (p − 1)φ(n),

and we have Claim 1.1. Therefore, it follows that

φ(pak

k M) = pkφ(pak−1
k M) = p2

kφ(pak−2
k M) = . . .

= pak−1
k φ(pkM) = pak−1

k (pk − 1)φ(M)

and by the induction hypothesis, this equals

pak−1
k (pk − 1)

k−1∏
j=1

(paj

j − p
aj−1
j) =

k∏
j=1

(paj

j − p
aj−1
j) =

k∏
j=1

φ(paj

j).

This completes the induction and secures the result. �

In order to get Euler’s generalization of Fermat’s Little Theorem, we need
another concept.

Definition 1.13 Reduced Residue Systems

If n ∈ N, then a set

R = {mj ∈ N : gcd(mj , n) = 1 and mj �≡ mk (mod n) where 1 ≤ j �= k ≤ φ(n)}

is called a reduced residue system modulo n.

© 2007 by Taylor & Francis Group, LLC

40 1. Mathematical Basics

Remark 1.3 If the set
R = {r1, . . . , rφ(n)}

is a reduced residue system modulo n, then so is

R = {mr1, . . . ,mrφ(n)}

for m ∈ N with gcd(m,n) = 1. To see this, note that since

gcd(m,n) = gcd(rj , n) = 1,

then
gcd(mrj , n) = 1 for all natural numbers j ≤ φ(n).

If
mrj ≡ mrk (mod n)

for some j �= k with 1 ≤ j, k ≤ φ(n), then

rj ≡ rk (mod n),

by Proposition 1.3 on page 19, a contradiction.

Theorem 1.18 Euler’s Generalization of Fermat’s Little Theorem

If n ∈ N and m ∈ Z such that gcd(m,n) = 1, then

mφ(n) ≡ 1 (mod n).

Proof. By the discussion immediately preceding the theorem, each element
in R is congruent to a unique element in R modulo n. Hence,

φ(n)∏
j=1

rj ≡
φ(n)∏
j=1

mrj ≡ mφ(n)

φ(n)∏
j=1

rj (mod n),

and gcd(
∏φ(n)

j=1 rj , n) = 1, so

mφ(n) ≡ 1 (mod n),

by Proposition 1.3 on page 19. �

Example 1.12 By Euler’s Theorem, 3φ(7)−1 ≡ 36−1 = 35 ≡ 5 (mod 7), and 5
is a (least) multiplicative inverse of 3 modulo 7.

Example 1.12 is a special case of a result that is the content of Exercise 1.97
on page 43, which is in turn a simple application of Theorem 1.18.

© 2007 by Taylor & Francis Group, LLC

1.4. Euler, Fermat, and Wilson 41

Exercises

1.85. Let n ∈ N such that n ≡ 3 (mod 4). Prove that x2 ≡ −1 (mod n) is not
solvable.

1.86. Let p be an odd prime. Establish the binomial coefficient congruence,
(

p

j

)
≡ 0 (mod p)

for all natural numbers j ≤ p − 1.

1.87. Let b ∈ N and let q be a prime such that q does not divide b. Prove that
there exists an n ∈ N such that n

∣∣ (q − 1) and q
∣∣ (b(q−1)/n − 1). (This is

called Fermat’s divisibility test — see Biography 1.13 on page 37.)

(Hint: Use the Binomial Theorem A.3 on page 307 and Fermat’s Little
Theorem.)

1.88. If p is an odd prime, prove that any prime divisor q of 2p − 1 must be
the form q = 2mp + 1 for some m ∈ N. Also, prove that if m ∈ N is the
smallest such that q

∣∣ (bm − 1), then q
∣∣ (bt − 1) whenever m|t.

(Hint: Use Exercise 1.87.)

1.89. Generalize the Fibonacci sequence (defined on page 8) by setting g1 = a ∈
Z, g2 = b ∈ Z, and

gj = gj−1 + gj−2 for j ≥ 3.

Prove that gj = aFj−2 + bFj−1.

1.90. The nth Fermat number for n ∈ N is given by Fn = 22n

+ 1. Prove that�
every prime divisor of Fn is of the form 2n+1k + 1 for some k ∈ N.

(Hint: Use Exercise 1.87 and the Binomial Theorem.)

(The above exercise is Euler’s result on Fermat numbers — see Biography
1.11 on page 35.)

1.91. The following is called Legendre’s Divisibility Criterion. (See Biography�
1.15 on page 42.)

Let p be a prime and n ∈ N. Then

(a) If p
∣∣ (an+1), then either p = 2nm+1 for some m ∈ N, or p

∣∣ (an/k+1)
where k is an odd divisor of n.

(b) If p
∣∣ (an − 1), then either p = nb + 1 for some b ∈ N, or p

∣∣ ak − 1
where k

∣∣ n.

1.92. Let Fn be as in Exercise 1.90. Prove that if p is a prime dividing Fn, then
the smallest m ∈ N such that p

∣∣ (2m − 1) is m = 2n+1.

(Hint: Use the division algorithm and the Binomial Theorem.)

© 2007 by Taylor & Francis Group, LLC

42 1. Mathematical Basics

1.93. Prove that
p−1∑
j=1

jp−1 ≡ −1 (mod p)

for any prime p. (It is an open question as to whether

n−1∑
j=1

jn−1 ≡ −1 (mod n)

for a given n ∈ N implies that n is prime. However, it has been verified
up to 101700. See [40, p. 37]).

Biography 1.15 Adrien-Marie Legendre (1752–1833) was born on September
18, 1752, in Paris, France. He was educated at the Collège Mazarin in Paris.
During the half decade 1775–1780, he taught along with Laplace (1749–1827) at
Ecole Militaire. He also took a position at the Académie des Sciences, becoming
first adjoint in 1783, then associé in 1785, and his work finally resulted in his
election to the Royal Society of London in 1787. In 1793, the Académie was
closed due to the Revolution, but Legendre was able to publish his phenomenally
successful book Eléments de Géométrie in 1794, which remained the leading
introductory text in the subject for over a century. In 1795, the Académie
was reopened as the Institut National des Sciences et des Arts and met in the
Louvre until 1806. In 1808, Legendre published his second edition of Théorie
des Nombres, which included Gauss’s proof of the Quadratic Reciprocity Law
(about which we will learn in Chapter 4). Legendre also published his three-
volume work Exercises du Calcul Intégral during 1811–1819. Then his three-
volume work Traité des Fonctions Elliptiques was published during the period
1825–1832. Therein he introduced the name “Eulerian Integrals” for beta and
gamma functions. This work also provided the fundamental analytic tools for
mathematical physics, and today some of these tools bear his name, such as
Legendre Functions. In 1824, Legendre had refused to vote for the government’s
candidate for the Institute National, and for taking this position his pension was
terminated. He died in poverty on January 10, 1833, in Paris.

1.94. Let b ∈ N and let m be the product of all natural numbers less than b and
relatively prime to b. Prove that if b is not of one of the forms: 4, pt, or
2pt where t ∈ N and p > 2 is prime, then m ≡ 1 (mod b).

(This result, in conjunction with Exercise 1.82 on page 34, is Gauss’ gen-
eralization of Wilson’s Theorem presented in [35, Article 78, p. 51].)

1.95. Suppose that p ≡ 3 (mod 4) is prime. Prove that
(

p − 1
2

)
! ≡ ±1 (mod p).

(Hint: Use Wilson’s Theorem and Exercise 1.79 on page 33.)

1.96. With reference to Exercise 1.94, solve the following. If b ∈ N is composite
and m ≡ ±1 (mod b2), then b is called a Wilson composite. The only

© 2007 by Taylor & Francis Group, LLC

1.4. Euler, Fermat, and Wilson 43

Wilson composite less than 5 · 104 is 5971. Find a Wilson composite
bigger than 5 · 105.

1.97. Suppose that m ∈ Z, n ∈ N and gcd(m,n) = 1. Prove that mφ(n)−1 is a
multiplicative inverse of m modulo n.

1.98. Prove that φ(mn) = φ(m)φ(n) for any relatively prime m,n ∈ N.

1.99. Use Exercise 1.98 to prove the following. If m,n ∈ N with g = gcd(m,n),
then

φ(mn) = gφ(m)φ(n)/φ(g).

1.100. Prove that if d
∣∣ n ∈ N, then φ(d)

∣∣ φ(n).

1.101. Solve for minimum n ∈ N in the coconut problem on page 25 for the case
of five sailors who subdivide into five piles, each time giving the monkey
one coconut.

1.102. Prove that any prime divisor of Mp = 2p − 1 for p > 2 is of the form
2kp + 1 for some k ∈ N. (See Exercise 1.50 on page 16.)

1.103. If n is composite, then n is a Carmichael number if

bn−1 ≡ 1 (mod n) for all b ∈ N such that gcd(b, n) = 1.

Suppose that n =
∏r

j =1 pj (r ≥ 2) for distinct odd primes pj . Prove
that (pj − 1)|(n − 1) for all nonnegative integers j ≤ r if and only if n is
a Carmichael number.

(It has been observed that, if the converse to Exercise 1.93 on page 42 fails
to hold for some n, then that number would be a Carmichael number, and
that for any prime p|n, we would have that (p − 1)|(n − 1).)

Biography 1.16 Robert Daniel Carmichael (1879–1967) was born in Goodwa-
ter, Alabama. In 1911, he received his doctorate from Princeton under the di-
rection of G.D. Birkhoff. In 1912, he conjectured that there are infinitely many
of the numbers that now bear his name. In 1992, W. Alford, A. Granville, and
C. Pomerance proved his conjecture, see [40, p. 30]. Carmichael Numbers were
generalized to Lucas Sequences by Williams [93] in 1977.

1.104. Prove that if n is composite and φ(n)
∣∣ (n− 1), then n is squarefree. (See

Exercise 1.72 on page 33.)

1.105. Let n ∈ N. Prove that for all a ∈ Z, bb ≡ a (mod n) for some b ∈ N if and�
only if gcd(n, φ(n)) = 1.

1.106. Let a ∈ Z, n > 1 a natural number with gcd(a, n) = 1, and let r be the
smallest positive integer such that ar ≡ 1 (mod n). Prove that r|φ(n).

(The notion in this exercise is the main topic of Section 1.5.)

© 2007 by Taylor & Francis Group, LLC

44 1. Mathematical Basics

1.5 Primitive Roots

In order to study the primality testing algorithms and related phenomena in
the text, we need to acquaint ourselves with the notion mentioned in the section
header. Toward this end, we first need the following concept related to Euler’s
Theorem 1.18, which tells us that for m ∈ Z and n ∈ N with gcd(m,n) = 1,
we have mφ(n) ≡ 1 (mod n). One may naturally ask for the smallest exponent
e ∈ N such that me ≡ 1 (mod n).

Definition 1.14 Modular Order of an Integer

Let m ∈ Z, n ∈ N and gcd(m,n) = 1. Then the order of m modulo n is the
smallest e ∈ N such that me ≡ 1 (mod n), denoted by e = ordn(m), and we say
that m belongs to the exponent e modulo n.

Note that the modular order of an integer given in Definition 1.14 is the
same as the element order in the group (Z/nZ)∗.

Example 1.13 Clearly 2 has order 2 modulo 3, so ord3(2) = 2 = φ(3). How-
ever, 7 has order 1 modulo 3, so ord3(7) = 1. A more substantial instance is
for the prime p = 3677, where 71838 ≡ 1 (mod p) but 7e �≡ 1 (mod p) for any
e < 1838, so ordp(7) = 1838.

Notice in Example 1.13 that the order of each integer divides φ(n).

Proposition 1.5 Divisibility by the Order of an Integer

If m ∈ Z, d, n ∈ N such that gcd(m,n) = 1, then md ≡ 1 (mod n) if and
only if ordn(m)

∣∣ d. In particular, ordn(m)
∣∣ φ(n).

Proof. If d = ordn(m), and d = dx for some x ∈ N, then

md = (md)x ≡ 1 (mod n).

Conversely, if md ≡ 1 (mod n), then d ≥ d so there exist integers q and r with
d = q · d + r where 0 ≤ r < d by the Division Algorithm. Thus, 1 ≡ md ≡
(md)qmr ≡ mr (mod n), so by the minimality of d, r = 0. In other words,
d

∣∣ d. In particular (also the content of Exercise 1.106 on page 43) we have that
d

∣∣ φ(n). �

Note that we may rephrase Proposition 1.5 in terms of the group theoretic
language surrounding (Z/nZ)∗, namely that if d is the order of an element
m ∈ (Z/nZ)∗, then for any d ∈ N, if md = 1 ∈ (Z/nZ)∗, d must be a multiple
of d. We use this language to prove the next fact.

Corollary 1.1 If d, n ∈ N, and m ∈ Z with gcd(m,n) = 1, then

ordn(md) =
ordn(m)

gcd(d, ordn(m))
.

© 2007 by Taylor & Francis Group, LLC

1.5. Primitive Ro ots 45

Proof. With d as above, set f = ordn(md) (the order of md in (Z/nZ)∗) and
g = gcd(d, d). Thus, by Proposition 1.5, d

∣∣ df , so (d/g)
∣∣ fd/g. Therefore, by

Exercise 1.28 on page 5, (d/g)
∣∣ f . Also, since

(md)d/g = (md)d/g = 1 ∈ (Z/nZ)∗,

then by our above proposition applied to md this time, f
∣∣ (d/g). Hence,

f = (d/g), which is the intended result. �

Those integers m for which ordn(m) = φ(n) are of special importance and
are the main topic of this section.

Definition 1.15 Primitive Roots
If m ∈ Z, n ∈ N and

ordn(m) = φ(n),

then m is called a primitive root modulo n. In other words, m is a primitive
root if it belongs to the exponent φ(n) modulo n.

Example 1.14 We calculate that

ord37(2) = 36,

so 2 is a primitive root modulo the prime 37. Also, we calculate that

ord1777(5) = 1776,

so 5 is a primitive root modulo the prime 1777. Also, we see that

ord3677(2) = 3676,

so 2 is a primitive root modulo the prime 3677. However, 15 has no primitive
roots (see Theorem 1.19 on page 49).

The following proposition contains important consequences of the above.

Proposition 1.6 (a) Let m ∈ Z, e, n ∈ N and gcd(m,n) = 1. Then

ordn(me) = ordn(m)

if and only if
gcd(e, ordn(m)) = 1.

(In particular, this result says that if m is a primitive root modulo n, then me

is a primitive root modulo n if and only if gcd(e, φ(n)) = 1.)
(b) Let m ∈ Z and n ∈ N relatively prime to m. If m is a primitive root

modulo n, then {mj}φ(n)
j=1 is a complete set of reduced residues modulo n.

(c) If n ∈ N has a primitive root, there are φ(φ(n)) incongruent primitive
roots modulo n.

(d) Let t, n ∈ N where n > 1 has a primitive root, and t|φ(n). Then xt ≡ 1
(mod n) has exactly t incongruent roots modulo n.

© 2007 by Taylor & Francis Group, LLC

46 1. Mathematical Basics

Proof. (a) By Corollary 1.1 on page 44,

ordn(me) = ordn(m)/ gcd(e, ordn(m)).

Therefore, ordn(me) = ordn(m) if and only if gcd(e, ordn(m)) = 1. In particu-
lar, if m is a primitive root modulo n, then ordn(me) = ordn(m) if and only if
gcd(e, φ(n)) = 1.

(b) It suffices to show that mi �≡ mj (mod n) for any i �= j. Suppose to the
contrary that mi ≡ mj (mod n) for 1 ≤ i ≤ j ≤ φ(n), then mi−j ≡ 1 (mod n),
so i = j by the minimality of φ(n).

(c) Let m be a primitive root modulo n. By part (b), another primitive root
must be of the form me with 1 ≤ e ≤ φ(n). Thus, by part (a), ordn(m) =
ordn(me) if and only if gcd(e, φ(n)) = 1, and there are precisely φ(φ(n)) such
integers e.

(d) Let a be a primitive root modulo n. Then a, a2, . . . , at are incongruent
modulo n for any t|φ(n), by part (a). If as ≡ x (mod n) for some x ∈ Z and
xt ≡ 1 (mod n), then

1 ≡ ast ≡ xt (mod n).

However, by Proposition 1.5, φ(n)|st, so s is a multiple of φ(n)/t. Hence, there
are exactly t incongruent solutions modulo n. �

It is handy to have a methodology for computing primitive roots. In [35,
Articles 73–74, pp. 47–49], Gauss developed a method for computing primitive
roots modulo a prime p as follows.

� Gauss’s Algorithm for Computing Primitive Roots Modulo p

(1) Let m ∈ N such that 1 < m < p and compute mt for t = 1, 2, . . .
until mt ≡ 1 (mod p). In other words, compute powers until ordp(m) is
achieved. If t = ordp(m) = p − 1, then m is a primitive root and the
algorithm terminates. Otherwise, go to step (2).

(2) Choose b ∈ N such that 1 < b < p and b �≡ mj (mod p) for any j =
1, 2, . . . , t. Let u = ordp(b).1.5 If u �= p − 1, then let v = lcm(t, u).
Therefore, v = ac where a

∣∣ t and c
∣∣ u with gcd(a, c) = 1. Let m1 and b1

be the least nonnegative residues of mt/a and bu/c modulo p, respectively.
Thus, g = m1b1 has order ac = v modulo p. If v = p − 1, then g is a
primitive root and the algorithm is terminated. Otherwise, go to step (3).

(3) Repeat step (2) with v taking the role of t and m1b1 taking the role of m.
(Since v > t at each step, the algorithm terminates after a finite number
of steps with a primitive root modulo p.)

1.5Observe that we cannot have u|t; since if it did then bt ≡ 1 (mod p). However, it follows
from (1) and part (d) of Proposition 1.6 that mj for 0 ≤ j ≤ t − 1 are all the incongruent
solutions of xt ≡ 1 (mod p), so b ≡ mj (mod p) for some such j, a contradiction to the choice
of b.

© 2007 by Taylor & Francis Group, LLC

1.5. Primitive Roots 47

Gauss used the following to illustrate his algorithm.

Example 1.15 Let p = 73. Choose m = 2 in step (1), and we compute t =
ordp(m) = 9 with

mj ≡ 1, 2, 4, 8, 16, 32, 64, 55, 37, 1 (mod p)

for j = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 = t = ordp(m), respectively. Now we go to step
(2) since m = 2 is not a primitive root modulo p = 73. Since 3 �≡ 2j (mod 73)
for any natural number j ≤ 9, we choose b = 3. Compute bj for j = 1, 2, . . . u,
where 3u = 312 ≡ 1 (mod 73), where

3j ≡ 3, 9, 27, 8, 24, 72, 70, 64, 46, 65, 49, 1 (mod p)

for j = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 = u = ordp(b) = ord73(3), respectively.
Since u �= p − 1, then set v = lcm(t, u) = 36 = ac = 9 · 4. Then m1 = 2t/a = 2
and b1 = 3u/c = 33 = 27, so m1b1 = 54, but v = ord73(54) = 36 �= p − 1. Thus,
we repeat step (2) with v = 36 replacing t and choose a value of b not equivalent
to any power of the new m = 54 = m1b1 modulo 73. Since b = 5 qualifies for
the role and it is a primitive root modulo 73, the algorithm terminates.

Example 1.14 suggests a natural question. Is 2 a primitive root of infinitely
many primes? This is unknown, but a positive answer is conjectured. In fact,
there is a more general famous conjecture as follows.

Conjecture 1.1 Artin’s Conjecture

Every nonsquare integer m �= −1 is a primitive root modulo infinitely many
primes.

Biography 1.17 Emil Artin (1898–1962) was born in Vienna, Austria, in
1898. In World War I, he served in the Austrian army. After the war, he
obtained his Ph.D. from the University of Leipzig in 1921. In 1937, he emi-
grated to the U.S.A. and taught at the University of Notre Dame for one year.
Then he spent eight years at Indiana, and in 1946 went to Princeton where he
remained for the next twelve years. In 1958, he returned to Germany where he
remained for the rest of his life. He was reappointed to the University of Ham-
burg, which he had left two decades before. Artin contributed to finite group
theory, the theory of associative algebras, as well as number theory. His name
is attached to numerous deep mathematical entities. For instance, there are
the Artin Reciprocity Law, Artin L-functions, and Artinian Rings (see [62]).
Among Artin’s students were Serge Lang, John Tate, and Max Zorn. Artin had
interests outside of mathematics, including astronomy, biology, chemistry, and
music. In the latter, he excelled as an accomplished musician in his own right,
playing not only the flute but also the harpsichord and the clavichord. He died
in Hamburg on December 20, 1962.

© 2007 by Taylor & Francis Group, LLC

48 1. Mathematical Basics

Although this conjecture remains open, Heath-Brown proved in 1986 that,
with the possible exception of at most two primes, it is true that for each prime
p there are infinitely primes q such that p is a primitive root modulo q. For
example, there are infinitely many primes q such that one of 2, 3, or 5 is a
primitive root modulo q (see [40, p. 249]).

In order to prove a prelude to our first major goal in this section, which is the
determination of precisely which integers actually have primitive roots, we need
not only Proposition 1.6 on page 45 but also the following, which is an elegant
result in its own right. If the reader has not already done so, Exercise 1.27 on
page 5 should first be solved since it is used in the following proof.

Proposition 1.7 For any n ∈ N,
∑
d|n

φ(d) = n,

where d runs over all positive divisors of n.

Proof. By Exercise 1.27, gcd(m,n) = d if and only if gcd(m/d, n/d) = 1.
Therefore, φ(n/d) is the cardinality |Td| of

Td = {m ∈ N : m ≤ n, and gcd(m,n) = d}.

Since
{1, 2, . . . , n} = ∪d|nTd,

then

n =

∣∣∣∣∣∣
⋃
d|n

Td

∣∣∣∣∣∣ =
∑
d|n

|Td| =
∑
d|n

φ(n/d) =
∑
d|n

φ(d),

where the second equality follows from the fact that the Td are disjoint, and the
last equality follows from the fact that n/d runs over divisors of n as does d. �

Lemma 1.1 Primitive Roots Modulo a Prime

Let p be a prime and let e ∈ N such that e
∣∣ (p − 1). In any reduced residue

system modulo p, there exist either 0 or φ(e) distinct m ∈ Z, 0 ≤ m ≤ p − 1,
with ordp(m) = e. In particular, there exist φ(p − 1) primitive roots modulo p.

Proof. Assume that there exists an integer with order e modulo p, and let
r(e) be the number of incongruent integers that belong to the exponent e modulo
p. Since every natural number e < p must belong to some exponent modulo p,
then ∑

e|(p−1)

r(e) = p − 1.

By part (d) of Proposition 1.6, xe ≡ 1 (mod p) has exactly e incongruent solu-
tions modulo p, and by part (b) of Proposition 1.6 on page 45, these solutions

© 2007 by Taylor & Francis Group, LLC

1.5. Primitive Roots 49

are m, m2, . . ., mp−1, where m is a primitive root modulo p. Of these, the ones
with ordp(mj) = e are those for which gcd(j, e) = 1 by part (a) of Proposition
1.6, which means there are φ(e) of them. By Proposition 1.7,

∑
e|(p−1)

φ(e) = p − 1,

but ∑
e|(p−1)

r(e) = p − 1,

and r(e) ≤ φ(e), so r(e) = φ(e) for all e
∣∣ (p − 1).

The last statement of the lemma follows from Theorem A.7 on page 313,
which guarantees that p has a primitive root, and part (c) of Proposition 1.6,
which tells us that there exist φ(p−1) incongruent integers of order p−1 modulo
p. �

The reader who solves Exercises 1.100 on page 43, as well as 1.107 and 1.112
on page 50, will have set the stage for the following existence result.

Theorem 1.19 Primitive Root Theorem

An integer m > 1 has a primitive root if and only if m is of the form 2apb

where p is an odd prime, 0 ≤ a ≤ 1, and b ≥ 0 or m = 4. Also, if m has a
primitive root, then it has φ(φ(m)) of them.

Proof. Suppose that m > 1 has a primitive root, and let pb||m where p is
prime,1.6 and b ∈ N. By Lemma 1.1, and Exercise 1.107, if g is a primitive
root modulo p, then either g or g + p is a primitive root modulo pb. If g is
a primitive root modulo pb, then either g or g + p is odd, so there is an odd
primitive root modulo pb. If h is such a primitive root, then h must also be a
primitive root modulo 2pb. To see this, let ord2pb(h) = c, then c|φ(2pb) = φ(pb),
by Proposition 1.5 on page 44. Hence, c = φ(pb) = φ(2pb).

We have shown that each of m = 2, 4 or m = 2apb where p is an odd prime,
0 ≤ a ≤ 1, and b ≥ 0 has a primitive root. To show that no other moduli
have primitive roots, suppose that m = m1m2 where m1 > 2 and m2 > 2, and
gcd(m1,m2) = 1. By Exercise 1.100, φ(mj) is even for j = 1, 2. Therefore, for
any n ∈ N, nφ(m)/2 ≡ (nφ(m1))φ(m2)/2 ≡ 1 (mod m1), and similarly, nφ(m)/2 ≡ 1
(mod m2). Therefore, nφ(m)/2 ≡ 1 (mod m), so no n ∈ N can be a primitive
root modulo m. The last type of modulus to consider is m = 2a. For a ≥ 3,
n2a−2 ≡ 1 (mod 2a) for all odd n ∈ Z, by Exercise 1.112. Lastly, by part (c) of
Proposition 1.6, there are exactly φ(φ(m)) primitive roots modulo m. �

Example 1.16 If m = 22, then 7, 13, 17, 19 are the four incongruent primitive
roots modulo m. Note that φ(φ(m)) = 4.

1.6This symbol || means that pb|m, but pb+1 does not. We say that pb exactly divides m.

© 2007 by Taylor & Francis Group, LLC

50 1. Mathematical Basics

Exercises

1.107. Let g be a primitive root modulo a prime p > 2. Prove that one of g or
g + p is a primitive root modulo pa for all a ∈ N.

1.108. Prove that if ordp(m) is odd and p > 2 is prime, then me ≡ −1 (mod p)
has no solution e ∈ N.

1.109. Let m,n ∈ N be relatively prime. Prove that if a is a primitive root
modulo mn, then a is a primitive root modulo both m and n.

1.110. Let m be a primitive root modulo an odd prime p. Prove that, for any
prime q

∣∣ (p − 1), we must have that m(p−1)/q �≡ 1 (mod p).

1.111. Let m ∈ N and p > 2 a prime. Prove that if m(p−1)/q �≡ 1 (mod p) for all
primes q

∣∣ (p − 1), then m is a primitive root modulo p.

1.112. Prove that for any integer for a ≥ 3,

n2a−2 ≡ 1 (mod 2a)

for all odd n ∈ Z.

1.113. If m,n ∈ N and xn ≡ 1 (mod m) for every x ∈ Z with gcd(x,m) = 1, then
n is called a universal exponent modulo m. Prove that if n is odd, then n
is a universal exponent modulo m if and only if m|2.

1.114. Which of the following have primitive roots? Provide an example if such
a root exists, and provide a proof that it does not otherwise.
(a) 49. (b) 85.
(c) 14. (d) 29.
(e) 202. (f) 3677.

1.115. Find all incongruent primitive roots of the following.
(a) 5. (b) 11.
(c) 10. (d) 19.

1.116. If p is prime, f is called a Fibonacci primitive root modulo p if

f2 ≡ f + 1 (mod p).

Prove that if f is a Fibonacci primitive root modulo p, then

f j+1 ≡ Fj+1f + Fj (mod p),

where Fj is the jth Fibonacci number for j ∈ N, defined on page 8.

© 2007 by Taylor & Francis Group, LLC

1.6. The Index Calculus and Power Residues 51

1.6 The Index Calculus and Power Residues

The preceding sections have put us in a position to introduce the next impor-
tant concept, which will have cryptographic applications in the text. If n ∈ N
has a primitive root m, then by part (b) of Proposition 1.6 on page 45, the
values 1, m, m2, . . . ,mφ(n)−1 form a complete set of reduced residues modulo n.
It follows from part (c) of Proposition 1.6 that, given any b ∈ N, there is exactly
one nonnegative integer e ≤ φ(n) for which b ≡ me (mod n). This value has a
distinguished name.

Definition 1.16 Index
Let n ∈ N with primitive root m, and b ∈ N with gcd(b, n) = 1. Then for

exactly one of the values e ∈ {0, 1, . . . , φ(n) − 1}, b ≡ me (mod n) holds. This
unique value e modulo φ(n) is the index of b to the base m modulo n, denoted
by indn

m(b).

Example 1.17 If n = 29, then m = 2 is a primitive root modulo n. Also,
ind29

2 (5) = 22, since 5 ≡ 222 (mod 29), so 5 has index 22 to base 2 modulo 29.

Definition 1.16 gives rise to an arithmetic of its own, the index calculus. The
following are some of the properties.

Theorem 1.20 Index Calculus
If n ∈ N and m is a primitive root modulo n, then for any c, d ∈ Z each of

the following holds.

(1) indn
m(cd) ≡ indn

m(c) + indn
m(d) (mod φ(n)).

(2) For any t ∈ N, indn
m(ct) ≡ t · indn

m(c) (mod φ(n)).

(3) indn
m(1) = 0.

(4) indn
m(m) = 1.

(5) indn
m(−1) = φ(n)/2 for n > 2.

(6) indn
m(n − c) ≡ indn

m(−c) ≡ φ(n)/2 + indn
m(c) (mod φ(n)).

Proof. Let indn
m(cd) = x, indn

m(c) = y, and indn
m(d) = z.

(1) Since cd ≡ mx (mod n), c ≡ my (mod n) and d ≡ mz (mod n), then

my+z ≡ cd ≡ mx (mod n),

so the result follows from Euler’s Theorem 1.18 on page 40.
(2) Since c ≡ my (mod n), then

ct ≡ myt (mod n),

© 2007 by Taylor & Francis Group, LLC

52 1. Mathematical Basics

the result follows by applying indn
m to both sides.

(3) If indn
m(1) = w, then 1 ≡ mw (mod n). Since m is a primitive root

modulo n, and 0 ≤ w < φ(n), by Definition 1.16, then w = 0.
(4) Let indn

m(m) = v. Since m ≡ mv (mod n), then v = 1 by Definition 1.16.
(5) Since mφ(n)/2 ≡ −1 (mod n) for n > 2, then the result follows as in (2).
(6) Since mφ(n)/2 ≡ −1 (mod n), then

−c ≡ n − c ≡ −my ≡ mφ(n)/2my ≡ mφ(n)/2+y (mod n),

so the result follows from Euler’s Theorem. �

The reader will recognize that the properties of the index mimic those of
logarithms. Hence, if n is a prime p, the index of b to the base p is often
called the discrete logarithm of b to the base p. For further such properties, see
Exercises 1.119–1.122 on page 56. Moreover, part (1) of Theorem 1.20 provides
us with a tool for finding indices by reducing it to solving linear congruences

cx ≡ b (mod n)

for x ∈ Z. To see this note that when this congruence holds, then

indn
m(c) + indn

m(x) ≡ indn
m(b) (mod φ(n)),

for any primitive root m modulo n. The process is illustrated as follows.

Example 1.18 Suppose that we wish to solve the congruence 7x ≡ 3 (mod 29).
Since 2 is a primitive root modulo 29, then

ind29
2 (7) + ind29

2 (x) ≡ ind29
2 (3) (mod φ(29)),

so
ind29

2 (x) ≡ ind29
2 (3) − ind29

2 (7) = 5 − 12 = −7 ≡ 21 (mod 28).

Therefore, by raising to appropriate exponents we get, x ≡ 221 ≡ 17 (mod 29).

Part (2) of Theorem 1.20 also provides us with a mechanism for solving
power congruences

cx ≡ b (mod n)

for x ∈ Z. To see this, note that if this congruence holds, then

x · indn
m(c) ≡ indn

m(b) (mod φ(n)).

This methodology is illustrated as follows.

Example 1.19 Suppose we want to solve 3x ≡ 7 (mod 29). Since

x · ind29
2 (3) ≡ ind29

2 (7) (mod 28),

then 5x ≡ 12 (mod 28). Therefore,

x ≡ 5−1 · 12 ≡ 17 · 12 ≡ 8 (mod 28).

Thus, 38 ≡ 7 (mod 29).

© 2007 by Taylor & Francis Group, LLC

1.6. The Index Calculus and Power Residues 53

Exercise 1.118 on page 56 is designed to test the methods illustrated in
Examples 1.18–1.19.

The above is related to the following notion.

Definition 1.17 Modular Roots and Power Residues
If m,n ∈ N, c ∈ Z, gcd(c, n) = 1, then c is called an mth power residue

modulo n if xm ≡ c (mod n) for some x ∈ Z, and x is called an mth root
modulo n.

For instance, if m = 2, then x is called a square root modulo n, and c is
called a quadratic residue modulo n; if m = 3, then c is called a cubic residue
modulo n, and x is called a cube root modulo n, and so on.

If we know a factorization of n into prime powers, then we may find mth

roots modulo each prime power and use the Chinese Remainder Theorem to
obtain an mth root modulo n.

It is valuable to have a criterion for the solvability of such congruences. With
the index calculus as a tool, we may now present such a result. It is essential
that the reader solve Exercise 1.121 since this tells us when the following power
congruence actually has a solution and how many there are.

Theorem 1.21 Euler’s Criterion for Power Residue Congruences

Let e, c ∈ N with e ≥ 2, b ∈ Z, p > 2 is prime with p � b, g = gcd(e, φ(pc)),
and g

∣∣ b. Then the congruence

xe ≡ b (mod pc) (1.3)

is solvable if and only if
bφ(pc)/g ≡ 1 (mod pc).

Proof. Suppose that
xe ≡ b (mod pc).

Then
bφ(pc)/g ≡ (xe)φ(pc)/g ≡ (xe/g)φ(pc) ≡ 1 (mod pc),

by Euler’s Theorem 1.18 on page 40.
Conversely, assume that

bφ(pc)/g ≡ 1 (mod pc).

By Exercise 1.107 on page 50, there exists a primitive root m modulo pc. There-
fore,

b ≡ mn (mod pc), (1.4)

for some n ∈ N, by part (b) of Proposition 1.6 on page 45. Hence,

1 ≡ bφ(pc)/g ≡ mnφ(pc)/g (mod pc).

© 2007 by Taylor & Francis Group, LLC

54 1. Mathematical Basics

Since m is a primitive root modulo pc, this implies that

φ(pc)|nφ(pc)/g,

so g|n. Thus, there exists some k ∈ N such that n = kg. By Exercise 1.22 on
page 5, there exist x, y ∈ Z such that

ye − xφ(pc) = g,

so
n = kg = kye − kxφ(pc). (1.5)

By Euler’s Theorem again,

mkxφ(pc) ≡ (mkx)φ(pc) ≡ 1 (mod pc),

so by (1.4)–(1.5),

b ≡ bmkxφ(pc) ≡ mn+kxφ(pc) ≡ mkye−kxφ(pc)+kxφ(pc) ≡
mkye ≡ (mky)e (mod pc).

Hence, b is an eth power residue modulo pc, namely b ≡ xe (mod pc) with
x = mky. �

Example 1.20 If x5 ≡ 5 (mod 27), with g = gcd(e, φ(pc)) = gcd(5, 18) = 1,
then ind27

2 (5) = 5, and

5 · ind27
2 (x) ≡ ind27

2 (5) ≡ 5 (mod 18),

since m = 2 is a primitive root mod 33. Therefore, ind27
2 (x) ≡ 1 (mod 18), so

either ind27
2 (x) ≡ 1 (mod 27), or ind27

2 (x) ≡ 19 (mod 27). Thus, x ≡ 2 (mod 27)
is the only distinct congruence class that satisfies the given congruence, since
219 ≡ 2 (mod 27).

Example 1.21 Consider x3 ≡ 4 (mod 27). Then since 3ind27
2 x ≡ ind27

2 4 ≡ 2
(mod 27), and gcd(3, 2) = 1, there are no solutions to this congruence.

The above examples suggest the following consequence of Theorem 1.21.

Corollary 1.2 Power Residues at Prime Powers
Suppose that p is an odd prime, b ∈ Z, p � b and e ∈ N. If

xe ≡ b (mod p)

has a solution, then so does

xe ≡ b (mod pc)

for all c ∈ N.

© 2007 by Taylor & Francis Group, LLC

1.6. The Index Calculus and Power Residues 55

Proof. We prove this by induction on c. We are given xe ≡ b (mod p), and
we assume that xe ≡ b (mod pc) has a solution. We need only establish that
xe ≡ b (mod pc+1) has a solution. If g = gcd(e, φ(pc)), then

bφ(pc)/g ≡ 1 (mod pc),

by Theorem 1.21. Thus, there is an integer f such that

bφ(pc)/g = 1 + fpc.

Therefore, by Claim 1.1 in the proof of Theorem 1.17 on page 39,

(1 + pcf)p = bpφ(pc)/g = bφ(pc+1)/g.

However, by the Binomial Theorem,

(1 + pcf)p =
p∑

j=0

pcjf j

(
p

j

)
= 1 + pc+1h,

for some h ∈ Z since cj ≥ c + 1 for all j ≥ 2. Hence, bφ(pc+1)/g ≡ 1 (mod pc+1),
so by Theorem 1.21, xe ≡ b (mod pc+1) has a solution as required. �

Furthermore, we have the following consequence.

Corollary 1.3 The Number of Power Residues

Under the hypothesis of Theorem 1.21, there are φ(pc)/g incongruent
(nonzero) cth-power residues modulo pc.

Proof. By Theorem 1.21, we want the number of incongruent solutions of

xφ(pc)/g ≡ 1 (mod pc).

By part (d) of Proposition 1.6 on page 45, this congruence has exactly φ(pc)/g
incongruent solutions. �

Example 1.22 Suppose that we want to determine the number of incongruent
fourth power residues modulo 27, namely the number of incongruent b ∈ N such
that x4 ≡ b (mod 27). Since

g = gcd(φ(27), e) = gcd(18, 4) = 2
∣∣ ind27

2 (7) = 16,

then we know there are such solutions by Exercise 1.121. By Corollary 1.3,
there must be φ(pc)/g = 18/2 = 9 incongruent such solutions. They are

b ∈ {1, 4, 7, 10, 13, 16, 19, 22, 25}

given by x ∈ {1, 5, 11, 10, 4, 2, 8, 13, 7}, respectively.

© 2007 by Taylor & Francis Group, LLC

56 1. Mathematical Basics

An important consideration in complexity theory (which we will study in
Section 1.8) is the search for an efficient algorithm which, given a prime p and
a primitive root m modulo p, computes indp

m(x) for any given x ∈ F∗
p. These

algorithms have significant ramifications for the construction of secure pseu-
dorandom number generators. There is no such algorithm known in general.
However, the Silver-Pohlig-Hellman Algorithm for computing discrete logs, de-
scribed in Appendix E, is an efficient such algorithm in the case where the prime
factors of p − 1 are known and are “small” with respect to p. Note that the α
that generates F∗

p in the description of the Silver-Pohlig-Hellman Algorithm in
Appendix E is a primitive root modulo p. Also, the computation of a modulo
p

aj

j described in Appendix E is merely the computation of

ind
p

aj
j

α (β).

Exercises

1.117. Find each of the following.
(a) ind13

2 (7) (b) ind13
2 (11)

(c) ind19
2 (5) (d) ind19

2 (10)
(e) ind17

3 (6) (f) ind17
3 (8)

1.118. Using the index calculus, find solutions to each of the following.
(a) 3x4 ≡ 4 (mod 7) (b) x3 − 5 ≡ 0 (mod 49)
(c) 3x5 ≡ 4 (mod 11) (d) 2x3 ≡ 5 (mod 11)
(e) 5x5 ≡ 3 (mod 7) (f) 3x7 ≡ 5 (mod 11)

1.119. Let p be a prime with primitive roots a and b. Also, let c be an integer
relatively prime to p. Prove that

indp
a(c) ≡ indp

b(c) · indp
a(b) (mod p − 1).

(This property mimics the change of base formula for logarithms.)

1.120. With the same assumptions as in Exercise 1.119, prove that

indp
a(p − c) ≡ indp

a(c) + (p − 1)/2 (mod p − 1).

1.121. Show that congruence (1.3) has g = gcd(e, φ(pc)) incongruent solutions
modulo pc if g

∣∣ indpc

a (b) for any primitive root a modulo pc and has none
otherwise.

1.122. Let c ∈ Z, p an odd prime, and gcd(p, c) = 1. If a is a primitive root mod-
ulo p, prove that c ≡ x2 (mod p) for some x ∈ Z if and only if 2|indp

a(c).

© 2007 by Taylor & Francis Group, LLC

1.6. The Index Calculus and Power Residues 57

1.123. The Lucas-Lehmer primality test for Mersenne numbers is given as follows
(see Exercise 1.50 on page 16).

Input Mn = 2n − 1 and execute the following steps.

(1) Set s1 = 4 and compute sj ≡ s2
j−1−2 (mod Mn) for j = 1, 2, . . . , n−1.

(2) If sn−1 ≡ 0 (mod Mn), then conclude that Mn is prime. Otherwise,
conclude that Mn is composite.

Use the above algorithm to prove that M13 is prime.

Biography 1.18 François Édouard Anatole Lucas (1842–1891) was born on
April 4, 1842, in Amiens, France. In 1864, he graduated from École Normale
as Agrégé des sciences mathématiques, meaning that he had passed the state
agrégation examination required for a teaching position at French lycées (high
schools). However, his first position was assistant astronomer at the Obser-
vatory of Paris. He remained there until the Franco-Prussian war in 1870 in
which he served as an auxiliary artillery officer. After the war, he became a
mathematics teacher at various high schools in Paris. He had interests in recre-
ational mathematics, but his serious interest was in number theory, especially
Diophantine analysis. Although he spent only the years 1875–1878 on the prob-
lems of factoring and primality testing, his contribution was impressive. Some
of the ideas developed by Lucas may be interpreted today as the beginnings of
computer design. His death was untimely and unfortunate. While attending a
social function, a plate fell and a chip from it cut his face. Later he died from
an infection that developed from that cut.

Biography 1.19 Derrick Henry Lehmer (1905–1991) was born in Berkeley,
California, on February 23, 1905. After graduating with his bachelor’s degree
from Berkeley in 1927, he went to the University of Chicago to study under L.
E. Dickson, but he left after only a few months. Neither the Chicago weather
nor the working environment suited him. Brown University offered him a better
situation with an instructorship, and he completed both his master’s degree
and his Ph.D., the latter in 1930. During the period 1930–1940, he had brief
stints at the California Institute of Technology; Stanford University; Lehigh
University; and Cambridge, England, the latter on a Guggenheim Fellowship.
In 1940, he accepted a position at the University of California at Berkeley where
he remained until his retirement in 1972. He was a pioneering giant in the world
of computational number theory and was widely respected in the mathematical
community. The reader is advised to look into his contributions given in his
selected works [51]. He was also known for his valued sense of humour, as
attested by John Selfridge in the forward to the aforementioned selected works,
as well as by one of Lehmer’s students, Ron Graham. In particular, Selfridge
concludes with an apt description of Lehmer’s contributions, saying that he
“has shown us this beauty with the sure hand of a master.”

© 2007 by Taylor & Francis Group, LLC

58 1. Mathematical Basics

1.7 Legendre, Jacobi, & Quadratic Reciprocity

We now proceed to establish an important result that we will need, namely
Gauss’s Quadratic Reciprocity Law (see Biography 1.7 on page 18). After we
introduced power residues in Definition 1.17 on page 53, we talked about various
types of residues including quadratic residues modulo n ∈ N, which are those
integers c for which there exists an integer x with

x2 ≡ c (mod n).

If no such integer x exists, then c is called a quadratic nonresidue modulo n. Non-
residues for the cubic, quartic, and higher cases are similarly defined. Whether
an integer is a residue or nonresidue modulo n ∈ N is called its residuacity
modulo n. There are symbols for representing the residuacity of a given integer.
In particular, we will be interested in the quadratic residuacity for which we
introduce the following symbol (see Biography 1.15 on page 42).

Definition 1.18 Legendre’s Symbol

If c ∈ Z and p > 2 is prime, then

(
c

p

)
=

0 if p
∣∣ c,

1 if c is a quadratic residue modulo p,
−1 otherwise,

and (c
p) is called the Legendre Symbol of c with respect to p.

Example 1.23 A corollary of Euler’s Criterion, Theorem 1.21 on page 53, may
now be stated as follows (see Biography 1.11 on page 35). Let p be an odd prime.
Then

if c(p−1)/2 ≡ 1 (mod p), then
(

c

p

)
= 1,

and

if c(p−1)/2 ≡ −1 (mod p), then
(

c

p

)
= −1.

This is called Euler’s Criterion for quadratic residuacity.

Theorem 1.22 Properties of the Legendre Symbol

If p > 2 is prime and b, c ∈ Z with p � bc, then

(1)
(

c

p

)
≡ c(p−1)/2 (mod p).

(2)
(

b

p

) (
c

p

)
=

(
bc

p

)
.

(3)
(

b

p

)
=

(
c

p

)
, provided b ≡ c (mod p).

© 2007 by Taylor & Francis Group, LLC

1.7. Legendre, Jacobi, & Quadratic Reciprocity 59

Proof. As seen in Example 1.23, part (1) is a corollary of Euler’s Criterion.
This may now be used to establish part (2) as follows.

(
b

p

) (
c

p

)
≡ b(p−1)/2c(p−1)/2 ≡ (bc)(p−1)/2 ≡

(
bc

p

)
(mod p).

Part (3) is an immediate consequence of the definition of a quadratic residue.�

To establish Gauss’s Quadratic Reciprocity Law, we first need a technical
result proved by him.

Lemma 1.2 Gauss’s Lemma on Residues�

Let p > 2 be a prime and c ∈ Z such that p � c. Suppose that c denotes the
cardinality of the set

{jc : 1 ≤ j ≤ (p − 1)/2, jc > p/2},
where the jc denotes reduction of jc to its least positive residue modulo p. Then

(
c

p

)
= (−1)c.

Proof. For each natural number j ≤ (p − 1)/2, define

cj =
{

jc if jc < p/2,
p − jc if jc > p/2.

If 1 ≤ j, k ≤ (p − 1)/2, then it is a simple verification that cj ≡ ck (mod p)
if and only if j = k. Hence, cj �≡ ck (mod p) for all j �= k with 1 ≤ j, k ≤
(p − 1)/2. Thus, we have (p − 1)/2 incongruent natural numbers, all less than
p/2. Therefore,

(p−1)/2∏
j=1

cj ≡
(

p − 1
2

)
! (mod p). (1.6)

Also, since p − jc ≡ (−1)(jc) (mod p), then

(p−1)/2∏
j=1

cj ≡ (−1)c · c(p−1)/2 ·
(

p − 1
2

)
! (mod p). (1.7)

By equating the two versions of
∏(p−1)/2

j=1 cj in (1.6)–(1.7), and dividing
through by (−1)c · (p−1

2)!, we get

c(p−1)/2 ≡ (−1)c (mod p),

and by Euler’s Criterion in Example 1.23,

c(p−1)/2 ≡
(

c

p

)
(mod p),

© 2007 by Taylor & Francis Group, LLC

60 1. Mathematical Basics

so the result follows. �

An important consequence of Gauss’s Lemma that we will need to prove his
quadratic reciprocity law is contained in the following.

Corollary 1.4 Let c ∈ Z be odd, and p > 2 prime such that p � c. Then�

(
c

p

)
= (−1)M ,

where

M =
(p−1)/2∑

j=1

�jc/p�.

Proof. For each natural number j ≤ (p− 1)/2, we have jc = qjp + rj , where
rj ∈ N with rj < p, by the Division Algorithm. In the notation of the proof of
Gauss’s Lemma, this means that rj = jc, so

cj =
{

rj if rj < p/2,
p − rj if rj > p/2,

and qj = �jc/p�. Arrange the rj so that rj > p/2 for j = 1, 2, . . . , c, and
rj < p/2 for j = c + 1, c + 2, . . . , (p− 1)/2, which is allowed since we know from
the proof of Gauss’s Lemma that the cj are just the values 1, 2, . . . , (p− 1)/2 in
some order. Thus, we have

(p−1)/2∑
j=1

jc =
(p−1)/2∑

j=1

p�jc/p� +
(p−1)/2∑

j=1

rj . (1.8)

Also, since the cj are just a rearrangement of the numbers 1, 2, . . . , (p − 1)/2,
then

(p−1)/2∑
j=1

j =
c∑

j=1

(p − rj) +
(p−1)/2∑
j=c+1

rj = pc −
c∑

j=1

rj +
(p−1)/2∑
j=c+1

rj . (1.9)

Subtracting (1.9) from (1.8), we get

(c − 1)
(p−1)/2∑

j=1

j = p

(p−1)/2∑

j=1

�jc/p� − c

 + 2

c∑
j=1

rj . (1.10)

Now we reduce (1.10) modulo 2 to get

0 ≡

(p−1)/2∑

j=1

�jc/p� − c

 (mod 2),

© 2007 by Taylor & Francis Group, LLC

1.7. Legendre, Jacobi, & Quadratic Reciprocity 61

since c ≡ p ≡ 1 (mod 2), which means that

c ≡
(p−1)/2∑

j=1

�jc/p� (mod 2).

By Gauss’s Lemma, we are now done. �

We are now in a position to establish Gauss’s famous result, which he first
proved in his masterpiece [35].

Theorem 1.23 The Quadratic Reciprocity Law

If p �= q are odd primes, then
(

p

q

) (
q

p

)
= (−1)

p−1
2 · q−1

2 .

Equivalently,
(

q

p

)
= −

(
p

q

)
if p ≡ q ≡ 3 (mod 4), and

(
q

p

)
=

(
p

q

)
otherwise.

Proof. First we establish that

p − 1
2

· q − 1
2

=
(p−1)/2∑

k=1

�kq/p� +
(q−1)/2∑

j=1

�jp/q�. (1.11)

Let
S = {(jp, kq) : 1 ≤ j ≤ (q − 1)/2; 1 ≤ k ≤ (p − 1)/2}.

The cardinality of S is p−1
2 · q−1

2 . Also, it is an easy check to verify that jp �= kq
for any 1 ≤ j ≤ (q − 1)/2, or 1 ≤ k ≤ (p − 1)/2. Furthermore, set

S = S1 ∪ S2,

where
S1 = {(jp, kq) ∈ S : jp < kq},

and
S2 = {(jp, kq) ∈ S : jp > kq}.

If (jp, kq) ∈ S1, then j < kq/p. Also, kq/p ≤ (p−1)q/(2p) < q/2. Therefore,
�kq/p� < q/2, from which it follows that

�kq/p� ≤ (q − 1)/2.

Hence, the cardinality of S1 is
∑(p−1)/2

k=1 �kq/p�. Similarly, the cardinality of S2

is
∑(q−1)/2

j=1 �jp/q�. This establishes (1.11).

© 2007 by Taylor & Francis Group, LLC

62 1. Mathematical Basics

Now set M =
∑(p−1)/2

k=1 �kq/p�, and N =
∑(q−1)/2

j=1 �jp/q�. If we let q = c in
Corollary 1.4, then (

q

p

)
= (−1)M .

Similarly, (
p

q

)
= (−1)N .

Hence, (
q

p

)(
p

q

)
= (−1)M+N .

The result now follows from (1.11). �

Example 1.24 Let p = 7 and q = 991. Then by the Quadratic Reciprocity
Law, (

p

q

) (
q

p

)
=

(
7

991

) (
991
7

)
= (−1)3·495 = (−1)

p−1
2 · q−1

2 = −1,

so (
7

991

)
= −

(
991
7

)
= −

(
4
7

)
= −

(
2
7

)2

= −1.

Hence, x2 ≡ 7 (mod 991) has no solutions x ∈ Z.

Exercises 1.124–1.125 on page 66 are applications of the Quadratic Reci-
procity Law. We conclude this section with a generalization of the Legendre
symbol, which we will require later in the text.

Definition 1.19 The Jacobi Symbol

Let n > 1 be an odd natural number with n =
∏k

j=1 p
ej

j where ej ∈ N and the
pj are distinct primes. Then the Jacobi Symbol of a with respect to n is given
by (a

n

)
=

k∏
j=1

(
a

pj

)ej

,

for any a ∈ Z, where the symbols on the right are Legendre Symbols.

Biography 1.20 Carl Gustav Jacob Jacobi (1804–1851) was born in Potsdam
in Prussia on December 10, 1804, to a wealthy German banking family. In
August of 1825, Jacobi obtained his doctorate from the University of Berlin
on an area involving partial fractions. The next year he became a lecturer at
the University of Königsberg and was appointed as a professor there in 1831.
Jacobi’s first major work was his application of elliptic functions to number
theory. Also, he made contributions to analysis, geometry, and mechanics. He
died of smallpox on February 18, 1851.

© 2007 by Taylor & Francis Group, LLC

1.7. Legendre, Jacobi, & Quadratic Recipro city 63

We will require the following result to establish properties of the Jacobi
Symbol. This result is known as the Supplement to the Quadratic Reciprocity
Law. Such supplements also exist for the higher reciprocity laws (see [62, pp.
273–332].

Proposition 1.8 Let p be an odd prime. Then the following Legendre Symbol
identity holds, (

2
p

)
= (−1)

p2−1
8 .

Proof. Let M =
∑(p−1)/2

j=1 �jc/p� where c ∈ Z such that p � c, and note that∑(p−1)/2
j=1 j = (p2 − 1)/8 by Theorem 1.4 on page 10.
From (1.10) in the proof of Corollary 1.4 on page 60,

(c − 1)(p2 − 1)/8 = p(M − c) + 2
c∑

j=1

rj .

Therefore,

c ≡ M +
(p2 − 1)

8
(c − 1) (mod 2).

If c = 2, then M = 0, since �2j/p� = 0 for all j ∈ N with j < p/2, so

c ≡ (p2 − 1)
8

(mod 2).

This establishes the result via Gauss’s Lemma 1.2 on page 59. �

Corollary 1.5 Let p be an odd prime. Then
(

2
p

)
=

{
1 if p ≡ ±1 (mod 8),
−1 if p ≡ ±3 (mod 8).

Proof. By Proposition 1.8, 2 is a quadratic residue modulo p if and only
if (p2 − 1)/8 is even, namely whenever p2 ≡ 1 (mod 16). This occurs precisely
when p ≡ ±1 (mod 8). Similarly, 2 is a quadratic nonresidue modulo p when
(p2 − 1)/8 is odd, namely whenever p2 ≡ 9 (mod 16), and this occurs precisely
when p ≡ ±3 (mod 8). �

The Jacobi Symbol satisfies the following properties.

Theorem 1.24 Properties of the Jacobi Symbol

Let m,n ∈ N, with n odd, and a, b ∈ Z. Then

(1)
(

ab

n

)
=

(a

n

) (
b

n

)
.

© 2007 by Taylor & Francis Group, LLC

64 1. Mathematical Basics

(2)
(a

n

)
=

(
b

n

)
if a ≡ b (mod n).

(3) If m is odd, then
(a

mn

)
=

(a

m

) (a

n

)
.

(4)
(−1

n

)
= (−1)(n−1)/2.

(5)
(

2
n

)
= (−1)(n

2−1)/8.

(6) If gcd(a, n) = 1 where a ∈ N is odd, then
(a

n

) (n

a

)
= (−1)

a−1
2 ·n−1

2 ,

which is the Quadratic Reciprocity Law for the Jacobi Symbol.

Proof. Properties (1)–(2) follow from the results for the Legendre Symbol
given in Theorem 1.22 on page 58. Property (3) is an easy consequence of
Definition 1.19. For part (4), observe that if n =

∏�

j=1 pj where the pj are (not
necessarily distinct) primes, then

n =
�∏

j=1

(pj − 1 + 1) ≡ 1 +
�∑

j=1

(pj − 1) (mod 4),

since all pj − 1 are even. Thus,

n − 1
2

≡
�∑

j=1

(pj − 1)/2 (mod 2). (1.12)

For convenience’s sake, we set S =
∑�

j=1(pj − 1)/2. Therefore, by part (3)
proved above and part (1) of Theorem 1.22 in conjunction with (1.12),

(−1
n

)
=

�∏
j=1

(−1
pj

)
=

�∏
j=1

(−1)(pj−1)/2 = (−1)S = (−1)(n−1)/2,

which is part (4). For part (5), first observe that

n2 =
�∏

j=1

p2
j =

�∏
j=1

(p2
j − 1 + 1) ≡ 1 +

�∑
j=1

(p2
j − 1) (mod 16),

since p2
j ≡ 1 (mod 8) for all such j. Therefore,

n2 − 1
8

≡
∑�

j=1(p
2
j − 1)

8
(mod 2),

© 2007 by Taylor & Francis Group, LLC

1.7. Legendre, Jacobi, & Quadratic Reciprocity 65

and we set T =
∑�

j=1(p
2
j −1)/8 for convenience. By Proposition 1.8 on page 63,

(
2
n

)
=

�∏
j=1

(
2
pj

)
=

�∏
j=1

(−1)(p
2
j−1)/8 = (−1)T = (−1)(n

2−1)/8,

which secures part (5). For part (6), let a =
∏t

j=1 qj , where the qj are (not
necessarily distinct) primes. Since gcd(a, n) = 1, then pj �= qk for any j, k.
Thus, by properties (1) and (3), established above,

(a

n

) (n

a

)
=

�∏
j=1

(
a

pj

) t∏
k=1

(
n

qk

)
=

�∏
j=1

t∏
k=1

(
qk

pj

) t∏
k=1

�∏
j=1

(
pj

qk

)
=

�∏
j=1

t∏
k=1

(
pj

qk

) (
qk

pj

)
,

and by Theorem 1.23, this equals

�∏
j=1

t∏
k=1

(−1)
pj−1

2 · qk−1
2 = (−1)U ,

where

U =
�∑

j=1

t∑
k=1

pj − 1
2

· qk − 1
2

=
�∑

j=1

pj − 1
2

t∑
k=1

qk − 1
2

.

However, as shown for the pj in (1.12),

t∑
k=1

qk − 1
2

≡ a − 1
2

(mod 2),

so the result follows. �

Example 1.25 We have the following for n = 15,
(

2
15

)
=

(
2
3

) (
2
5

)
= (−1)(−1) = 1.

However, 2 is not a quadratic residue modulo 15. Thus, more caution must be
exercised with the interpretation of the use of the Jacobi Symbol. See Exercises
1.126–1.127.

The use of the Jacobi Symbol for primality testing will become apparent as
we travel through the text.

© 2007 by Taylor & Francis Group, LLC

66 1. Mathematical Basics

Exercises

1.124. Prove that if p > 2 is prime, then(
3
p

)
=

{
1 if p ≡ ±1 (mod 12),
−1 if p ≡ ±5 (mod 12).

1.125. Verify the Legendre Symbol identity,

p−1∑
j=1

(
j

p

)
= 0,

where p is an odd prime by showing that there are (p − 1)/2 quadratic
residues and (p−1)/2 quadratic nonresidues modulo p. Then use this fact
to establish the Legendre Symbol identity,

p−1∑
j=0

(
(j − a)(j − b)

p

)
=

{
p − 1 if a ≡ b (mod p),
−1 if a �≡ b (mod p).

1.126. Let a ∈ Z, and n ∈ N odd. Prove that if
(

a
pt

)
= 1 for all primes p such

that pt||n for some t ∈ N, then a is a quadratic residue modulo n (see
Footnote 1.6 on page 49).

1.127. Let n ∈ N be odd. Prove that
(

m
n

)
= 1 for all m ∈ N with m < n such

that gcd(m,n) = 1 if and only if n is a perfect square.

1.128. Let f(x) = ax2 + bx + c where a, b, c ∈ Z, and set ∆ = b2 − 4ac. Suppose
that p > 2 is a prime not dividing ∆. Prove that

∑p−1
x=0

(
f(x)

p

)
= −(

a
p

)
.

1.129. Let f(x) = ax2 + bx + c where a, b, c ∈ Z, and set ∆ = b2 − 4ac. Suppose
that p > 2 is a prime such that p|∆. Prove that

p−1∑
x=0

(
f(x)

p

)
= (p − 1)

(
a

p

)
.

Sums of the form
∑

(f(x)
p) are called Jacobsthal sums.

Biography 1.21 Ernst Jacobsthal (1882–1965) was born in Berlin on October
16, 1882. He received his doctorate in Berlin in 1906 with his doctoral advisors
being Georg Frobenius and Issai Schur. From 1913 he was a lecturer at the
technical university of Berlin. In 1934, he emigrated to Norway where he took
a position as a professor at the technical university of Trondheim. After the
occupation of Norway, he fled in January of 1943 to Sweden. When the war
ended, he returned to Trondheim to resume his position there. He died in
Ueberlingen in 1965.

© 2007 by Taylor & Francis Group, LLC

1.8. Complexity 67

1.8 Complexity

Biography 1.22 Edmund Georg
Hermann Landau (1877–1938) was
born on February 14, 1877, in Berlin,
Germany. He attended the French
Lycée in Berlin, then entered the Uni-
versity of Berlin to study mathematics
at the age of sixteen. He received his
doctorate in 1899 in number theory,
having studied under Frobenius. (See
Biography 1.21 on page 66.) In 1901,
he submitted his Habilitation on ana-
lytic number theory. Then he taught
at the University of Berlin from 1899
until 1909, when he was appointed to
Göttingen as a successor to Minkowski
(1864–1909). In 1909, he published
the first systematic presentation of
analytic number theory. In 1933, he
was forced out of Göttingen by the
National Socialist regime. After this
he lectured only outside Germany. He
died on February 19, 1938, in Berlin.

The amount of time required for
the execution of an algorithm on a
computer is measured in terms of bit
operations, which are defined as fol-
lows: addition, subtraction, or multi-
plication of two binary digits; the di-
vision of a two-bit integer by a one-
bit integer; or the shifting of a binary
digit by one position. (The reader
unfamiliar with computer arithmetic
should consult Appendix B.) The num-
ber of bit operations necessary to com-
plete the performance of an algorithm
is called its computational complexity
or simply its complexity. This method
of estimating the amount of time taken
to execute a calculation does not take
into account such things as memory
access or time to execute an instruc-
tion. However, these executions are
very fast compared with a large num-
ber of bit operations, so we can safely
ignore them. These comments are
made more precise by the introduction
of the following notation introduced by
Edmund Landau.

Definition 1.20 Big O Notation

Suppose that f and g are positive real-valued functions. If there exists a
positive real number c such that

f(x) < cg(x) (1.13)

for all sufficiently large
1.7 x, then we write

f(x) = O(g(x)) or simply f = O(g). (1.14)

(Mathematicians also write f << g to denote f = O(g) — see Biography 1.23
on page 68.)

Big O is the order of magnitude of the complexity, an upper bound on the
number of bit operations required for execution of an algorithm in the worst-
case scenario, namely in the case where even the trickiest or the nastiest inputs

1.7Here sufficiently large means that there exists some bound B ∈ R
+ such that f(x) < cg(x)

for all x > B. We just may not know explicitly the value of B. Often f is defined on N rather
than R and occasionally over any subset of R.

© 2007 by Taylor & Francis Group, LLC

68 1. Mathematical Basics

are given. It is possible that most often for a given algorithm even less time will
be used, but we must always account for the worst-case scenario.

The comments made before Definition 1.20 may now be put into perspective.

Biography 1.23 The notation << was
introduced by I.M. Vinogradov, a Rus-
sian mathematician who proved in 1937
that every sufficiently large positive inte-
ger is the sum of at most four primes.
This is related to Goldbach’s Conjecture,
which says that every even n ∈ N with
n > 2 is a sum of two primes. The “ =”
in (1.14) should be considered as a < and
the “O” should be considered as a con-
stant multiple. The equality is a means
of saying that f is a member of the family
satisfying (1.13).

The definition of the time taken to
perform a given algorithm does not
take into consideration time spent
reading and writing such as memory
access, timings of instructions, even
the speed or amount of memory of
a computer, all of which are negligi-
ble in comparison with the order of
magnitude complexity. The greatest
merit of this method for estimating
execution time is that it is machine
independent. In other words, it does
not rely upon the specifics of a given
computer, so the order of magnitude
complexity remains the same, irre-
spective of the computer being used.
In the analysis of the complexity of an algorithm, we need not know exactly how
long it takes (namely, the exact number of bit operations required to execute
the algorithm), but rather it suffices to compare with other objects, and these
comparisons need not be immediate but rather long-term. In other words, what
Definition 1.20 says is that if f is O(g), then eventually f(x) is bounded by
some constant multiple cg(x) of g(x). We do not know exactly what c happens
to be or just how big x must be before (1.13) occurs. However, for reasons given
above, it is enough to account for the efficiency of the given algorithm in the
worst-case scenario.

Example 1.26 A simple illustration of the use of Big O is to determine the
number of bits in a base b integer. If n is a tn-bit base b integer, then

btn−1 ≤ n < btn .

Therefore, tn = �logb n� + 1, so an estimate on the size of tn is, in general,
tn = O(logb n). Shortly, we will demonstrate that the base b of the logarithm is
irrelevant in determining complexity.

Another simple illustration of the use of the Big O notation is to refer to
Appendix B, where we introduced the algorithms for adding, subtracting, mul-
tiplying, and dividing two s-bit integers. Review of these algorithms shows us
that addition or subtraction take O(s) bit operations, which is also the num-
ber of bit operations required to compare them (determine which is larger, or
whether they are equal). On the other hand, the multiplication of an s-bit in-
teger with an t-bit integer requires O(st) bit operations (see Exercise 1.130 on

© 2007 by Taylor & Francis Group, LLC

1.8. Complexity 69

page 78). By Exercise 1.140, division of an s-bit integer by an t-bit integer, with
s ≤ t, takes O(st) bit operations.

If a number n has no more than s bits, then n ≤ 2s, so if we wish to
describe complexity in terms of the numbers themselves rather than their re-
spective bit sizes, then we can rephrase the above as follows. The addition,
subtraction or comparison of two integers less than n takes O(log2(n)) bit op-
erations, and the multiplication of two such integers takes O(log2

2(n)) bit op-
erations, while division of n by m ≤ n takes O(log2 m log2 n) bit operations.

Some Basic Facts: (1) Recall that
lnn means loge n, the logarithm to the
base e, the natural or canonical base,
where we often use exp(x) in place of ex

for convenience. In the mathematical
literature, log x is often used for loge x.
Also, recall that logb x = lnx/ ln b.
(2) To say that a is proportional to b
means that a/b = c, a constant, called
the constant of proportionality. This re-
lationship is often written as a ∝ b in
the literature.
(3) Recall that a (nonconstant) poly-
nomial is a function of the form∑n

i=0 aix
i for n ∈ N, where the ai are

the coefficients (see page 311).

The amount of time taken by a
computer to perform a task is (essen-
tially) proportional to the number of
bit operations. In the simplest possi-
ble terms, the constant of proportion-
ality, which is the number of nanosec-
onds per bit operation, depends upon
the computer being used. (A nanosec-
ond is 1/109 of a second — a billionth
of a second.) This accounts for the
machine independence of the Big O
method of estimating complexity since
the constant of proportionality is of
no consequence in the determination
of Big O.

� Time Estimates

A fundamental time estimate in
executing an algorithm is polynomial
time (or simply polynomial). In other words, an algorithm is polynomial when
its complexity is O(nc) for some constant c ∈ R+, where n is the bitlength
of the input to the algorithm, and c is independent of n. (Observe that any
polynomial of degree c is O(nc).) In general, these are the desirable algorithms,
since they are the fastest. Therefore, roughly speaking, the polynomial time
algorithms are the good or efficient algorithms. For instance, the algorithm is
constant if c = 0; if c = 1, it is linear; if c = 2, it is quadratic; and so on.
Examples of polynomial time algorithms are those for the ordinary arithmetic
operations of addition, subtraction, multiplication, and division. On the other
hand, those algorithms with complexity O(cf(n)) where c is constant and f is a
polynomial on n ∈ N are exponential time algorithms or simply exponential. A
subexponential time algorithm is one for which the complexity for input n ∈ N
is

O(exp((c + o(1))(ln n)r(ln lnn)1−r)

where r ∈ R with 0 < r < 1 and c is a constant, where o(1) denotes a function
f(n) such that limn→∞ f(n) = 0. (In general, f(n) = o(g(n)) means that
limn→∞ f(n)/g(n) = 0. Thus, o(1) is used to symbolize a function whose limit

© 2007 by Taylor & Francis Group, LLC

70 1. Mathematical Basics

as n approaches infinity is 0.) Subexponential time algorithms are faster than
exponential time algorithms but slower than polynomial time algorithms. These
are, again roughly speaking, the inefficient algorithms. For instance, the method
of trial division as a test for primality of n ∈ N uses

√
n steps to prove that n

is prime, if indeed it is. If we take the maximum bitlength N = log2 n as input,
then √

n = 2(log2 n)/2 = 2N/2,

which is exponential. Algorithms with complexity O(cf(n)) where c is constant
and f(n) is more than constant but less than linear are called superpolynomial.
It is generally accepted that modern-day cryptanalytic techniques for breaking
known ciphers are of superpolynomial time complexity, but nobody has been
able to prove that polynomial time algorithms for cryptanalyzing ciphers do not
exist.

In calculating complexity using the Big O notation, the following properties
are essential.

Theorem 1.25 Properties of the Big O Notation

Suppose that f, g are positive real-valued functions.

(a) If c ∈ R+, then cO(g) = O(g).

(b) O(max{f, g}) = O(f) + O(g).

(c) O(fg) = O(f)O(g).

Proof. (a) If f = O(g), then there is a constant k ∈ R+ such that f(x) <
kg(x) for all sufficiently large x. Therefore,

cf(x) < (ck)g(x),

from which we get cf = O(g). In other words,

O(g) = cO(g).

(b) Let h1 = O(f), and h2 = O(g), then there exist c1, c2 ∈ R+ such that
h1(x) < c1f(x) and h2(x) < c2g(x) for sufficiently large x. Therefore,

h1(x) + h2(x) < max{c1f(x), c2g(x)}.
Hence, O(f) + O(g) = O(max{f, g}).

(c) Let h1 = O(f), and h2 = O(g), then h1(x) < c1f(x) and h2(x) < c2g(x),
for some c1, c2 ∈ R+, and for sufficiently large x. Therefore,

h1(x)h2(x) < c1c2f(x)g(x),

for sufficiently large x. This implies that

O(f)O(g) = h1h2 = O(fg),

© 2007 by Taylor & Francis Group, LLC

1.8. Complexity 71

which completes the proof. (Note that part (a) is now a special case of part (c)
with f = 1. Also, note that if f = g, then this provides the induction step for
the more general fact that O(fn) = O(f)n for any n ∈ N.) �

The following illustration involves the factorial notation (see Appendix A).

Example 1.27 Suppose that we wish to calculate the number of bit operations
required to evaluate n! for n ∈ N using only standard techniques. Assume
that each natural number less than n has at most t bits. Then n! has at most
n(t+1) bits and n(t+1) = O(nt). Therefore, in the n−1 = O(n) multiplications
involved in computing n!, we multiply an integer with at most t bits by an integer
with O(nt) bits. This requires O(nt2) bit operations. Since we do this O(n)
times, the total number of bit operations required is O(nt2)O(n) = O(n2t2), by
part (c) of Theorem 1.25. However, we know that t = O(log2 n) from above, so
the number of bit operations to compute n! is O(n2t2) = O(n2 log2

2 n), by part
(c) of the theorem again. This is exponential in the number of bits of n.

Note that Theorem 1.25 shows us that in the complexity analysis of such
algorithms as the division of two integers discussed above, where division of n
by m ≤ n takes O(log2 m log2 n) bit operations, it is irrelevant which logarithm
we use, since it does not change the Big O estimate. To see this we note that

O(logb(n)) = O(lnn/ ln b) = O(lnn)/ ln b = O(lnn), (1.15)

by Theorem 1.25. For this reason, we omit any subscripts on logarithms in Big
O notation henceforth, unless specified otherwise for a given reason.

� Real-World Complexity of Algorithms

To get some idea of what the various classes of complexity analysis mean
in “real-world” terms, let us look at times related to some of these classes.
Suppose that the unit of time on the computer at our disposal is a microsecond
(a millionth (1/106) of a second). Assuming an input of n = 106 bits, then
a constant algorithm (complexity O(1)) would take a microsecond to execute,
since the number of bit operations is one. A linear algorithm (complexity O(n))
would take a second, since the number of bit operations is 106. A quadratic
algorithm (complexity O(n2)) would take 11.5741 = 1012/(106 · 24 · 3600) days,
since there are 1012 bit operations, and a cubic algorithm (complexity O(n3))
would take 31, 709 = 1018/(106 · 24 · 3600 · 365) years, since the number of bit
operations is 1018. By the time we get to exponential algorithms, we are looking
at times astronomically larger than the age of the known universe. Hence, a
problem is called intractable if no polynomial time algorithm could possibly
solve it, whereas one that can be solved using a polynomial time algorithm is
called tractable. (By a problem, we mean a general question to be answered. A
decision problem is one whose solution is “yes” or “no.” A problem may possess
parameters whose values are left unspecified, and an instance of a problem is
achieved by specifying values for those parameters.)

© 2007 by Taylor & Francis Group, LLC

72 1. Mathematical Basics

� Turing Machines

To understand how complexity theory divides problems into classes, we must
imagine a theoretical computer, called a Turing Machine (see Biography 1.24
on page 73), which is a finite state machine having an infinite read-write tape.
In other words, our theoretical computer has infinite memory and the ability to
search for and retrieve any data from memory. Church’s Thesis essentially says
that the Turing Machine as a model of computation is equivalent to any other
model for computation. (Here we may think of a “model” naively as a simplified
mathematical description of a computer system.) Therefore, Turing Machines
are realistic models for simulating the running of algorithms, and they provide
a powerful computational model. However, a Turing Machine is not meant to
be a practical design for any actual machine but rather is a sufficiently simple
model to allow us to prove theorems about its computational capabilities while
at the same time being sufficiently complex to include any digital computer
irrespective of implementation.

� Complexity Problem Classes

Complexity theory designates a decision problem to be in class P if it can be
solved in polynomial time, whereas a decision problem is said to be in class NP
if it can be solved in polynomial time on a nondeterministic Turing Machine,
which is a variant of the normal Turing Machine in that it guesses solutions to
a given problem and checks its guess in polynomial time. Another way to look
at the class NP is to think of these problems as those for which the correctness
of a guess at an answer to a question can be proven in polynomial time. Those
problems that can be disproved or for which a no answer can be guessed in
polynomial time are said to be in Co − NP. In other words, Co − NP consists
of the problems whose complement is in NP. For example, the complement of
“Is n ∈ N composite?” is “Is n ∈ N prime?”. Note that the complement of
problems in P are also in P. However, this is not known for NP. It is generally
held that NP �= Co − NP, but this has not been proved.

The class P is a subset of the class NP since a problem that can be solved in
polynomial time on a deterministic machine can also be solved, by eliminating
the guessing stage, on a nondeterministic Turing Machine. It is an open problem
in complexity theory to resolve whether or not P = NP. However, virtually
everyone believes that they are unequal. It is generally held that most modern
ciphers can be cryptanalyzed in nondeterministic polynomial time. However, in
practice it is the deterministic polynomial time algorithm that is the end goal
of modern-day cryptanalysis. Defining what it means to be a “computationally
hard” problem is a hard problem. One may say that problems in P are easy,
and those not in P are considered to be hard. (For instance, see [83, pp. 195–
196].) However, there are problems that are regarded as computationally easy
yet are not known to be in P. (For instance, the Miller-Rabin-Selfridge Test,
which we will study in Section 3 of Chapter 4, is such a problem. It is in the
class RP, called randomized polynomial time or probabilistic polynomial time.
Here, P ⊆ RP ⊆ NP.) A practical (but mathematically less satisfying) way to

© 2007 by Taylor & Francis Group, LLC

1.8. Complexity 73

define “hard” problems is to view them as those which have continued to resist
solutions after a concerted attack by competent investigators for a long time up
to the present.

Biography 1.24 Alan Mathison Turing (1912–1954) was born on June 23,
1912, in London, England. He studied under Alonzo Church (1903–1995) at
Princeton and received his doctorate in 1938 for his thesis entitled Systems
of Logic Based on Ordinals. During World War II, he worked in the British
Foreign Office and was a major player in cryptanalyzing enemy codes. In 1945,
he began work at the National Physical Laboratory in London, where he helped
design the Automatic Computing Engine, which led the world at the time as a
design for a modern computer. In 1948, Turing became the deputy director of
the Computing Laboratory at Manchester, where the first running example of a
computer using electronically stored programs was being built. His contributions
include pioneering efforts in artificial intelligence. In 1952, he was arrested
for violation of the British homosexuality statutes. His death from potassium
cyanide poisoning occurred while he was doing experiments in electrolysis, and
it is uncertain whether this was an accident or self-inflicted.
For the reader interested in more detail and background, a (deterministic one-
tape) Turing Machine has an infinitely long magnetic tape on which instructions
can be written and erased. It also has a single bit register of memory and a
processor that carries out the instructions: (1) move the tape right, (2) move
the tape left, (3) change the state of the register based upon its current value
and a value on the tape, and write or erase on the tape. The Turing Machine
runs until it reaches a desired state causing it to halt. A famous problem in
theoretical computer science is to determine when a Turing Machine will halt
for a given set of input and rules. This is called the Halting Problem. Turing
proved that this problem is undecidable, meaning that it is neither formally
provable nor unprovable.

Another aspect of problem classification in complexity theory is the NP-
complete problem, which is a problem in the class NP that can be proved to
be as difficult as any problem in the class. Should an NP-complete problem be
discovered to have a deterministic polynomial time algorithm for its solution,
this would prove that NP ⊆ P, so P = NP. Hence, we are in the position
that there is no proof that there are any hard problems in this sense, namely
those in NP but not in P. Nevertheless, this has not prevented the flourishing
of research into complexity theory. (The classical NP-complete problem is the
Travelling Salesman Problem: A travelling salesman wants to visit n ∈ N cities.
Is there a round trip that he can map out that allows him to visit each city
exactly once? This has been shown to be equivalent to the Knapsack Problem,
which we will study in Section 4 of Chapter 3.) There are other distinctions
up to and including the set EXPTIME of problems that can be solved in
exponential time. However, the focus of this book will not need to address the
finer distinctions.

© 2007 by Taylor & Francis Group, LLC

74 1. Mathematical Basics

� Applications of Complexity Theory

We now look at some applications of complexity theory and the use of the
Big O symbol (see Biography 1.25).

Theorem 1.26 Lamé

If a, b ∈ N such that a > b, and it takes n + 1 iterations (divisions) to find
gcd(a, b) using the Euclidean Algorithm, then n < logg b, where g = (1 +

√
5)/2

is the golden ratio (initially defined on page 11).

Proof. If a = r−1, b = r0, then by Euclid’s Algorithm,

rj−1 = rjqj+1 + rj+1 (0 < rj+1 < rj)

for all nonnegative integers j < n, where n is the smallest value such that
rn+1 = 0 (namely, we have n + 1 iterations). Therefore, if Fj denotes the jth

Fibonacci number, then
rn ≥ 1 = F2

rn−1 = rnqn+1 ≥ 2 = F3

rn−2 ≥ rn−1 + rn ≥ F3 + F2 = F4

...

b = r0 ≥ r1 + r2 ≥ Fn+1 + Fn = Fn+2

Therefore, b ≥ Fn+2. By Theorem 1.6 on page 11,

Fn+2 ≥ g
n,

so
b ≥ g

n.

Hence,
n < logg b,

so we have established the theorem of Lamé. �

Biography 1.25 Gabriel Lamé (1795–1870) was born on July 22, 1795, in
Tours, France. He both studied at École Polytechnique and was later a professor
there. His primary contributions were to mathematical physics, but he also
worked in differential geometry, diffusion in crystalline material, and elasticity.
In fact, two elastic constants are named after him. His contributions to number
theory were this result, and his proof of Fermat’s Last Theorem for the exponent
n = 7, which he gave in 1839. He died on May 1, 1870, in Paris, where there
is now a street named after him.

© 2007 by Taylor & Francis Group, LLC

1.8. Complexity 75

Corollary 1.6 With the hypothesis of Lamé’s Theorem holding,

n < 5 log10 b.

Proof. An easy check shows that log10 g > 1/5, so by Lamé’s Theorem,

n

5
< logg b log10 g = log10 b.

(For the equality, see the basic facts box on page 69.) Hence, n < 5 log10 b. �

In common language, what Corollary 1.6 says is the following.

The number of iterations required to find gcd(a, b) is at most five times the
number of decimal digits in the smaller value b.

To see this, suppose that b has s decimal digits, so b < 10s, namely log10 b <
s. Therefore, 5s > n by Corollary 1.6, so 5s ≥ n + 1, which is the number of
iterations required to find the gcd(a, b). What is implicit in this discussion is
that the complexity of the given algorithm depends on b and not on a. Moreover,
in computing the gcd of two consecutive Fibonacci numbers, the upper bound
on complexity is reached. In other words, the worst-case scenario does indeed
occur.

Now we use Lamé’s Theorem to establish the following.

Theorem 1.27 Computational Complexity of the GCD

If a, b ∈ N such that a > b, then the number of bit operations required to find
gcd(a, b) using Euclid’s Algorithm, is O(ln3 a).1.8

Proof. From the proof of Theorem 1.26, rj ≥ Fn−j+2. In particular, we have
b ≥ Fn+2 and a ≥ Fn+3. Since

Fn+3 ≥ g
n+1,

then
logg a ≥ n + 1.

By the Euclidean Algorithm, Theorem 1.2, the number of divisions required
to find gcd(a, b) is n + 1 , and

n + 1 = O(ln a)

by (1.15) on page 71. This is the number of bit operations required to perform
the n + 1 divisions. Since each iteration of the algorithm computes a quotient

1.8This can be improved by a more refined analysis to show that the running time (defined
as the number of bit operations executed for a given input) of the Euclidean Algorithm is
O(ln2 a). See [58, 2.105 Fact, p. 66].

© 2007 by Taylor & Francis Group, LLC

76 1. Mathematical Basics

and remainder involving numbers no bigger than a, then each iteration can be
done in time O(ln2 a). Therefore, by part (c) of Theorem 1.25, gcd(a, b) may be
found using O(ln3 a) bit operations. �

The following is a variant of the Euclidean Algorithm.

� The Least Remainder Algorithm

Let a, b ∈ Z with a ≥ b > 0 and set a = s−1, b = s0. As with the
Euclidean Algorithm, we repeatedly apply the Division Algorithm according to
the recursive formula for each j ≥ 0:

|sj−1| = |sj |tj+1 + sj+1 where − |sj |/2 < sj+1 ≤ |sj |/2.

Note that an analogue of the Division Algorithm (Theorem 1.1) holds for
the least remainder algorithm. This guarantees the existence and uniqueness of
the sj and tj .

Example 1.28 If 1001 = s−1 and s0 = 221, then to apply the Least Remainder
Algorithm we proceed as follows.

s−1 = 1001 = 221 · 5 − 104 = s0t1 + s1,

s0 = 221 = 104 · 2 + 13 = |s1|t2 + s2,

and |s1| = 104 = 13 · 8 = s2t3, so gcd(1001, 221) = 13.
If we now compare this with the ordinary Euclidean Algorithm, we get,

r−1 = 1001 = 221 · 4 + 117 = r0q1 + r1,

r0 = 221 = 117 · 1 + 104 = r1q2 + r2,

r1 = 117 = 104 · 1 + 13 = r2q3 + r3,

and r2 = 104 = 13 · 8 + 0 = r3q4 + r4, so gcd(1001, 221) = 13 = r3 = rn−1.

In general, the Euclidean Algorithm is less efficient than the Least Remainder
Algorithm. It can be shown that we save approximately

1 − log2 g ≈ 0.306

of the division steps by using the Least Remainder Algorithm over the Euclidean
Algorithm (see [46, Exercise 30, p. 376]). The Least Remainder Algorithm
allows for negative remainders, the least in absolute value, which accounts for
its increased efficiency.

This completes the introductory material and thus we conclude Chapter 1
with some general remarks concerning complexity theory.

© 2007 by Taylor & Francis Group, LLC

1.8. Complexity 77

� Summary of Complexity Theory

Roughly speaking, complexity theory can be subdivided into two categories:
(a) structural complexity theory, and (b) the design and analysis of algorithms.
Essentially, category (a) is concerned with lower bounds, and category (b) deals
with upper bounds. Basically, the primary goal of structural complexity theory
is to classify problems into classes determined by their intrinsic computational
difficulty. In other words, how much computing time (and resources) does it
take to solve a given problem? As we have seen in this section, the fundamental
question in structural complexity theory remains unanswered, namely does P =
NP? In this section, we have been primarily concerned with the analysis of
algorithms, which is of the most practical importance to cryptography.

The foundations of complexity theory were laid by the work done starting
in the 1930’s by Turing and Church, among others (see Biography 1.24 on page
73). As we have seen in this section, the first goal was to formalize the notion
of a computer (or realistic model thereof such as the Turing Machine). Then
the goal was whether such devices could solve various mathematical problems.
One of the outcomes of this research, again as we have seen, is that there are
problems that cannot be solved by a computer. This dashed the program, set
out by Hilbert (see Biography 1.26) at the turn of the twentieth century, which
sought to show that all mathematical problems could, at least in principle, be
answered in some deterministic or mechanical way.

Although the design of better and more efficient algorithms has been a goal of
mathematicians and scientists in general for some time, it was not until the late
1960’s that complexity theory began to be recognized as a formal discipline.
The establishment of the theory may be credited to the pioneering work of
Stephen Cook, Richard Karp, Donald Knuth, and Michael Rabin. Each of
these individuals has since been awarded the highest honour in computer science
research — the Turing Award.

Biography 1.26 David Hilbert (1862–1943) was born in Königsberg, Prussia
(now Kaliningrad, Russia). In 1895, Hilbert was appointed to the chair of math-
ematics at the University of Göttingen where he remained until his retirement
in 1930. Among his students were Hermann Weyl (1885–1955) and E.F.E.
Zermelo (1871–1953). Hilbert’s contributions to twentieth-century mathemat-
ics were deep indeed. Perhaps this is best epitomized in the speech he delivered
to the Second International Congress of Mathematicians held in 1900 in Paris,
where he presented his now-famous list of twenty-three problems, many of which
remain unsolved. Among these problems was the aforementioned one, namely
that a finite number of logical steps based upon the axioms of arithmetic can
never lead to contradictory results. However, the work of a mathematician
named Kurt Gödel (1906–1978) destroyed any hope of that in 1931, when he
proved that, given the axioms of arithmetic, statements can be made that can
neither be proved nor disproved, namely they are undecidable. Hilbert died on
February 14, 1943. See [61, p. 290] and [62, p. 10] for more information.

© 2007 by Taylor & Francis Group, LLC

78 1. Mathematical Basics

Exercises

1.130. Prove that the multiplication of an m-bit integer with an n-bit integer,
using the algorithms of Section 3, takes O(mn) bit operations.

1.131. Prove that for any n ∈ N,
n! = O(nn).

1.132. Show that if

f(x) =
n∑

j=0

ajx
j ,

where aj ∈ N for each j ≥ 0, then

O(f) = O(xn).

1.133. Find a function f(b, n), for b, n ∈ N, such that O(f) is the largest n-digit
number to base b.

1.134. Estimate the number of bit operations required to compute
∑n

j=1 j2.

1.135. Prove that for all r ∈ R+,

ln(n) = O(nr).

1.136. Find a counterexample to the following assertion.

If f(x) = O(g(x)), then ef(x) = O(eg(x)).

1.137. Prove that if f(x) = O(g(x)), then ln(f(x)) = O(ln(g(x)).

1.138. Find a counterexample to the assertion:

If f(x) = O(g(x)), then h(f(x)) = O(h(g(x)).

1.139. Given n ∈ N, prove that the number of bit operations required to compute
n! is O(n2 ln2(n)).

1.140. Prove that the number of bit operations required to divide n by m, us-
ing the algorithm given on page 333 of Appendix B on basic computer
arithmetic, is O(mn).

1.141. Prove that if f(x) = O(g(x)) where g(x) is a polynomial, then fn(x) =
O(gn(x)).

1.142. Prove that for any n ∈ N,

n ln(n) = O(ln(n!)).

© 2007 by Taylor & Francis Group, LLC

Chapter 2

Cryptographic Basics

2.1 Definitions and Illustrations

� Cryptography

First we will settle upon the meaning of cryptography, which is the study
of methods for sending messages in secret (namely, in enciphered or disguised
form) so that only the intended recipient can remove the disguise and read the
message (or decipher it). Cryptography has, as its etymology, kryptos from the
Greek, meaning hidden, and graphein, meaning to write. The original message
is called the plaintext, and the disguised message is called the ciphertext. The
final message, encapsulated and sent, is called a cryptogram. The process of
transforming plaintext into ciphertext is called encryption or enciphering. The
reverse process of turning ciphertext into plaintext, which is accomplished by the
recipient who has the knowledge to remove the disguise, is called decryption or
deciphering. Anyone who engages in cryptography is called a cryptographer. On
the other hand, the study of mathematical techniques for attempting to defeat
cryptographic methods is called cryptanalysis. Those practicing cryptanalysis
(usually termed the “enemy”) are called cryptanalysts. The term cryptology (see
Biography 2.1 on page 80) is used to embody the study of both cryptography
and cryptanalysis, and the practitioners of cryptology are cryptologists. The
etymology of cryptology is the greek kryptos meaning hidden and logos meaning
word. Also, the term cipher (which we will use interchangeably with the term
cryptosystem) is a method for enciphering and deciphering. Later in this section
we will mathematically formalize the notion of a cryptosystem, but this will
suffice for now.

� Steganography

Cryptography may be viewed as overt secret writing in the sense that the
writing is clearly seen to be disguised. This is different from steganography,
which conceals the very existence of the message, namely covert secret writ-
ing. (The etymology is steganos from the Greek meaning impenetrable.) For

79
© 2007 by Taylor & Francis Group, LLC

80 2. Cryptographic Basics

instance, invisible ink would be called a technical steganographic method as
would suitcases with false bottoms containing a secret message. One of the
most famous such methods, employed by the Germans during World War II,
was the use of the microdot (invented by Emanuel Goldberg in the 1920’s) as a
period in typewritten documents. An example of linguistic steganography, the
other branch of steganography, is the use of two typefaces to convey a secret
message, a technique used by Francis Bacon (see Biography 2.2 on page 81),

Biography 2.1 The (English) term
cryptography was coined in 1658 by
Thomas Browne, a British physician
and writer. The term cryptology was
coined by James Howell in 1645. How-
ever, John Wilkins (1614–1672) in his
book Mercury, or the Secret and Swift
Messenger, introduced into the English
language the terms cryptologia or secrecy
in speech, and cryptographia or secrecy
in writing. Wilkins, who was a cofounder
of the Royal Society along with John
Wallis (1616–1703) later married Oliver
Cromwell’s sister and became Bishop of
Chester. The modern incarnation of the
use of the word cryptology is probably
due to the advent of Kahn’s encyclopedic
book [43], The Codebreakers published
in 1967, after which the term became
accepted and established as that area of
study embracing both cryptography and
cryptanalysis.

which is described in his publica-
tion of 1623: De Augmentis Sci-
entarium. Today, hiding (sublim-
inal) messages in television com-
mercials would also qualify. Gen-
erally speaking, steganography in-
volves the hiding of secret mes-
sages in other messages or de-
vices. The modern convention is to
break cryptography into two parts:
cryptography proper or overt se-
cret writing, and steganography or
covert secret writing. The term
steganography first appeared in the
work Steganographia, by Johannes
Trithemius (see Biography 2.3 on
page 82). (See [45] for more details
on Steganography.)

� Codes

Some comments on the term
“codes” are appropriate at this
juncture. Throughout history the
term “code” has become blurred
with that of “cipher” and has come
often to mean any kind of disguised
secret. However, today the word “code” has a very specific meaning in various
contexts. If we have a column of plaintext symbols next to a corresponding col-
umn of ciphertext symbols, that is an example of a code-book since you can look
up the “code” and find the plaintext next to it. It is this usage that usually is
reserved for the term “code” — a dictionary-like listing of plaintext and corre-
sponding ciphertext. A cryptographic code means the replacement of linguistic
groups (such as groups of words, or phrases) with numbers, designated words,
or phrases, called codegroups. This is the meaning that we shall use throughout.
Moreover, today there are error-correcting codes, which have nothing to do with
secrecy. These codes rather refer to the removal of “noise” from, say, a telephone
line or satellite signal; namely, these codes provide a means of fixing portions of
a message that were corrupted during transmission. The codes with which we
are concerned here are the ones defined above, which are cryptographic codes,

© 2007 by Taylor & Francis Group, LLC

2.1. Definitions and Illustrations 81

since they have to do with secrecy.

� Substitution and Transposition Ciphers

Biography 2.2 Francis Bacon (1561–
1626) was born on January 22, 1561, in
London, England. He was educated at
Trinity College in Cambridge and ulti-
mately became a lawyer in 1582. After a
brief unsuccessful stint in politics, he be-
came Queen Elizabeth’s counsel. In that
capacity, he helped convict Robert Dev-
ereux (1566–1601) the second earl of Es-
sex, for treason, after which Essex was
executed. After James I assumed the
throne, Bacon again went the political
route. Then after a sequence of subse-
quent legal positions, he was appointed
lord chancellor and Baron Verulam in
1618, and by 1621 he was made Viscount
St. Albans. In the intervening years
1608–1620, he wrote numerous philosoph-
ical works and wrote several versions of
his best-known scientific work, Novum
Organum. In 1621, Bacon was accused
of bribery and fell from power. He spent
his final years writing his most valuable
and respected works. He died on April 9,
1626, in London.

A “substitution” cipher replaces
plaintext symbols with other sym-
bols to produce ciphertext. As a
simple example, the plaintext might
be palace, and the ciphertext might
be QZYZXW when a,c,e,l,p are re-
placed by Z,X,W,Y,Q, respectively.
(The cryptographic convention is to
use lower-case letters for plaintext
and UPPER-CASE letters for CI-
PHERTEXT.) With a transposition
cipher (see Biography 2.4 on page
82), we permute the places where
the plaintext letters sit. What this
means is that we do not change
the letters but rather move them
around, transpose them, without in-
troducing any new letters. Here is
a simple illustration. Suppose that
we have thirteen letters in our plain-
text, and the following is a permu-
tation that tells us how to move
the thirteen positions around. The
way to read the following is that
the symbol in the position number
in the top row gets replaced by the
symbol in the position number be-
low it in the second row.(

1 2 3 4 5 6 7 8 9 10 11 12 13
1 2 3 4 10 7 8 9 5 6 11 12 13

)

Now, suppose that our plaintext is they flung hags. Then the ciphertext will
be THEY HUNG FLAGS . Notice that the first four and last three plaintext
letters remain in the same position as dictated by the above permutation, but
the f in position 5 gets replaced by the H in position 10, the l in position 6
gets replaced by the U in position 7, the u in position 7 gets replaced by the
N in position 8, the n in position 8 gets replaced by the G in position 9, the
g in position 9 gets replaced by the F in position 5, and the h in position 10
gets replaced by the L in position 6. So this is an easy-to-understand method
of depicting transposition ciphers that we will use throughout the book. We
can see that transposition ciphers depend upon the permutation given, such as
the one above, so often transposition ciphers are called permutation ciphers. In
Section 3.1 we will give a more formal mathematical description of substitution

© 2007 by Taylor & Francis Group, LLC

82 2. Cryptographic Basics

and transposition ciphers, which will be necessary for a description of the DES
cryptosystem. However, the above description is mathematically sufficient for
our purposes now.

Biography 2.3 Steganographia was written by Johannes Trithemius (1462–
1516) in 1499. Trithemius’s manuscript was circulated for over a century and
not published until 1606. In 1609, the Roman Catholic Church placed it on
its index of Prohibited Books, where it remained for over two centuries. Nev-
ertheless, it was reprinted numerous times, including as late as 1721. Dur-
ing Trithemius’s lifetime, his Steganographia caused him to be known as a
sorcerer, which did not sit well since he was an abbot at the abbey of Saint
Martin at Spanheim, Germany. In fact, his fellow monks were so incensed that
Trithemius was transferred to the monastery of Saint Jacob in Wurzberg, where
he remained (writing and studying) until his death on December 15, 1516.

� Julius Caesar

Although the ancient Greeks made no claim to actually using any of the sub-
stitution ciphers that they invented, the first use in both military and domestic
affairs of such a cipher is well documented by the Romans. In The Lives of the
Twelve Caesars [88, p. 45], Suetonius writes of Julius Caesar: “.... if there was
occasion for secrecy, he wrote in cyphers; that is, he used the alphabet in such a
manner, that not a single word could be made out. The way to decipher those
epistles was to substitute the fourth for the first letter, as d for a, and so for the
other letters respectively.” What is being described here is a simple substitution
cipher used by Julius Caesar. He used them not only in his domestic affairs as
noted above by Seutonius but also in his military affairs as he documented in
his own writing of the Gallic Wars.

Biography 2.4 The first to use military cryptography for correspondence
were the Spartans, the great warriors of the Greek states. The Spartans used
a transposition cipher device called a skytale (also spelled scytale in some
sources). This consisted of a tapered wooden staff around which a strip of
parchment (leather or papyrus were also used) was spirally wrapped, layer upon
layer. The secret message was written on the parchment lengthwise down the
staff. Then the parchment was unwrapped and sent. By themselves, the letters
on the parchment were disconnected and made no sense until rewrapped around
a staff of equal proportions, at which time the letters would realign to once again
make sense. One use of the skytale was documented to have occurred around
475 B.C. with the recalling of General Pausanius, who was a Spartan prince.
He was attempting to make alliances with the Persians, an act the Spartans
regarded as treasonous. Over one hundred years later, a skytale was used to
recall General Lysander to face charges of sedition. Thus, the Greeks have been
credited with the first use of a device employing a transposition cipher.

© 2007 by Taylor & Francis Group, LLC

2.1. Definitions and Illustrations 83

Caesar’s substitution cipher is even easier to use than that invented by Poly-
bius, which we describe in Exercise 2.3 on pages 88–89. With Caesar’s cipher
there is merely a shift to the right of three places of each plaintext letter to
achieve the ciphertext letters. This is best illustrated by Table 2.1.

Table 2.1
Plain a b c d e f g h i j k l m
Cipher D E F G H I J K L M N O P
Plain n o p q r s t u v w x y z
Cipher Q R S T U V W X Y Z A B C

Table 2.1 is an example of a cipher table, which is defined to be a table
of (ordered) pairs of symbols (p, c), where p is a plaintext symbol and c is its
ciphertext equivalent. For instance, in the Caesar cipher table, (b, E) is the pair
consisting of the plaintext letter b together with its ciphertext equivalent E.
An example of a cryptogram made with the Caesar cipher is: brutus becomes
EUXWXV. Also, this simple type of substitution cipher is called a shift cipher.
Moreover, the mechanism for enciphering in the Caesar cipher is a shift to the
right of three letters. So the value 3 is an example of a key, which we may regard,
in general, as a shared secret between the sender and the recipient, which unlocks
the cipher. So 3, in this case, is the enciphering key. Since shifting three units
left unlocks the cipher, then 3 is also the deciphering key. This is an example
of a symmetric-key cryptosystem, namely, where one can “easily determine”
the deciphering key from the enciphering key and vice versa. (We will formalize
these notions later in this section, but for now, these are adequate descriptions.)
Thus, the key must be kept secret from all unauthorized parties. (This is distinct
from a cryptosystem, about which we will learn later, where the enciphering key
can be made publicly known! Yet, nobody can determine the deciphering key
from it.) There is a method of employing the Caesar cipher with numbers that
simplifies the process. Consider Table 2.2 that gives numerical values to the
English alphabet.

Table 2.2

a b c d e f g h i j k l m
0 1 2 3 4 5 6 7 8 9 10 11 12
n o p q r s t u v w x y z
13 14 15 16 17 18 19 20 21 22 23 24 25

Now, if we take zebra as the plaintext, the numerical equivalent is
25, 4, 1, 17, 0, and using the Caesar cipher we add 3 to each number to get the
ciphertext. However, notice that when we get to x, y, z, adding 3 will take us be-
yond the highest value of 25. The Caesar cipher, Table 2.1, actually loops these
three letters back to A, B, C. Hence, what we have to do here is to throw away
any multiples of 26 and treat them as zeroes in our addition, namely we are per-
forming addition modulo 26 (see Section 1.3 for an introduction to congruences).
Thus, the plaintext numerical equivalents 25, 4, 1, 17, 0 become 2, 7, 4, 20, 3, and

© 2007 by Taylor & Francis Group, LLC

84 2. Cryptographic Basics

using Table 2.2, the ciphertext message becomes CHEUD. Once sent, the re-
cipient uses the key 3 to decipher by first converting the ciphertext to letters
via Table 2.2, then calculating, for instance 2 − 3 ≡ 25 (mod 26). Similarly, all
other numbers are decrypted to yield 25, 4, 1, 17, 0, which, via Table 2.1 becomes
zebra.

� Messages and Tranformations

In order to discuss even the most basic ciphers in depth, we need to use a
rigorous mathematical language in which to carry on this discussion. Earlier in
this section, we defined certain basic notions such as the plaintext and cipher-
text. Both the plaintext and the ciphertext are written in terms of elements
from a finite set A, called an alphabet of definition. The alphabet of definition
may consist of numbers, letters from an alphabet such as the English, Greek,
or Russian alphabets, or symbols such as !, @, *, or any other symbols that
we choose to use when sending messages. The alphabet of definition for the
plaintext and ciphertext may differ, but the usual convention is to use the same
for both. For instance, a commonly used one is A = {0, 1}, called the binary
alphabet of definition, in terms of which any given alphabet may be given binary
equivalents. An example is the English alphabet, in which each letter may be
assigned a unique binary string of length five since there are 25 = 32 binary
strings of length five. Another example is A = {0, 1, 2}, called the ternary
alphabet, in which each letter of the English alphabet may be replaced by a
unique ternary string of length three since there exist 33 = 27 ternary strings of
length three (see page 326). Once we have agreed upon an alphabet of definition,
we choose a message space, M, which is defined to be a finite set consisting of
strings of symbols from the alphabet of definition. Elements of M, which may
be anything from binary strings to English text, are called plaintext message
units. Any block of n ∈ N letters may be used. A finite set C, consisting of
strings of symbols from an alphabet of definition for the ciphertext, is called the
ciphertext space, and elements from C are called ciphertext message units. Most
often it is convenient to let M be the message space consisting of all possible
plaintext message units and C be the set of all possible ciphertext message units.
It is within this context that we will choose to work below.

To make cryptanalysis more difficult, we need a set of parameters K, called
the keyspace, whose elements are called keys. For instance, we learned above
about the Caesar cipher. In terms of the above definitions, we may restate the
cipher as follows. Given the alphabet of definition as the numbers 0 through 25,
corresponding to the letters A through Z, respectively, any m ∈ M is enciphered
as c ∈ C, where

c = m + 3 ∈ Z/26Z.

Thus, the (enciphering) key is k = 3 ∈ K, since we are using the parameter 3
as the shift from m ∈ M to achieve c ∈ C. Also, the (deciphering) key is also
the parameter 3 since we achieve m ∈ M from c ∈ C by

c − 3 = m ∈ Z/26Z.

© 2007 by Taylor & Francis Group, LLC

2.1. Definitions and Illustrations 85

We formalize the above in the following.

Definition 2.1 Enciphering and Deciphering Transformations

An enciphering transformation (also called an enciphering function) is a
bijective function

Ee : M �→ C,

where the key e ∈ K uniquely determines Ee acting upon plaintext message units
m ∈ M to get ciphertext message units

Ee(m) = c ∈ C.

A deciphering transformation (or deciphering function) is a bijective function

Dd : C �→ M,

which is uniquely determined by a given key d ∈ K, acting upon ciphertext
message units c ∈ C to get plaintext message units

Dd(c) = m.

The application of Ee to m, namely the operation Ee(m), is called enciphering,
encoding, or encrypting m ∈ M, whereas the application of Dd to c is called
deciphering, decoding, or decrypting c ∈ C.

In Definition 2.1 we have mathematically formalized the two notions of enci-
phering and deciphering, which we informally discussed earlier in this section, as
a motivator for this formal setup. For instance, returning to the Caesar cipher,
it may be defined as that transformation Ee uniquely determined by the key e,
which is addition of 3 modulo 26. Thus,

Ee(m) = c ≡ m + 3 (mod 26),

or simply
Ee(m) = c = m + 3 ∈ C = Z/26Z.

Also, m ∈ M = Z/26Z is the numerical equivalent of the plaintext letter as
described above. Similarly, Dd(c) is that deciphering transformation uniquely
defined by the key d, which is modular subtraction of 3 modulo 26. In other
words,

Dd(c) = m ≡ c − 3 (mod 26),

or simply
Dd(c) = m = c − 3 ∈ Z/26Z,

and c ∈ C = Z/26Z is the numerical equivalent of the ciphertext letter. Notice
that

Dd(Ee(m)) = m

for each m ∈ M. In other words, Dd = E−1
e is the inverse function of Ee. This

is formalized as follows.

© 2007 by Taylor & Francis Group, LLC

86 2. Cryptographic Basics

Definition 2.2 Cryptosystems/Ciphers

A cryptosystem is composed of a set

{Ee : e ∈ K}

consisting of enciphering transformations and the corresponding set

{E−1
e : e ∈ K} = {Dd : d ∈ K}

of deciphering transformations. In other words, for each e ∈ K, there exists a

unique d ∈ K such that Dd = E−1
e , so that Dd(Ee(m)) = m for all m ∈ M.

The keys (e, d) are called a key pair where possibly e = d. A cryptosystem is
also called a cipher. We reserve the term Cipher Table for the pairs of plaintext
symbols and their ciphertext equivalents

{(m,Ee(m)) : m ∈ M}.

Definition 2.2 mathematically formalizes the notions of the terms cryptosys-
tem/cipher, cipher table, and key, which were informally discussed earlier in
this section. The case where e = d or where one of them may be “easily” deter-
mined from the other in the key pair has a special name, which is the simplest
of the possibilities for cryptosystems, and so has the longest history.

Definition 2.3 Symmetric-Key Ciphers

A cryptosystem is called symmetric-key (also called single-key, one-key, and
conventional) if for each key pair (e, d), the key d is “computationally easy” to
determine knowing only e and similarly to determine e knowing only d. 2.1

Usually e = d with practical symmetric-key ciphers, thereby justifying the
use of the term symmetric-key.

There are two kinds of symmetric-key cryptosystems about which we will
learn in Section 2.2.

2.1We will use the term “computationally easy problem” to mean one that can be solved
in expected (in the probability sense) polynomial time and can be attacked using available
resources. (The reason for adding the latter caveat is to preclude problems that are of poly-
nomial time complexity but for which the degree is “large.”) The antithesis of this would
be a computationally infeasible problem, which means that, given the enormous amount of
computer time that would be required to solve the problem, this task cannot be carried out in
realistic computational time. Thus, “computationally infeasible” means that, although there
(theoretically) exists a unique answer to our problem, we cannot find it even if we devoted
every scintilla of the time and resources available. This is distinct from a problem that is
unsolvable in any amount of time or resources. For example, an unsolvable problem would be
to cryptanalyze XY Z assuming that it was enciphered using a monoalphabetic substitution.
There is simply no unique verifiable answer without more information. However, it should be
stressed here that there is no proved example of a computationally infeasible problem.

© 2007 by Taylor & Francis Group, LLC

2.1. Definitions and Illustrations 87

We close this section with the following distinction between ciphers based
on the number of cipher alphabets.

� Monoalphabetic and Polyalphabetic Ciphers

A homophone is a ciphertext symbol that always represents the same plain-
text symbol. For instance, with the Caesar cipher in Table 2.1 (page 83), the
letter D is always the ciphertext for the plaintext letter a, so D is a homophone
in the monoalphabetic cipher known as the Caesar cipher. Here “monoalpha-
betic” means that there is only one cipher alphabet, which means the set of
ciphertext equivalents used to transform the plaintext. The row of ciphertext
equivalents below the plaintext in Table 2.1, for instance, is the cipher alphabet
for the Caesar cipher.

Biography 2.5 The title Father of
Western Cryptography must go to Leon
Battista Alberti (1404–1472). Alberti
was born on February 14, 1404, in
Genoa, Italy, and was the son of a
wealthy banker, Lorenzo di Benedetto
Alberti. Alberti was raised as Battista in
Venice where the family moved shortly
after he was born. (He adopted the name
Leon later in life.) At the age of ten,
he had already learned Latin and his
father was teaching him mathematics.
His formal education was at the Uni-
versity of Bologna, where he ultimately
earned a degree in law. However, he
quickly turned his interests to artistic
and ultimately scientific thought. Alberti
not only taught himself music, became
an expert at playing the organ, and
wrote sonnets, but also wrote on art,
criminology, sculpture, architecture, and
mathematics. In 1432, he went to Rome
where he became a secretary in the Papal
Chancery, and he remained in the arms
of church for the rest of his life. In
1434, he went to Florence as part of the
papal court of Eugenius IV. It was in
the papal secretariat that he became a
cryptographer.

A polyphone is a ciphertext sym-
bol that always represents the same
set of plaintext symbols, typically a
set consisting of at most three plain-
text symbols. With homophones
or polyphones, there is no option
for change since the relationship be-
tween plaintext and ciphertext is
fixed. However, a cipher is called
polyalphabetic if it has more than
one cipher alphabet. In this type of
cipher, the relationship between the
ciphertext substitution for plaintext
symbols is variable. Thus, since
each cipher alphabet (usually) em-
ploys the same symbols, a given
symbol may represent several plain-
texts.

An example of a polyalphabetic
cipher, the first in history, is that in-
vented by Leon Battista Alberti (see
Biography 2.5).

Alberti conceived of a disk with
plaintext letters and numbers on the
outer ring and ciphertext symbols
on an inner movable circle. Alberti
divided his ring and corresponding
circle into twenty-four equal seg-
ments, called cells, each containing
a symbol. A representation of Al-
berti’s disk is pictured in Figure 2.1
on page 88. We have altered his
original presentation since he had ciphertext in lower case and plaintext in
upper case, the reverse of what we have as a convention.

© 2007 by Taylor & Francis Group, LLC

88 2. Cryptographic Basics

Figure 2.1: Alberti disk.

In Figure 2.1 the plaintext letter z is enciphered as V, so in this setting (one
of the twenty-six possible cipher alphabets) the plaintext zebra, for instance,
would be enciphered as VZLYD. However, there is nothing new at this juncture
that is any different from, say, the Caesar cipher with the cipher alphabet having
the letter c below the Z. Alberti had an idea, however (which is why he wanted
the inner circle to be able to rotate). This idea would revolutionize the forward
movement of cryptological development. After a random number of plaintext
words had been enciphered, usually three or four, Alberti would move the inner
disk to a new setting. Hence, he would now be using a new cipher alphabet.
Suppose that he moved the inner circle so that z sits over K. Then zebra would
be enciphered as KADTR, a new ciphertext for the same plaintext as above
since we have a new cipher alphabet. In fact, with his cipher disk, Alberti
invented the first polyalphabetic cipher in history. However, he did even more.

Alberti had twenty letters, as depicted in Figure 2.1. This excludes the
letters h, k, and y, deemed to be unnecessary, and since j, u, and w were not
part of his alphabet, this left twenty letters. The inner circle consists of the
twenty-four letters of the Latin alphabet, put in the cells at random, including
&. The disk also included the numbers 1 through 4 in the outer ring of his

© 2007 by Taylor & Francis Group, LLC

2.1. Definitions and Illustrations 89

original disk. In a book, he used these numbers in two-, three-, and four-digit
sets from 11 to 4444 yielding 336 = 4

2 + 43 + 44 codegroups. Beside each digit
he would write a phrase such as “Send in the troops” for the number 21, say.
Then, with the setting in Figure 2.1, the code group 21 is enciphered as &P,
enciphered code. Alberti was the first to discover it, and it is a testimony to his
being centuries ahead of his time that enciphered code, when it was rediscovered
at the end of the nineteenth century, was simpler than that of Alberti!

Exercises
In Exercises 2.1–2.2, use the Caesar cipher described on page 83 to decrypt

the numeric ciphertext.

2.1. 22, 10, 7, 6, 11, 7, 11, 21, 5, 3, 21, 22.

(This is a quote by Julius Caesar himself when crossing the River Rubicon,
that delineated the frontier between Gaul and Italy proper. The quote
indicates the fact that he was virtually declaring war on Rome since his
military power was limited to Gaul. (See [88].))

2.2. 3, 16, 1, 21, 22, 11, 9, 15, 3, 25, 11, 14, 14, 6, 17, 22, 17,

4, 7, 3, 22, 3, 6, 17, 9, 15, 3.

(This is taken from Supers and Supermen (1920) by Philip Guedalla (1889–
1944), a British writer.)

2.3. Polybius (see Biography 2.6 on page 90) invented a substitution cipher by
enciphering letters into pairs of numbers as follows.

The Polybius Square

Table 2.3

1 2 3 4 5
1 a b c d e
2 f g h ij k
3 l m n o p
4 q r s t u
5 v w x y z

Label a five-by-five square with the numbers 1 through 5 for the rows and
columns, and string the English alphabet through the rows, considering
“ij” as a single letter, as given in Table 2.3.

Then, look at the intersection of any row and column (with row number
listed first and column number listed second) as the representation of the
letter in question. For instance, k is 25 and q is 41. Hence, the letters
are plaintext and the numbers are ciphertext. This device is called the
Polybius checkerboard or Polybius square.

Use the Polybius square to decrypt the numeric ciphertext given by

4434 3111123442 2443 4434 35421154.

© 2007 by Taylor & Francis Group, LLC

90 2. Cryptographic Basics

(This is the motto of the Benedictine Order.)

Using the Polybius square defined in Exercise 2.3, decipher the numeric ci-
phertexts given in Exercises 2.4–2.8.

2.4. 331513154343244454 323444231542 3421 243351153344243433

(This is a quote from Love in a Wood, Act III, scene iii, (1671) by the
English dramatist Williiam Wycherley (ca. 1640–1716).)

2.5. 2134421315 52244423344544 32243314 2111313143 1254 244443

345233 521524222344 (This is a quote from Odes Book 3 (23 B.C.) by
Horace (Quniton Horatius Flaccus) (65–8 B.C.), a Roman poet.)

2.6. 33344423243322 4533141542 442315 434533 2443
11131324141533441131

(This is a quote from Emilia Galotti, Act iv, (1772) by Gotthold Ephraim
Lessing (1729–1781), German critic and dramatist.)

Biography 2.6 Polybius, who lived approximately from 200 to 118 B.C., was
a Greek historian and statesman. Polybius’ intended use of his square was to
send messages great distances by means of torches and hilltops. The sender
would hold a torch in each hand, then raise the torch in the right hand the
number of times to signal the row, and the torch in the left hand the number of
times to signal the column. There is no evidence that these were actually used in
this fashion or any other in ancient Greece. However, there are many variations
of his cipher that have been constructed. The reader may even concoct one by
pairing different letters than “ij” and stringing the alphabet in a different way
from the straightforward one given in Table 2.3. One such interpretation of
Polybius’ cipher involved turning the digits into sounds. A known application
in the twentieth century was the one developed by Russian prisoners who used
knocks to convey speech. For instance, using Table 2.3, a prisoner might knock
on a wall twice, followed by three knocks for the letter “h” then proceed in this
fashion to send a complete message. Hence, this came to be known as the knock
cipher.
Polybius’ substitution cipher has found great acceptance among cryptographers
up to modern times, who have used it as the basis for numerous ciphers. We
will mention some as we encounter them later in our cryptographic voyage.

2.7. 44243215 2443 3234331554

(This quote is from Money, Act 3, (1840), by Edward George Bulwer-
Lytton (Lord Lytton) (1803–1873), A British literary patron and writer.)

2.8. 32112515 2311434415 433134523154

(This quote is attributed to Augustus in The Lives of the Twelve Caesars
by Suetonius (C. Suetonius Tranquillus) (ca. 70–140 A.D.), a Roman
historian (see [88]).

© 2007 by Taylor & Francis Group, LLC

2.2. Classic Ciphers 91

2.2 Classic Ciphers

In Section 2.1 we learned about certain ciphers which comprise a type of
cryptosystem that we now define.

Definition 2.4 Block Ciphers

A Block Cipher is a cryptosystem that separates the plaintext message into
strings, called blocks, of fixed length k ∈ N, called the blocklength, and enciphers
one block at a time.

Classically, block ciphers are divided into two types, substitution and trans-
position ciphers, about which we learned on page 81. We now look at some
special cases of these Block Ciphers, starting with one familiar to us, an exam-
ple of the simplest kind of encryption.

� Shift Ciphers

The Caesar cipher is a special case of a Shift Cipher, defined as follows. Let
b, n ∈ N and for each nonnegative j < n, define the enciphering transformation
by

Ee(mj) = cj ≡ mj + b (mod n),

for mj ∈ M and cj ∈ C, or simply Ee(mj) = cj = mj + b ∈ Z/nZ = C. The
deciphering transformation is given by

Dd(cj) = mj ≡ cj − b (mod n),

or simply Dd(cj) = mj = cj −b ∈ Z/nZ = M. The Shift Cipher is a Symmetric-
key Cipher with d = −e, since e is addition of b modulo n and −e = d is
subtraction of b modulo n, the additive inverse of e. This is an example of a
Block Cipher where the blocklengths are k = 1. The Caesar cipher is the special
case obtained by taking b = 3 and n = 26. Also, for fans of the Stanley Kubrick
film 2001: A Space Odyssey, take b = 1 and n = 26, wherein the message
hal is enciphered as IBM . Shift Ciphers are relatively easy to cryptanalyze
since there are only |A| keys to exhaustively search, where A is the alphabet of
definition. For instance, with the Caesar cipher, |A| = 26.

In turn, the Shift Cipher is a special case of a more general cryptosystem,
for which we now set the stage. Let a, b, n ∈ N and for m ∈ Z define

Ee(m) = am + b ∈ Z/nZ,

where the key e is the ordered pair (a, b). Notice that for a = 1 we are back to
the Shift Cipher where the key is b. Such a transformation is called an Affine
function. In order to guarantee that the deciphering transformation exists, we
need to know that the inverse of the affine function exists. By Exercise 2.20
on page 105, this means that f−1(c) ≡ a−1(c − b) (mod n) must exist. By the
preamble to Definition 1.11 on page 24, this can happen only if gcd(a, n) = 1.

© 2007 by Taylor & Francis Group, LLC

92 2. Cryptographic Basics

Also, by Definition 1.12 on page 37, there are φ(n) natural numbers less than n
and relatively prime to it. Hence, since b can be any of the choices of natural
numbers less than n, we have shown that there are exactly nφ(n) possible Affine
Ciphers, the product of the possible choices for a with the number for b, since
this is the total number of possible keys. We have motivated the following.

� Affine Ciphers

Let M = C = Z/nZ, n ∈ N, K = {(a, b) : a, b ∈ Z/nZ and gcd(a, n) = 1},
and for e, d ∈ K, and m, c ∈ Z/nZ, set Ee(m) ≡ am + b (mod n), and Dd(c) ≡
a−1(c − b) (mod n).

Thus, as with the Shift Cipher of which the Affine Cipher is a generalization,
e = (a, b) since e is multiplication by a followed by addition of b modulo n, and
d = (a−1,−b) is subtraction of b followed by multiplication with a−1. In the
case of the Shift Cipher, the inverse is additive and in the case of the Affine
Cipher, the inverse is multiplicative. Of course, these coincide precisely when
a = 1. In either case, knowing e or d allows us to easily determine the other, so
they are symmetric-key cryptosystems. They are also Block Ciphers with the
trivial blocklengths of k = 1.

Example 2.1 Let n = 26, and let M = C = Z/26Z. Define an Affine Cipher
as follows.

Ee(m) = 7m + 5 = c ∈ Z/26Z,

and since 7−1 ≡ 15 (mod 26),

Dd(c) = 15(c − 5) = 15c − 23 ∈ Z/26Z = M.

Let the following table give the numerical equivalents in the alphabet of defini-
tion for each element in M = C.

Using the above, we wish to encipher the following message and provide a
cryptogram:

cryptanalyst
To do this, we first translate each letter into the numerical equivalent in the

alphabet of definition, via Table 2.2 on page 83 as follows.
2 17 24 15 19 0 13 0 11 24 18 19.

Then we apply Ee(m) to each of these numerical equivalents m to get the
following.

19 20 17 6 8 5 18 5 4 17 1 8.
Finally, we use Table 2.2 to translate back into the English alphabet to get

the cryptogram:
TURGIFSFERBI

which we send.

Both shift and affine ciphers are examples of simple or monoalphabetic sub-
stitution ciphers, about which we learned on page 87, where we also learned

© 2007 by Taylor & Francis Group, LLC

2.2. Classic Ciphers 93

about polyalphabetic ciphers. An example of a polyalphabetic substitution ci-
pher is the following due to Vigenère (see Biography 2.7) on page 94, although
he was responsible for a more complex version than this simple interpretation.
He employed the idea that others had invented of using the plaintext as its own
key. However, he added something new, a priming key, which is a single letter
(known only to the sender and the legitimate receiver) that is used to decipher
the first plaintext letter, which would, in turn, be used to decipher the second
plaintext letter, and so on. The following is an example of an autokey cipher,
which is a cryptosystem wherein the plaintext itself (in whole or in part) serves
as the key (usually after employing an initial priming key).

THE VIGENÈRE TABLEAU

a b c d e f g h i j k l m n o p q r s t u v w x y z

a A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

b B C D E F G H I J K L M N O P Q R S T U V W X Y Z A

c C D E F G H I J K L M N O P Q R S T U V W X Y Z A B

d D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

e E F G H I J K L M N O P Q R S T U V W X Y Z A B C D

f F G H I J K L M N O P Q R S T U V W X Y Z A B C D E

g G H I J K L M N O P Q R S T U V W X Y Z A B C D E F

h H I J K L M N O P Q R S T U V W X Y Z A B C D E F G

i I J K L M N O P Q R S T U V W X Y Z A B C D E F G H

j J K L M N O P Q R S T U V W X Y Z A B C D E F G H I

k K L M N O P Q R S T U V W X Y Z A B C D E F G H I J

l L M N O P Q R S T U V W X Y Z A B C D E F G H I J K

m M N O P Q R S T U V W X Y Z A B C D E F G H I J K L

n N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

o O P Q R S T U V W X Y Z A B C D E F G H I J K L M N

p P Q R S T U V W X Y Z A B C D E F G H I J K L M N O

q Q R S T U V W X Y Z A B C D E F G H I J K L M N O P

r R S T U V W X Y Z A B C D E F G H I J K L M N O P Q

s S T U V W X Y Z A B C D E F G H I J K L M N O P Q R

t T U V W X Y Z A B C D E F G H I J K L M N O P Q R S

u U V W X Y Z A B C D E F G H I J K L M N O P Q R S T

v V W X Y Z A B C D E F G H I J K L M N O P Q R S T U

w W X Y Z A B C D E F G H I J K L M N O P Q R S T U V

x X Y Z A B C D E F G H I J K L M N O P Q R S T U V W

y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X

z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

� The Vigenère Autokey Polyalphabetic Cipher

(a) Put the plaintext letters in a row.

(b) Place the priming key letter below the first plaintext letter. Then put the
first plaintext letter below the second, the second below the third, and so
on to the penultimate below the last.

© 2007 by Taylor & Francis Group, LLC

94 2. Cryptographic Basics

(c) Replace each letter of the plaintext with the letter at the intersection of
the row labelled by the plaintext letter and column labelled by the key
letter.

Example 2.2 Let us first choose a priming key, say z, and assume that the
plaintext is leave at midnight.

l e a v e a t m i d n i g h t
z l e a v e a t m i d n i g h
K P E V Z E T F U L R V O N A

For instance, the row labelled l intersects with the column labelled z at the
ciphertext letter K, and so on. To decipher, the receiver knows the priming
key z, so this letter is placed above the ciphertext letter K and looks in the row
labelled z to find the letter K, then the label of the column in which K sits is the
plaintext, namely l, and so on, as follows.

z l e a v e a t m i d n i g h
K P E V Z E T F U L R V O N A
l e a v e a t m i d n i g h t

� Cryptanalysis of the Vigenère cipher

Biography 2.7 Blaise de Vigenère
(1523–1596) had his first contact with
cryptography at age twenty-six when he
went to Rome on a two-year diplomatic
mission. He familiarized himself with the
works of his predecessors, such as Alberti
(see Biography 2.5 on page 87). His own
work, published in 1585, containing his
contributions to cryptography, is called
Traicté des Chiffres. Vigenère discussed
steganographic techniques and a variety
of cryptographic ideas. Among them was
the idea for an autokey polyalphabetic
substitution cipher.

The Vigenère cipher was con-
sidered, up to the middle nine-
teenth century, to be unbreakable,
and it achieved the title of the
chiffre indéchiffrable. However, in
1863, F.W. Kasiski found a method
for cryptanalyzing it (see Biogra-
phy 2.8 on page 96).

The principal idea behind Ka-
siski’s attack is the observation that
repeated portions of plaintext en-
ciphered with the same part of a
key must result in identical cipher-
text patterns. Therefore, assuming
there is no coincidence, one would
expect that the same plaintext por-
tions corresponding to repeated ci-
phertext were enciphered with the same position in the key. Therefore, the
number of symbols between the start of repeated ciphertext patterns should be
a multiple of the keylength (the number of characters in the key). For example,
if the repeated ciphertext is UWY, called a trigram, and if the number of letters
between the W and the occurrence of U in the next trigram UWY is, say,
12, and this is not an accident, then 15 is a multiple of the keylength. Since

© 2007 by Taylor & Francis Group, LLC

2.2. Classic Ciphers 95

it is possible that some of the repeated ciphertext segments are coincidental,
a method of analyzing them, called a Kasiski examination, is to compute the
greatest common divisor (gcd) of the collection of all the distances between the
repeated sections. Then choosing the largest factor occurring most often among
these gcds is (probably) the keylength. Once a probable keylength �, say, is ob-
tained, a frequency analysis can be performed on a breakdown of the ciphertext
into � classes (with an individual class containing every �-th character) to de-
termine the suspected key. The following is an illustration of Kasiski’s method
for finding the keylength. See also the discussion of the “index of coincidence”
on page 101, which is the second part of the cryptanalysis, namely determining
the most likely distance between each character in the keyword.

Example 2.3 Suppose that “trials” is the keyphrase and “secret sessions are
terminated” is the plaintext. Then consider the following Vigenère enciphering.

t r i a l s t r i a l s t r
s e c r e t s e s s i o n s
L V K R P L L V A S T G G J

i a l s t r i a l s t r i
a r e t e r m i n a t e d
I R P L X I U I Y S M V L

Notice that LV is a block that occurs twice, at the beginning and middle of the
first table, and the distance between the occurrence of the first L and the second
L is 6. Also, the trigram RPL occurs in first table and again 12 units away in
the second table. Hence, since gcd(12, 6) = 6, this is the probable keylength by
the Kasiski examination, which is indeed correct.

In 1883, Kerckhoffs (see Biography 2.9 on the following page) published
La Cryptographie militaire, which may be seen as taking the torch passed by
Kasiski. The telegraph had made possible the introduction to cryptology of a
new device, the field cipher, a rapid means for the military to send secure, secret
messages in a theater of war. Kerckhoffs also instituted several tenets for field
ciphers.

� Kerckhoffs’ Rules for Field Ciphers

1. The cryptosystem should be practically unbreakable (breakable in theory,
perhaps, but not in practice).

2. A compromised cryptosystem should not inconvenience the correspondents.
(This is the one from which his principle, displayed on page 96, seems to be
derived since it says that the enemy may know the cryptosystem, but one
should still be able to send messages since the enemy cannot cryptanalyze
with this knowledge and without the key.)

© 2007 by Taylor & Francis Group, LLC

96 2. Cryptographic Basics

3. The key should be easy to both remember and change at will.

4. Cryptosystems must be amenable to being sent by telegraph.

5. The mechanisms of the cryptosystem must be easily portable and entirely
operable by a single entity.

6. The cryptosystem must be easy to use without reference to any manuals or
the need for deep mental effort.

Biography 2.8 Frederich W. Kasiski
(1805–1881) was born on November 29,
1805, in Western Prussia. He enlisted
in East Prussia’s thirty-third infantry
at the age of seventeen, and retired in
1852 as a major. Although interested in
cryptography during his military career,
he did not publish any of his ideas until
after his retirement. In 1863, he published
Die GeheimschRiften und die Dechiffrir
- Kunst, a general solution to crypt-
analyzing polyalphabetic cryptosystems
with repeating keywords, including the
famed Vigenère cipher, a long-sought-after
breakthrough.

These six precepts are clearly
aimed at complete perfection that
even modern-day ciphers would
struggle to achieve (where we can
replace telegraph by computer in
condition 4). Also, the second con-
dition basically says (and this is
implicit in his Kerckhoffs’ princi-
ple displayed below) that secrecy
lies in the keys and not in the ci-
pher itself. Later, when we delve
into modern ciphers, we will see
that this is taken very seriously to-
day. “Key Management,” as it has
come to be known, is vital since a
cryptanalyst who can break a key
is better off than one who knows
only the cryptosystem itself.

Kerckhoffs’ Principle
In assessing the security of a cryptosystem, one should always assume
the enemy knows the method being used.

Biography 2.9 Jean-Guillaume-Hubert-Victor-François-Alexandre-Auguste
Kerckhoffs von Nieuwenhof was born on January 19, 1835, of Flemish descent,
in Holland. His education involved almost two years of study in England plus
degrees obtained at the university in Liège. After some teaching positions
and some travelling, Kerckhoffs married and settled down in a town outside
Paris. He taught languages there for a number of years. By 1876, he had
earned his Ph.D. and by 1881 became a professor of German in Paris. While
there, he wrote the aforementioned book, which many consider to be the most
succinct text on cryptography ever written. In his book, Kerckhoffs elucidated
several basic tenets. In modern times, one of these has come to be known as
Kerckhoffs’ Principle, displayed above, and has been incorporated into modern
cryptographic methodology.

© 2007 by Taylor & Francis Group, LLC

2.2. Classic Ciphers 97

While we are on the topic of field ciphers, the discussion would not be com-
plete without a description of the famous German field cipher that went into
service on March 5, 1918. It is described as follows.

� The German ADFGVX Field Cipher

The Germans used a table similar to Table 2.4 below where the twenty-six
letters of the alphabet plus the ten digits (with 10 represented by φ) populate
the six-by-six square, where the coordinates of each letter and digit are uniquely
determined by the six letters. For instance, the coordinate of T is XF.

Table 2.4

A D F G V X
A B 3 M R L I
D A 6 F φ 8 2
F C 7 S E U H
G Z 9 D X K V
V 1 Q Y W 5 P
X N J T 4 G O

Thus, for instance, field cipher would be enciphered as:

DF AX FG AV GF FA AX VX FX FG AG

However, this is only the transitional ciphertext, which was then placed in
another rectangle to be transposed into the final ciphertext using a numerical
key as follows. We think of the letters of the key RIFLE as having numerical
equivalents according to the alphabetic order of the letters, namely E corre-
sponds to 1 since it is the letter in RIFLE that appears first in the alphabet,
then F corresponds to 2, and so on. Then place the above transitional ciphertext
by rows into a matrix as follows in Table 2.5.

Table 2.5

R I F L E
5 3 2 4 1
D F A X F
G A V G F
F A A X V
X F X F G
A G

Now the final ciphertext is obtained by “peeling off” the columns in the
above rectangle according to the order of the numbers as follows.

FFVGAVAXFAAFGXGXFDGFXA

To decipher, we reverse the process, which is easy as long as you know the
keyword rifle.

© 2007 by Taylor & Francis Group, LLC

98 2. Cryptographic Basics

Example 2.4 Suppose that we want to decipher the following, assuming that it
was encrypted using the above cipher.

XFVAXAFFGXFFGXFXFXXGDXDAFGVA

Since there are twenty-eight letters in the ciphertext, we know that the
columns under L and E will have only five letters while the others will have
six. Thus, we place the first five letters XFVAX under E, the next six AF-
FGXF under F, the next six FGXFXF under I, the next five XXGDX under
L, and the final six DAFGVA under R the as in Table 2.6.

Table 2.6

R I F L E
5 3 2 4 1
D F A X X
A G F X F
F X F G V
G F G D A
V X X X X
A F F

Then we unravel by taking them out by rows, as follows.

DFAXXAGFXFFXFGVGFGDAVXXXXAFF

Now, we look up each digraph in Table 2.5 to get the plaintext:

find the weapons

The reason the name ADFGX was chosen for the cipher is that their Morse
code symbols are . -, - . ., . . - ., - - ., - . . -, respectively, which are sufficiently
dissimilar so as to avoid confusion. For the benefit of the reader, we provide the
following complete table of Morse code symbols.

Morse Code Symbols

Table 2.7
A . - B - . . . C - . - . D - . . E . F . . - .

G - - . H I . . J . - - - K - . - L . - . .
M - - N -. O - - - P . - - . Q - - . - R . - .
S . . . T - U . . - V . . . - W . - - X - . . -

Y - . - - Z - - . . 0 - - - - - 1 . - - - - 2 . . - - - 3 . . . - -
4 - 5 6 - 7 - - . . . 8 - - - . . 9 - - - - .

Fullstop . - . - . - Comma - - . . - - Query . . - - . .

On page 81, we saw that a simple substitution cipher encrypts single plain-
text symbols as single ciphertext symbols. When groups of one or more symbols
are replaced by other groups of ciphertext symbols, then we call this cryptosys-
tem a Polygram Substitution Cipher. For instance, there are Digraph ciphers,

© 2007 by Taylor & Francis Group, LLC

2.2. Classic Ciphers 99

where two letters are used as a single symbol such as with the above ADFGVX
cipher. There is another famous digraph cipher as follows.

� The Playfair Cipher

Consider the following Digraph cipher, where the letters W and X are con-
sidered as a single entity.

Table 2.8

A Z I WX D
E U T G Y
O N K Q M
H F J L S
V R P B C

Pairs of letters are enciphered according to the following rules.

(a) If two letters are in the same row, then their ciphertext equivalents are
immediately to their right. For instance, VC in plaintext is RV in cipher-
text. (This means that if one is at the right or bottom edge of the table,
then one “wraps around” as indicated in the example.)

(b) If two letters are in the same column, then their cipher equivalents are the
letters immediately below them. For example, ZF in plaintext is UR in
ciphertext, and XB in plaintext is GW in ciphertext.

(c) If two letters are on the corners of a diagonal of a rectangle formed by
them, then their cipher equivalents are the letters in the opposite cor-
ners and same row as the plaintext letter. For instance, UL in plaintext
becomes GF in ciphertext and SZ in plaintext is FD in ciphertext.

(d) If the same letter occurs as a pair in plaintext, then we agree by convention
to put a Z between them and encipher.

(e) If a single letter remains at the end of the plaintext, then a Z is added to
it to complete the digraph.

Example 2.5 Using the Playfair cipher presented above, we decipher the ci-
phertext: AMKNUIUPYFUIEJYO.

Since AM sits on a diagonal with corresponding letters do, then that digraph
is the plaintext. Similarly employing all the rules, we get donotztrustzthem
and once we remove the extraneous letters z, occuring twice, since tt occurs
twice, we get do not trust them as the plaintext.

We now look at another classical polygram substitution cipher that requires
knowledge of some elementary matrix theory. The reader unfamiliar with such
concepts, or requiring a brief review of the ideas and notation, should consult
pages 308–311 in Appendix A.

© 2007 by Taylor & Francis Group, LLC

100 2. Cryptographic Basics

� The Hill Cipher

Let K = {e ∈ Mr×r(Z/nZ) : e is invertible}, for fixed r, n ∈ N, and set
M = C = (Z/nZ)r. Then for m ∈ M, e ∈ K, Ee(m) = me, and Dd(c) = ce−1,
where c ∈ C. (Note that e is invertible if and only if gcd(det(e), n) = 1. See
Theorem A.6 on page 311.) This cryptosystem is known as the Hill Cipher,
created by L.S. Hill (see Biography 2.11 on page 102).

Example 2.6 Let r = 2 and n = 26 with alphabet of definition A = Z/26Z,
where Table 2.2 on page 83 gives the numerical equivalents of plaintext letters.
Thus, M = C = (Z/26Z)2, and K consists of all invertible two-by-two matrices
with entries from Z/26Z, so if e ∈ K, then gcd(det(e), 26) = 1. Let us take

e =
(

3 6
1 5

)

for which det(e) = 9. Suppose that we want to encipher movie. First we get
the numerical equivalents from Table 2.2: 12, 14, 21, 8, 4. Thus, we may
set m1 = (12, 14), m2 = (21, 8), and m3 = (4, 25), where z, with numerical
equivalent of 25, is used to complete the last pair. Now use the enciphering
transformation defined in the Hill cipher.

Ee(m1) = (12, 14)
(

3 6
1 5

)
= (24, 12),

Ee(m2) = (21, 8)
(

3 6
1 5

)
= (19, 10),

and

Ee(m3) = (4, 25)
(

3 6
1 5

)
= (11, 19).

Now we use Table 2.2 to get the ciphertext letter equivalents and send
XMTKLT as the cryptogram.

Now we show how decryption works. Once the cryptogram is received, we
must calculate the inverse of e, which is

e−1 =
(

15 8
23 9

)
.

Now apply the deciphering transformation to the numerical equivalents of the
ciphertext as follows. Given c1 = (12, 2), c2 = (19, 10), c3 = (11, 19), we have

Dd(c1) = De−1(24, 12) = (24, 12)
(

15 8
23 9

)
= (12, 14),

Dd(c2) = De−1(19, 10) = (19, 10)
(

15 8
23 9

)
= (21, 8),

and Dd(c3) = De−1(11, 19) = (11, 19)
(

15 8
23 9

)
= (4, 25).

The letter equivalents now give us back the original plaintext message movie
after discarding the letter z at the end.

© 2007 by Taylor & Francis Group, LLC

2.2. Classic Ciphers 101

� The One-Time Pad

Biography 2.10 Gilbert S. Vernam, (1890–
1960) a cryptologist working for the American
Telegraph and Telephone Company (AT&T),
came to the realization that if the Vigenère ci-
pher were used with a truly random key, with
keylength the size of the plaintext, called a run-
ning key, then the Kasiski attack would fail.
At this time, AT&T was working closely with
the armed forces, so the company reported this
to the Army. It came to the attention of Major
Mauborgne, head of the Signal Corps’ research
and engineering division. (When Mauborgne
was still just a first lieutenant in 1914, he had
published the first solution of the Playfair ci-
pher, see page 99.) He played with Vernam’s
idea and saw that if the key were reused, then a
cryptanalyst could piece together information
and recover the key. Hence, he added the sec-
ond component to the Vernam idea. The key
must be used once, and only once, then de-
stroyed. Now, the idea was complete. Use the
Vigenère cipher with a truly random running
key that is used exactly once, then destroyed.
The system is called the one-time pad and
sometimes, perhaps inappropriately in view of
Mauborgne’s contribution, the Vernam cipher.

In the description of the
simple version of the Vigenère
cipher given on page 93, there
is only a single letter for the
key. Imagine a cipher where
the key has as many symbols
as the plaintext itself, and that
the key is truly randomly gen-
erated and never used more
than once. Moreover, both the
key and the plaintext are writ-
ten in binary, namely the al-
phabet of definition is A =
{0, 1}. Ciphertext is produced
by adding the plaintext to the
ciphertext modulo 2. This is
the description of the one-time
pad developed by Vernam and
Mauborgne in 1918 (see Biog-
raphy 2.10). Since the key is
as long as the plaintext, and
the key selected is truly random
and used only once, then the ci-
phertext is completely random
as well. Thus, the one-time pad
is unbreakable, meaning that it
is impossible to crack by any
cryptanalytic methods. Later,
when we have developed more
mathematics, we will return to this important cipher, which was shown in 1949
by Shannon, to be proved to be unbreakable. We will return to this topic later
as well when we have the machinery in place to discuss it in detail. Furthermore,
the Vernam cipher is not a block cipher, rather it is an example of a stream
cipher about which we will learn in Section 2.3.

� The Index of Coincidence

Another individual, W.F. Friedman (see Biography 2.12 on page 104),
was on the fringes of the discovery of the one-time pad. Perhaps his great-
est contribution was his discovery of the index of coincidence since it pro-
vided a much-needed intimate link between cryptology and mathematics that
would become paramount as the twentieth century ended and the new mil-
lenium began. His index of coincidence is defined, for a ciphertext C, to
be the probability that two letters selected at random from C are identical.

© 2007 by Taylor & Francis Group, LLC

102 2. Cryptographic Basics

Below we show how to mathematically demonstrate that the index of coin-
cidence for a monoalphabetic cipher is about 0.065 and the index of coin-
cidence for a polyalphabetic cipher is somewhere between 0.0385 and 0.065.

Biography 2.11 Lester S.
Hill devised this cryptosystem
in 1929. His only published
papers in the area of cryptog-
raphy appeared in 1929 and
1931. Thereafter, he kept
working on cryptographic
ideas but turned all of his
work over to the Navy in
which he had served as a
lieutenant in World War
I. He taught mathematics
at Hunter College in New
York from 1927 until his
retirement in 1960. He died
in Lawrence Hospital in
Bronxville, New York, after
suffering through a lengthy
illness. Hill’s rigorous math-
ematical approach may be
said to be one of the fac-
tors which has helped foster
today’s solid grounding of
cryptography in mathematics.

For very long keywords, the index of coinci-
dence for polyalphabetic ciphers will be closer
to 0.0385. Hence, by a simple analysis of inter-
cepted ciphertext, a cryptanalyst can relatively
easily determine the type of cryptosystem being
used. This was quite a breakthrough. Moreover,
his idea contained a mechanism for determining
the probable keylength, as had Kasiski. Here is
how it works.

First we need a table of letter frequencies for
the English alphabet. This well-known, stan-
dard table is presented below as Table 2.9.

Now suppose that n stands for the number
of letters in a ciphertext, C, and nj stands for
the number of letters in the j-th position of the
English alphabet. In other words, n1 is the num-
ber of occurrences of the letter a in C, n2 is the
number of occurrences of the letter b in C, and
so on. Without getting into the reasons for it,
the Index of Coincidence, IC, is given as approx-
imately the following:

IC ≈
(n1

n

)2

+
(n2

n

)2

+ · · · +
(n26

n

)2

.

So if we want to compute IC for the English
language from Table 2.9, and since each of the
numbers in the table is a percentage, then we
divide each by 100 and get

IC ≈ (0.8167)2 + (0.01492)2 + · · · + (0.00074)2 = 0.065,

which explains the aforementioned Index of Coincidence for monoalphabetic ci-
phers, since the frequency is invariant. (Note that the symbol ≈ means “approx-
imately equal to,” which is good enough since we are dealing with a statistical
analysis wherein approximations are sufficient for our investigations.)

Relative Letter Frequencies for English
Table 2.9

a b c d e f g h i
8.167 1.492 2.782 4.253 12.702 2.228 2.015 6.094 6.966

j k l m n o p q r
0.153 0.772 4.025 2.406 6.749 7.507 1.929 0.095 5.987

s t u v w x y z
6.327 9.056 2.758 0.978 2.360 0.150 1.974 0.074

© 2007 by Taylor & Francis Group, LLC

2.2. Classic Ciphers 103

Now for any language, such as English, with a twenty-six-letter alphabet, in
which each letter has the same frequency, we get

IC = 26(1/26)2 = 0.038,

which is approximately half of the above Index of Coincidence for English.
Hence, the Index of Coincidence helps us in determining if the ciphertext comes
from a monoalphabetic or polyalphabetic cipher in the following manner. The
closer the IC is to 0.065, the more likely it is that the message came from a
monoalphabetic cipher. If the IC is much less than 0.065, the cipher is most
likely polyalphabetic since frequencies are evened out by polyalphabetic cryp-
tosystems. Hence, the closer the IC is to 0.038, the greater the chance is that
the cipher is polyalphabetic. This was a major contribution by Friedman since
he tied a mathematical tool, statistical analysis, to the study of cryptography.

Exercises

In Exercises 2.9–2.12, use the Affine cipher in Example 2.1 on page 92 to
decipher the given numeric ciphertext.

2.9. 5, 4, 4, 13, 15, 9, 7, 8, 25, 18, 8, 2, 7, 3, 7, 1, 8, 7, 20, 18, 14, 20, 25, 18, 8

(This is a title of a novel, published in 1929 by the German writer Erich
Maria Remarque (1897–1970).)

2.10. 25, 18, 4, 17, 5, 14, 20, 7, 7, 1, 25, 15, 4, 18, 7, 22, 7, 20, 21, 20, 25, 3, 1, 25, 4, 0

(This is a quote from Titan (1800–1803), Volume 2, 140, cycle, by the
German writer John Paul Richter (1793–1825).)

2.11. 7, 22, 7, 20, 17, 1, 9, 18, 9, 1, 8, 2, 7, 20, 7, 1, 15, 4, 8, 25, 14, 5, 19, 25, 4, 4, 5, 12,

25, 20, 5, 8, 9, 25, 18

(This is a quote from Blue Hotel (1899), written by the war correspondent
and American writer Steven Crane.)

2.12. 8, 2, 7, 3, 2, 9, 8, 7, 11, 5, 18, 1, 12, 15, 20, 0, 25, 18

(This is the title of a poem from 1899 written by the British poet Rudyard
Kipling (1865–1936), who won the Nobel Prize in 1907.)

In Exercises 2.13–2.16, use the key given in Example 2.2 on page 94 to
decrypt the folowing ciphertexts via the Vigenère cipher.

2.13. KZJZMASKSVQRTBWRWFRV

(This is a quote from Ars amatoria, Book II, line 233 by Ovid (43 B.C.–18
A.D.), a Roman poet.)

2.14. LMNCGFDDGWWTVNZURGLAHDGWW

(This is a quote from The Imitation of Christ by Thomas A. Kempis
(1380–1471), a German Augustinian canon and writer.)

© 2007 by Taylor & Francis Group, LLC

104 2. Cryptographic Basics

Biography 2.12 William Frederick Friedman (1891–1969) was born in
Kishinez, Russia, on September 14, 1891. In 1892, his father fled the an-
tisemitic regulations in Czarist Russia, and his family joined him in Pitts-
burgh the following year. William obtained his bachelor’s degree from Cornell,
then joined the Riverside Laboratories (which today would be considered to be a
“think tank”) outside Chicago, in 1915. There Friedman met Elizabeth Smith
(1892–1980), whom he married in 1917. The Friedmans soon turned their at-
tention to cryptology. William was training cryptologists at Riverbank, and for
course material he wrote eight publications (which are collectively known as the
Riverbank Publications). Today they are highly regarded as containing the basic
essentials of cryptological material. Friedman himself, when looking back over
his career, thought his greatest cryptological contribution was his conceiving of
the Index of Coincidence, which appeared in his monograph no. 22 of the nu-
merous ones that he published. Soon after his marriage to Elizabeth, William
became the director of the Department of Codes and Ciphers, among his other
duties, at Riverbank. After the outbreak of World War I, Riverbank offered
its services to the government, and since no such federal agency existed at the
time, Riverbank became the de facto cryptographic center for the American
government. One of the first accomplishments the Friedmans achieved was the
following. The Germans had been encouraging Hindu radicals to work toward
independence from Britain in the hopes of diverting attention and strength from
the war effort. Some of these radicals, who lived in the U.S.A., were sending
messages about arms shipments. It turns out they were trying to buy arms in
the U.S.A. and ship them from the West Coast. The Friedman’s deduced that
the codebook used by these radicals was a German-English dictionary published
in 1880. This aided William in his testimony given at the trial of 135 Hindu
radicals in San Francisco.
The Friedmans quit Riverbank toward the end of 1920. In 1921, Friedman
joined the American Black Chamber, where he eventually headed the Research
and Development Division and stayed there until its dissolution in 1929. One
man may be said to be chiefly responsible for the creation and (possibly) the
dissolution of the American Black Chamber.
After World War II, Friedman continued in government signals intelligence
until 1949 when he became head of the code division of the new Armed Forces
Security Agency, which evolved into the National Security Agency (NSA).
At NSA he became the chief cryptologist. By the late 1960’s his health faded.
He died in 1969 in Washington, D.C., and was buried at Arlington National
Cemetery. For all his accomplishments and pioneering efforts, he has been
dubbed America’s greatest cryptologist.

2.15. RLTKOPTNJYJDBGKLNA

(This is a quote from Satires by Juvenal (circa 60–140 A.D.), a Roman
rhetorician and satirical poet.)

2.16. NDEDFKNHVBRGASGUR

© 2007 by Taylor & Francis Group, LLC

2.2. Classic Ciphers 105

(This is a quote from The Greek Anthology and attributed to Menander
(circa 342–291 B.C.), a Greek comic dramatist.)

2.17. Assume that the following bitstring is a randomly chosen key for the one-
time pad described on page 101:

k = (11001010001111110001011110101011101000111111100100).

Also, assume that the following was enciphered using k:

c = (10101011001001010001111100111011111100100101100000).

Find the plaintext string.

2.18. Assume that the following bitstring is a randomly chosen key for the one-
time pad:

k = (110010111101000000011001011101

00111111110001011010010101010111011).

Also, assume that the following was enciphered using k:

c = (100100111011100100101111011101

01010101111000010000000101100011000).

Find the plaintext string.

2.19. Interpret the plaintext solution to Exercise 2.17 as a bitstring that is the
concatenation of bitstrings of length 5 each. Convert the binary to decimal
form and use Table 2.2 on page 83 to find the English text equivalent. Do
the same for Exercise 2.18.

(The plaintext from the solutions of Exercises 2.17–2.18 comprise a quote
from Stray Birds by Rabindranath Tagore (1861–1941), a Bengali philoso-
pher and winner of the 1913 Nobel Prize.)

2.20. Show that the inverse, if it exists, of an affine function as defined on page
91 is given by

f−1(c) = a−1(c − b) (mod n).

Using the ADFGVX cipher described on page 97, and assuming the key is
VICTORY, decipher the cryptograms in Exercises 2.21–2.24.

2.21. AFXXFGFAVAAXAGVFDFVGXGDA

VGFAVFFDVFGDAFFXGFDAFFFF

(This is a quote fram Gracian’s Manuals (1653) by Baltasar Gracián
(1601–1658), a Spanish Jesuit writer.)

© 2007 by Taylor & Francis Group, LLC

106 2. Cryptographic Basics

2.22. XAFVXXFDXAGAXAXGXAFFFD

FFXFFFAFXGAXAGFXXAVG

(This is a quote from Pensées (1842) by Joseph Joubert (1754–1824), a
French essayist.)

2.23. XAXAFFDGDVFXXVDVFAAAXGXAGVXVVAAFGXXX

(This comprises the dying words of the Roman emperor Julian the Apos-
tate (332–363 A.D.).)

2.24. FXVAFGDXFAXVDFFFAAXVAFDAFGFXXA

AXFXFAFGGXAFGDGXFFFXAFAXFXFXFA

(This is a quote from Laws of Repentance by Maimonides (Moses ben
Maimon) (1135–1204), a Jewish philospoher and Rabbinic scholar.)

Using the Playfair cipher described on page 99, decipher the cryptograms in
Exercises 2.25–2.28.

2.25. VMNDONNKHYMFTAFMKEHMVMNDONNK

(This is a quote from Dictionnaire Philosophique (1765) by Voltaire
(François-Marie Arouet) (1694–1778), a French writer and philosopher.)

2.26. KDELKTFCWTJE

(This is an early fourteenth-century proverb.)

2.27. HQAODJWBZKAI

(This is a late fourteenth-century proverb.)

2.28. VIKTUOVYDJEAZPGTUA

(This is a late fourteenth-century proverb.)

Using the key, e, given in Example 2.6 on page 100, decipher the cipher-
texts in Exercises 2.29–2.32, then convert to English plaintext via Table 2.2 on
page 83.)

2.29. 23, 2, 13, 24, 23, 7, 9, 23, 16, 22, 12, 19, 11, 9, 4, 8, 0, 20, 10, 2, 0, 25, 21, 3, 12,

22, 12, 8

(This is a quote from Ballade of Soporific Absorption (1931) by J.C. Squire
(1884–1958), an English man of letters.)

2.30. 12, 19, 14, 8, 17, 13, 8, 6, 18, 19, 3, 18, 14, 17, 19, 19, 21, 14, 25, 19, 4, 5

(This is the title of a poem written by James Thomson (1834–82), a Scot-
tish poet.)

© 2007 by Taylor & Francis Group, LLC

2.2. Classic Ciphers 107

2.31. 24, 22, 23, 7, 9, 23, 17, 7, 12, 6, 11, 9, 14, 16, 17, 13, 19, 6, 10, 2

(This and its conclusion in Exercise 2.32 comprise a quote from The Gen-
tle Art of Making Enemies (1890) by James McNeil Whistler (1834–1903),
an American-born painter.)

2.32. 24, 22, 3, 11, 23, 1, 15, 2, 19, 4, 8, 6, 7, 11

2.33. It can be shown that a variant of the Vigenère cipher given on page 93 is
the Beaufort cipher, which is defined as follows.

Fix r, n ∈ N. Both the encryption and decryption functions are given by

x �→ (e1 − x1, e2 − x2, . . . , er − xr),

for
e = (e1, . . . , er) ∈ K and x = (x1, . . . , xr) ∈ (Z/nZ)r.

In other words, the encryption and decryption functions are the same,
namely they are their own inverses.

Assuming that r = 3, n = 26, and the following was enciphered using the
Beaufort cipher, with the key KEY , find the plaintext using Table 2.2.

21, 4, 6, 18, 22, 10, 23, 22, 6, 6, 0, 16, 18, 2, 24, 17, 2, 17, 2, 17, 18

(This is a quote from Julius Caesar, Act 3, Scene 2 (1599) by William
Shakespeare (1564–1616), perhaps the greatest English dramatist.)

(To see that the Beaufort cipher is diectly related to the Vigenère cipher
consider the following. For simplicity, we assume that we are working
modulo 26. Let P be the plaintext, C be the ciphertext, and K be the key.
Then with Vigenère, enciphering is done via

P + K ≡ C (mod 26)

and deciphering is done via

C − K ≡ P (mod 26).

With Beaufort, enciphering is done by

K − P ≡ C (mod 26)

and deciphering occurs by

K − C ≡ P (mod 26).)

2.34. Compute the index of coincidence, using the formula displayed on page
102, for the following ciphertext.

VEGSWKXWGGAQSCYRCRCRS

© 2007 by Taylor & Francis Group, LLC

108 2. Cryptographic Basics

Biography 2.13 The Beaufort cipher was invented by Admiral Sir Francis
Beaufort, Royal Navy, who was also the creator of the Beaufort scale, which
is an instrument that meteorologists use to indicate wind velocities on a scale
from 0 to 12, where 0 is calm and 12 is a hurricane.
The self-decrypting Beaufort cipher was used in a rotor-based cipher machine
called the Hagelin M-209, invented in the early 1940’s by Boris Caesar Wilhelm
Hagelin. Hagelin was born on July 2, 1892, in the Russian Caucasus. In 1922,
Emanuel Nobel, nephew of the famed Alfred Nobel, put Hagelin to work in
the firm Aktiebolaget Cryptograph or Cryptograph Incorporated. This was a
company owned by Avid Gerhard Damn, who invented cipher machines of his
own. Hagelin simplified and improved one of Damn’s machines, much to the
liking of the Swedish army, who placed a large order with the Damn firm. After
Damn’s death in 1927, Hagelin ran the firm. Later he developed the M-209,
which became so successful that in the early 1940’s more than 140,000 were
manufactured. The royalties from this alone made Hagelin the first to become
a millionaire from cryptography.

© 2007 by Taylor & Francis Group, LLC

2.3. Stream Ciphers 109

2.3 Stream Ciphers

In Section 2.1 we learned about symmetric-key ciphers, and in Section 2.2
we learned about the first kind of such ciphers, block ciphers. This section is
devoted to the second kind, stream ciphers. In order to place ourselves in the
position of being able to define such cryptosystems, we need the following.

Definition 2.5 Keystreams, Seeds, and Generators

If K is the keyspace for a set of enciphering transformations, then a sequence
k1k2 · · · ∈ K is called a keystream. A keystream is either randomly chosen
or generated by an algorithm, called a keystream generator, which generates
the keystream from an initial small input keystream called a seed. Keystream
generators that eventually repeat their output are called periodic.

� Randomness

When using a computer, the notion of a randomly generated sequence can
only be approximated. In practice, we use a computer program that generates
a sequence of digits in a fashion that appears to be random, called a pseu-
dorandom number generator (PRNG). Here we say “appears to be random”
since computers are finite state devices, so any random-number generator on a
computer must be periodic, which means it is predictable, so it cannot be truly
random. The most that one can expect, therefore, from a computer is pseu-
dorandomness, meaning that the numbers pass at least one statistical test for
randomness. Of course, these pseudorandom number generators are periodic,
but if the periods are large enough, then they can be used for cryptographic
applications. Actually designing them is not so easy as it sounds, and there is a
vast literature concerning how to obtain a secure means of generating a sequence
of digits that has the statistical properties of a truly random sequence, at least
in appearance. Even more than that, these keystreams must be cryptographi-
cally secure. This means they must satisfy the additional property that, for a
given output bit, the next output bit must be computationally infeasible (see
Footnote 2.1 on page 86) to predict, even given knowledge of all previous bits,
knowledge of the algorithm being used, and knowledge of the hardware. These
issues, however, are not our concern here. We will assume that we have such a
cryptographically secure pseudorandom number generator (CSPRNG) for our
keystream, or a truly randomly chosen keystream, and proceed with learning
cryptographic techniques.

Definition 2.6 Stream Ciphers

Let K be a keyspace for a cryptosystem and let k1k2 · · · ∈ K be a keystream.
This cryptosystem is called a stream cipher if encryption upon plaintext strings
m1m2 · · · is achieved by repeated application of the enciphering transformation
on plaintext message units, Ekj

(mj) = cj, and if dj is the inverse of kj, then
deciphering occurs as Ddj

(cj) = mj for j ≥ 1. If there exists an � ∈ N such

© 2007 by Taylor & Francis Group, LLC

110 2. Cryptographic Basics

that kj+� = kj for all j ∈ N, then we say that the stream cipher is periodic with
period �.

The following is the simplest flow chart for a stream cipher.

Diagram 2.1 A Stream Cipher

Keystream

Generator

Keystream

Generator

�kj

�kj

mj −−−−→ Ekj −−−−→ cj −−−−→ Dkj −−−−→ mj

ENCIPHER DECIPHER

Generally speaking, stream ciphers are faster than block ciphers from the
perspective of hardware. The reason is that stream ciphers encrypt individual
plaintext message units, usually, but not always, one binary digit at a time. In
practice, the stream ciphers used are most often those that do indeed encipher
one bit at a time. However, in view of our general Definition 2.6 on the page
before, we may view a block cipher as a special case of a stream cipher having
constant keystream kj = k for all j ≥ 1. At least historically, the distinction
between block ciphers and stream ciphers is not clear cut. Modern distinctions
deem that stream ciphers can encrypt a single bit of plaintext at a time, whereas
block ciphers take a number of bits (typically 64 in modern cryptosystems such
as the DES cipher, which we will study in Section 3.1) and encipher them as a
single block. (See page 123 for some mechanisms that allow us to “stream” a
block cipher.)

Typically, stream ciphers are classified as follows.

Definition 2.7 Synchronous and Self-Synchronizing Ciphers

A stream cipher is said to be synchronous if the keystream is generated with-
out use of either the plaintext or of the ciphertext, called keystream generation
independent of the plaintext and ciphertext. A stream cipher is called self-
synchronizing (or asynchronous) if the keystream is generated as a function of
the key and a fixed number of previous ciphertext units. If the stream cipher
utilizes plaintext in the keystream generation, then it is called nonsynchronous.

The following two flow charts illustrate a general synchronous and a general
asynchronous cipher.

© 2007 by Taylor & Francis Group, LLC

2.3. Stream Ciphers 111

Diagram 2.2 A Synchronous Stream Cipher

Keystream

Generator
←

�

�

�

�k → Keystream

Generator

�kj

�kj

mj −−−−→ Ekj −−−−→ cj −−−−→ Dkj −−−−→ mj

ENCIPHER DECIPHER

Diagram 2.3 A Self-Synchronizing Stream Cipher

Keystream

Generator
←

�

�

�

�k → Keystream

Generator

�kj

� �kj

�
mj −−−−→ Ekj

→ cj −−−−→ Dkj
→ mj

ENCIPHER DECIPHER

The distinctions between block and stream ciphers are more readily seen in
practice than in theory. Stream ciphers encrypting one bit at a time are not
suitable for software implementation since bit manipulation is time consuming.
Where stream ciphers win out is in the arena of error propagation. Obviously,
with a block cipher, a single error will corrupt at least a block’s worth of data,
whereas implementation of a synchronous stream cipher can guarantee that a
single bit error will result in only a single bit of corrupted plaintext. Thus,
synchronous stream ciphers would be useful where lack of error propagation is
critical. However, use of self-synchronizing stream ciphers can result in error
propagation. If the keystream is acting on the nth ciphertext digit and an error
occurs, then the deciphering of up to n subsequent ciphertext digits may be
incorrect.

The following illustration is an example of a synchronous stream cipher.

Example 2.7 Fix r, n ∈ N, and let M = C = (Z/nZ)s, the elements of which
are s-tuples from Z/nZ, and K = Zr, where s ≥ r. For e = (e1, e2, . . . , er) ∈ K,
let

Eej
(mj) = mj + ej (mod r) (mod n), for all j = 1, 2, . . . , s,

and for c = (c1, c2, . . . , cs)C, let

Ddj
(cj) = cj − ej (mod r) (mod n), for all j = 1, 2, . . . , s.

© 2007 by Taylor & Francis Group, LLC

112 2. Cryptographic Basics

From the above, if we take the cipher with key e of length r, then it may be
considered to be a periodic synchronous stream cipher with period r, which is
why the subscript on the key is modulo r. The key

e = (e1, e2, . . . , er)

provides the first r elements of the keystream kj = ej for 1 ≤ j ≤ r, after which
the keystream repeats itself.

We studied the Vernam cipher on page 101, which has a mathematically
more rigorous definition as follows.

� The Vernam Cipher

The Vernam cipher is a stream cipher with alphabet of definition A = {0, 1}
that enciphers in the following fashion. Given a bitstring

m1m2 · · ·mn ∈ M,

and a keystream
k1k2 · · · kn ∈ K,

the enciphering transformation is given by

Ekj
(mj) = mj + kj = cj ∈ C,

and the deciphering transformation is given by

Dkj
(cj) = cj + kj = mj ,

where + is addition modulo 2. The keystream is randomly chosen and never
used again. For this reason, the Vernam cipher is also called the one-time pad.

Current interest in stream ciphers is probably due to the palatable theoretical
properties of the one-time pad. A one-time pad can be shown to be theoretically
unbreakable. (It was not until 1949 with Shannon’s development [86] of the
concept of perfect secrecy that the one-time pad was proved to be unbreakable,
something assumed to be true for many years prior to the proof.) The reason
the one-time pad is unbreakable is that since the key is used only once then
discarded, a cryptanalyst with access to the ciphertext c1c2 · · · cn can only guess
at the plaintext m1m2 · · ·mn, since both are equally likely. Conversely, it has
been shown that to have a theoretically unbreakable system means that the
keylength must be at least that of the length of the plaintext. This vastly
reduces the practicality of the system. The reason, of course, is that since the
secret key (which can be used only once) is as long as the message, then there
are serious key-management problems. Nevertheless, it is part of the folklore
that Soviet spies used one-time pads to send messages, and that they were also
used in German diplomatic systems starting in the late 1920’s. Even the much-
ballyhooed hot-line between Washington and Moscow, inspired by the Cuban

© 2007 by Taylor & Francis Group, LLC

2.3. Stream Ciphers 113

missile crisis of the 1960’s, used what they called the one-time tape, which was a
physical manifestation of the Vernam cipher. At the American end, this took the
form of the ETCRRM II or Electronic Teleprinter Cryptographic Regenerative
Repeater Mixer II. The manner in which the one-time tape worked was that
there existed two magnetic tapes, one at the enciphering source and one at the
deciphering end, both having the same keystream on them. To encipher, one
performs addition modulo 2 with the plaintext and the bits on the tape. To
decipher, the receiver performs addition modulo 2 with the ciphertext and the
bits on the (identical) tape at the other end. Thus, they had instant deciphering
and perfect secrecy if they used truly random keystreams, each used only once,
and the tapes were burned after each use. The same keystream cannot be used
twice since the one-time pad would then be open to a known-plaintext attack,
given that the key k can be computed by addition modulo 2 of the plaintext with
the ciphertext, as seen above. Today, one-time pads are in use for military and
diplomatic purposes when unconditional security is of the utmost importance.

On page 93, we introduced the autokey Vigenère cipher, which has a gener-
alization that provides us with a nonsynchronous stream cipher.

Example 2.8 Let n = |A| where A is the alphabet of definition. We call

k1k2 · · · kr for 1 ≤ r ≤ n

a priming key. Then given a plaintext message unit

m = (m1,m2, . . . ,ms) where s > r,

we generate a keystream as follows.

k = k1k2 · · · krm1m2 · · ·ms−r.

Then we encipher via:

Ekj
(mj) = mj + kk (mod n) = cj , for j = 1, 2, . . . , r, and

Ekj
(mj) = mj + mj−r (mod n) = cjfor j > r,

and we decipher via:

Dkj (cj) = cj − kj (mod n) = mj , for j = 1, 2, . . . , r, and

Dkj (cj) = cj − mj−r (mod n) = mj for j > r.

This cryptosystem is nonsynchronous since the plaintext serves as the key, from
the (r + 1)st position onwards, with the simplest case being r = 1.

We have excluded r = s in Example 2.8, since, in that case, we have a
synchronous cipher that becomes the one-time pad if we assume the keystream
is truly randomly generated and never used more than once.

© 2007 by Taylor & Francis Group, LLC

114 2. Cryptographic Basics

Exercises

Using the autokey Vignère cipher described in Example 2.8 on the preceding
page, decrypt the ciphertexts in Exercises 2.35–2.36. Use Table 2.2 on page 83
to get the numerical equivalents.

2.35. The priming key is k = k1k2k3 = 2, 7, 3, n = 26, and the cryptogram is

VOHXTTMDTAFJLVJYBXZLX.

(This and its conclusion in Exercise 2.36 comprise a quote from a speech
given at Harvard on September 6, 1943, by Winston Churchill (1874–
1965), British Conservative statesman and Prime Minister from 1940 to
1945, and 1951 to 1955.)

2.36. The priming key k = k1k2 = 3, 1 and n = 26 and the cryptogram is

DSEKLXLQTUGMJSXHMXTMZL.

Exercises 2.37–2.38 are devoted to the following notion of a generator (the gen-
eral notion of which we will study in Section 2.4 along with linear feedback shift
registers). Let a, b ∈ N with n ≥ 2 and a, b ≤ n − 1. Suppose that an integer s0

is given with 0 ≤ s0 ≤ n − 1, called a seed. Define

sj ≡ asj−1 + b (mod n)

for 1 ≤ j ≤ � where � ∈ N is the least value such that s�+1 = sj for some j ∈ N
such that j ≤ �. Then

f(s0) = (s1, s2, . . . , s�)

is called a linear congruential pseudorandom number generator — or simply
linear congruential generator where a is called the multiplier, � is called the
period, and b is called the increment. It can be shown (see [46]) that the maxi-
mum period � = n is achieved if and only if gcd(b, n) = 1, a ≡ 1 (mod p) for all
primes p

∣∣ n, and a ≡ 1 (mod 4) if 4
∣∣ n.

2.37. Find the maximum period of f , the above-described linear congruential
generator, if b = 0.

2.38. Find the linear congruential generator f when a = 23, s0 = 1, b = 0, and
n = 1806.

© 2007 by Taylor & Francis Group, LLC

2.4. LFSRs 115

2.4 LFSRs

The notion of a shift register is fundamental in cryptography since they
provide a toolbox for generating pseudorandom numbers (see the discussion of
randomness on page 109).

� Linear Feedback Shift Registers

A linear feedback shift register (LFSR) is described as follows.
First, there is a shift register of length � ∈ N, consisting of a row of � registers

(memory cells), from left to right, labelled R�−1, R�−2, . . . , R1, R0, each capable
of holding one bit. Let k0 be the binary value in the right-most register, then
k1, the value in the second register, and so on to the value k�−1 as the value in
the left-most register. Thus, the initial state would look like this.

k�−1

R�−1

k�−2

R�−2 · · ·
k1

R1

k0

R0

An electronic clock controls movement between the registers as follows. The
first pulse of the clock causes the left-most entry, k�−1, in register R�−1, to get
moved to register R�−2, while the entry, k�−2, in R�−2 gets moved to occupy the
register R�−3, and so on until k1 gets moved to R0, and k0 is tapped to the output
sequence. This leaves the register R�−1 blank. (For instance, (1000) → (−100).)
To fill this register, we require that it be a linear function of the values kj for
j = 0, 1, . . . , � − 1. To achieve this we need a tap sequence, which is an �-tuple
of bits:

(c�−1c�−2 . . . c1c0),

with c0 = 1. We form

k� =
�−1∑
j=0

cjkj ,

called the linear feedback, and place the entry k� in register R�−1. The effect of
this initial clock pulse is illustrated as follows.

Diagram 2.4 One Clock Pulse

k�−−−−→ k�−1 k�−2 ··· k1 k0

k0−−−−→
output

clock pulse
�

k� k�−1
··· k2 k1

© 2007 by Taylor & Francis Group, LLC

116 2. Cryptographic Basics

A state sm, of the LFSR is the bitstring describing the contents of the entire
set of registers Rj after m+1 clock pulses where m ≥ 0. The initial state, called
the seed, which cannot be the zero vector, is given by the bitstring

s0 = (k�−1k�−2 . . . k0),

and the state after one clock pulse is given by

s1 = (k�k�−1 . . . k1).

In general, a state is given by

sm = (km+�−1km+�−2 . . . km+1km),

where m ≥ 0, and the linear feedback is given by

km+� =
�−1∑
j=0

cjkm+j . (2.1)

Equation (2.1) is also called a binary recurrence relation of length �.
A generic LFSR that illustrates the above is given in Diagram 2.5.

Diagram 2.5 A Linear Feedback Shift Register

km+�−−−−→ km+�−1 km+�−2 · · · km+1 km

{k0,k1,...}−−−−−−→
output

feedback
� c�−1

� c�−2

� · · · c1

� c0

�
————- ⊕ —- ⊕ ———- ⊕ —–⊕

A very simple illustrating instance of the LFSR is given in the following.

Example 2.9 Suppose that we have an LFSR with � = 4, tap sequence
(c3c2c1c0) = (0101), and initial state s0 = (k3k2k1k0) = (1101). Then we
calculate the following.

m sm km+3 km+2 km+1 km

0 s0 1 1 0 1
1 s1 0 1 1 0
2 s2 1 0 1 1
3 s3 1 1 0 1

For instance, when m = 2,

km+� = k6 =
3∑

j=0

cjkj+2 = 1 · 1 + 0 · 1 + 1 · 0 + 0 · 0 = 1 =
�−1∑
j=0

cjkj+m.

The output sequence is {k0, k1, k2} = {101}. Notice that the state s3 equals
the state s0 in the above table. This implies that we repeat the states again,
which motivates the following.

© 2007 by Taylor & Francis Group, LLC

2.4. LFSRs 117

� Periodicity

How many distinct states, sm = (km+�−1km+�−2 . . . km+1km), is it possible
to have? The total number of states (bitstrings) of length � is 2� since there is
a choice of either a 0 or a 1 in each register. This includes the zero bitstring.
However, we do not want to include the zero bitstring since we cannot begin
with it so it can never appear as a state, given our requirement that c0 = 1 (see
Exercise 2.39 on page 121). Thus, there are no more than 2�−1 possible distinct
states for an LFSR. Hence, it must be the case that after at most 2� − 1 clock
pulses, there must be the repetition of a state. Suppose that P is the smallest
such value where s0 = sP . Then we call P the period length of the LFSR. (See
Exercise 2.41.) For instance, in Example 2.9 on the preceding page, P = 3,
so the LFSR, depicted therein, has period length 3. In general, it follows that
sm+P = sm for all states sm where m = 0, 1, 2,

Example 2.9 is an instance where the maximum possible number of states,
2� − 1 = 15 in that case, is not reached. Those that do reach that maximum
are members of a distinguished family.

� Maximum Length LFSRs — Pseudo-random Sequences

A maximum-length LFSR is one of period 2� − 1 where � is the number of
registers. Another name for them is pn-sequences, which was coined by S.W.
Golomb because these sequences satisfy certain nice statistical properties, called
Golomb’s Randomness Postulates (see [38, pp. 43–48]). Fortunately, there is
an abundance of such sequences. Peterson and Weldon have shown in [69] that
for every � ∈ N, there exists an LFSR of length � that has period length 2� − 1.

Example 2.10 Let � = 4, tap sequence (c3c2c1c0) = (1001), with initial state

s0 = (0001) = (k3k2k1k0).

Then the output of the LFSR is given by the following.

m km+3 km+2 km+1 km n km+3 km+2 km+1 km

0 0 0 0 1 8 1 0 1 0
1 1 0 0 0 9 1 1 0 1
2 1 1 0 0 10 0 1 1 0
3 1 1 1 0 11 0 0 1 1
4 1 1 1 1 12 1 0 0 1
5 0 1 1 1 13 0 1 0 0
6 1 0 1 1 14 0 0 1 0
7 0 1 0 1 15 0 0 0 1

The period length is P = 15 since sP = s15 = s0 = (0001). Since 2� − 1 =
15, this is a maximum-length LFSR. The pn-sequence output by this LFSR is
{k0, k1, . . . , k13, k14} = {100011110101100}.

© 2007 by Taylor & Francis Group, LLC

118 2. Cryptographic Basics

In Example 2.10, the output sequence has 2�−1 = 8 ones and 2�−1 − 1 = 7
zeros. In fact, it can be shown that this is always the case, namely a maximum-
length LFSR having � registers, has 2�−1 ones and 2�−1 − 1 zeros (see Exer-
cise 2.45 on page 121).

� Tap Polynomials

If L� is an LFSR with length � and tap sequence c�−1c�−2 . . . c1c0, where
c0 = 1, then

t(x) = x� + c�−1x
�−1 + c�−2x

�−2 + · · · + c1x + c0 ∈ (Z/2Z)[x],

is called the tap polynomial for L�.
The tap polynomial is said to be primitive provided that t(x) has no proper

nontrivial factors and t(x) does not divide xd + 1 for any d < 2� − 1. (Another
equivalent means of defining t(x) as a primitive polynomial is to say that its
roots generate the group of nonzero elements of the associated extension field
obtained from the polynomial t(x) of degree �.) With this notion in mind, it can
be shown that L� is a maximum-length LFSR if and only if its tap polynomial
t(x) is primitive. For instance, in Example 2.10, the tap polynomial is x4+x3+1,
which is irreducible (has no nontrivial factors) and does not divide xd + 1 for
any d < 15.

� LFSRs Via Matrices
There is a very palatable, simple, easy-to-understand matrix method of de-

scribing the above. Consider the following tap matrix derived from the tap
sequence and state matrix derived from the states.

C =

c1 c2 c3 · · · c�−1 c�

1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0

and Sm =

km+�−1

km+�−2

...
km+1

km

,

so,
CSm = Sm+1 for m = 0, 1, . . . , P − 1.

For instance, take the case in Example 2.9.

C =

0 1 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 and S2 =

1
0
1
1

 ,

so

CS2 =

1
1
0
1

 = S3 = SP .

© 2007 by Taylor & Francis Group, LLC

2.4. LFSRs 119

� Security of LFSRs

All a cryptanalyst needs is a few bits of consecutive plaintext and corre-
sponding ciphertext, then by adding modulo 2, eventually the bits of the key
are determined. Bitstrings output by a single LFSR are not secure since sequen-
tial bits are linear, so it only takes 2� output bits of the LFSR to determine it,
even if the feedback scheme is unknown to the cryptanalyst. Indeed, LFSRs are
susceptible to what is called a known-plaintext attack (see Section 2.6).

The above being said, LFSRs are highly functional as building bricks for
more secure systems. One mechanism is to use several of them in parallel,
meaning that n ∈ N LFSRs are input to a function f , called the combining
function, which outputs a keystream. Such a system is called a nonlinear com-
bination generator.

Diagram 2.6 Nonlinear Combination Generator
�

�

�

�LFSR-1 ↘
�

�

�

�LFSR-2 →
...�

�

�

�LFSR-n ↗

�

�

�

�

f −−−−→
�

�

�

�
keystream

The LFSR-based keystream should display reasonably good statistical prop-
erties and have a large period length. Also, they should satisfy certain complex-
ity requirements involving the following.

� Linear Complexity and LFSRs

An LFSR is said to generate a binary sequence if there exists an initial state
for which the sequence is the output of the LFSR. The linear complexity of a
binary sequence k = {kj} is defined to be the length of the shortest LFSR that
generates k. If there is no such LFSR that generates k, the linear complexity
is said to be infinite. If k is the zero sequence, then the linear complexity is
defined to be 0.

For instance, if t(x) is an irreducible polynomial over Z/2Z with degree �
and is the tap polynomial of an LFSR, then that LFSR has linear complexity �
for each of its 2� − 1 nonzero initial states.

A necessary (although possibly not sufficient) property for the security of
an LFSR is that it should have large linear complexity. There is an efficient
test for determining the linear complexity of a finite binary sequence, called
the Berlekamp-Massey Algorithm, which shows that if k = {kj}n

j=1 is a binary
sequence having linear complexity L, then there is a unique LFSR of length L
that generates k if and only if L ≤ n/2. (See [11, Theorem 16.22, p. 303].) It
is also known that 2� consecutive bits determine the output of an LFSR with �
states (see [11, Result 16.11, p. 298]).

There exists a method of nonlinear combination generation called clock-
controlled generation that attempts to foil attacks based upon the regular action

© 2007 by Taylor & Francis Group, LLC

120 2. Cryptographic Basics

of LFSRs such as that described above. Clock control means that nonlinearity is
introduced into LFSR-based keystream generators by having the output of one
LFSR control the clocking (or stepping) of the LFSR. There is such a keystream
generator that is secure if properly set up.

� The Shrinking Generator

The shrinking generator, proposed by Coppersmith, Krawczyk, and Mansour
in 1993 (see [19]) is described as follows. Let R1 and R2 be two LFSRs. If
k

(j)
0 , k

(j)
1 , . . . is the output bitstring of Rj for j = 1, 2, then the keystream output

by the shrinking generator is si = k
(2)
i(1), where i(1) is the position of the ith 1 in

k
(1)
0 , k

(1)
1 , . . . for i ≥ 0. In other words, if a 1 occurs in the ith output position

of R1, then k
(2)
i becomes the next bit in the output keystream. Otherwise, it is

discarded. Hence, the output keystream is a “shrunken” version of the output
of R2. This is illustrated as follows.

Diagram 2.7
�

�

�

�
LFSR R1

k
(1)
i−−−−→

↗
�

�

�

�

�Clock → �

↘
�

�

�

�

�
LFSR R2

k
(2)
i−−−−→ � k

(1)
i =1−−−−→

�

�

�

�
output k

(2)
i�

k
(1)
i =0−−−−→

�

�

�

�
discard k

(2)
i

If gcd(L1, L2) = 1, then the keystream has period (2L2 − 1)2L1−1, and the
linear complexity L(k) of the output keystream k satisfies,

L2 · 2L1−2 < L(k) < L2 · 2L1−1.

The most efficient attack on the shrinking generator takes O(2L1 ·L2
2) steps, but

this attack requires 2L1 · L2 consecutive bits from the output sequence. Thus,
when R1 and R2 are chosen as maximum-length LFSRs with gcd(L1, L2) = 1,
then for max(L1, L2) ≥ 64, the shrinking generator appears to be secure against
presently known attacks.

Although there exist numerous LFSRs and LFSR-based stream ciphers, for
the purposes of this text, we have covered a sufficient amount. For further
information, the reader is referred to [58].

� Summary

LFSRs are amenable to hardware implementations, the costs of which are
low, and LFSRs are extremely fast. The choice of the bits to be tapped can

© 2007 by Taylor & Francis Group, LLC

2.4. LFSRs 121

ensure a statistically random appearance of output bits. Thus, an LFSR can
be used as a PRNG, but not a CSPRNG (see the discussion of randomness on
page 109 and the discussion of security on page 119). Thus, LFSRs become
a trade-off between speed and security. If one is not concerned with security,
but rather speed, such as in cable television transmission, then LFSRs are a
good bet. For systems of communications requiring high security, they are not.
However, they can be built into non-linear PRNGs. For examples of this and a
deeper insight into LFSRs, see [38] and [89, pp. 119–126] as well as [91] for a
cryptanalytic perspective.

Exercises

2.39. Prove that an LFSR, as described in this section, can never have a zero
state.

2.40. Suppose you are given the bitstring B = {k0, k1, . . . , k�−1 } of length �, not
equal to the zero bitstring. Prove that there is an LFSR whose output
sequence contains B.

2.41. Show that periodicity of an LFSR fails to hold (in general) if we allow
c0 = 0. (Hint: Show that Exercise 2.39 fails to hold in general if c0 = 0.)

2.42. Provide and example where periodicity for an LFSR does hold when c0 =
0. (This merely shows that periodicity is not a general fact when c0 =
0, but there are still instances where it can hold. This is counter to
claims made in many texts [including the first edition of this one] that it
is necessary and sufficient for periodicity of an LFSR that c0 = 1. The
condition is sufficient but is not necessary.)

2.43. Let (k1k2 . . . k2n−1) be a bitstring that satisfies a linear recurrence of
length less than n ∈ N (see Equation 2.1 on page 116). Prove that
det(M) ≡ 0 (mod 2), where

M =

k1 k2 k3 · · · kn−1 kn

k2 k3 k4 · · · kn kn+1

k3 k4 k5 · · · kn+1 kn+2

...
...

...
...

...
kn kn+1 kn+2 · · · k2n−2 k2n−1

.

2.44. Let an LFSR with five registers be given by the initial state s−1 = (11101)
and tap sequence c = (01001). Calculate the output seqeunce to verify it
is a maximum-length LFSR.

2.45. Show that a maximum-length LFSR with � registers generates 2�−1 ones
and 2�−1 − 1 zeros.

© 2007 by Taylor & Francis Group, LLC

122 2. Cryptographic Basics

2.5 Modes of Operation

Another cryptographic basic is how block ciphers (such as DES, which we
will study in Section 3.1) may be applied to a variety of situations, called modes
of operation.

Symmetric-key block ciphers have five modes of operation recommended
by National Institute of Standards and Technology (NIST) — see the NIST
homepage: http://www.nist.gov/. These modes (initially intended for DES) are
meant to address every conceivable application for cryptology to which block
ciphers can be applied.

The following is taken from [64].

� Block Cipher Modes — Overview

1. Electronic Code Book (ECB): Each 64-bit block of plaintext is enci-
phered with the same key, albeit independently. This mode is typically
used to send small amounts of data such as a symmetric key.

2. Cipher Block Chaining (CBC): The input is the addition, modulo 2,
of the previous 64 bits of ciphertext with the succeeding 64 bits of plain-
text. Normally, this mode is used as a general-purpose block-transport
mechanism but also may be employed for authentication purposes.

3. Cipher Feedback (CFB): This mode employs a chaining mechanism
similar to CBC. It uses prior ciphertext as input and outputs pseudo-
random strings that are added, modulo 2, with plaintext to produce the
next quantity of ciphertext. This mode is employed as a stream-cipher-
oriented means for general-purpose messaging since it processes n ∈ N bits
at a time.

4. Output Feedback (OFB): This is comparable with CFB mode with the
exception that its input is the prior block cipher’s output. This mode is
usually employed for stream-cipher-oriented communications, especially
those requiring message authentication.

5. Counter (CTR): The ciphertext is formed via a modulo 2 addition of
a plaintext block with an enciphered counter, which is updated for each
succeeding block. This mode is remarkably easy to use and is typically
utilized for high-speed transmission. In fact, this is the least-known of the
modes but is rapidly gaining ground with working cryptographers in the
field as an excellent means of using block ciphers in a variety of situations.

� Block Cipher Modes — Details

In what follows Ek is the enciphering function for the block cipher E using
the key k, whereas Dk = E−1

k denotes the decryption function.

© 2007 by Taylor & Francis Group, LLC

http://www.nist.gov

2.5. Modes of Operation 123

� Electronic Code Book (ECB)

We begin with the simplest of the modes. In ECB mode, we input a sequence
mj for j ≥ 1, of 64-bit plaintext blocks, each of which is enciphered with the
same key, producing a string of ciphertext blocks cj . In other words,

enciphering is Ek(mj) = cj and deciphering is E−1
k (cj) = mj .

The problem with this is that two identical plaintext blocks get sent to identical
ciphertext blocks, which can be exploited by a cryptanalyst. Some experts feel
that this weakness is sufficient to render it insecure for any use, whereas others
feel that it is ideal for sending small amounts of data such as the sending of a
DES key. It certainly should not be used for sending large amounts of data in
any case. The aforementioned weakness of ECB is overcome in the next mode.

First we need to describe another type of attack called the man-in-the-middle
attack. To describe this attack, we introduce a cryptographic cast of characters.
First there are Alice and Bob who wish communicate with each other. Second,
there is Eve, who is our passive eavesdropper. Third, there is Mallory, the
malicious active attacker. The principal idea in the man-in-the-middle attack is
that Mallory assumes a position between Alice and Bob. Mallory can stop all or
parts of messages being sent between them and substitute his own data. In this
way, he impersonates Alice and/or Bob, who believe they are communicating
with each other while they are really talking to Mallory.

� Cipher Block Chaining (CBC)

In CBC mode, we first let IV be an initialization vector (meaning a 64-bit
input bitstring), set c0 = IV , and let k be the 64-bit input key. Given a sequence
mj of 64-bit plaintext blocks, for j ≥ 1, we recursively define

encryption by cj = Ek(cj−1 ⊕ mj), and decryption by mj = E−1
k (cj) ⊕ cj−1.

Thus, the weakness of ECB mode is eliminated by the modulo 2 addition of
plaintext blocks with previous ciphertext blocks, thereby randomizing the plain-
text with the previous ciphertext. Essentially, this means that we have “chained
together” the sequence of enciphering plaintext blocks. This obscures the rela-
tionship between the plaintext and ciphertext, substantially reducing the data
for a cryptanalyst to use effectively.

Next is the not-so-obvious problem of how to choose IV . Most texts rec-
ognize the problems with leaking information about IV and therefore suggest
keeping it as secure as the key, since a cryptanalyst can derive information from
it by posing as a sender using the man-in-the-middle attack. However, few cite
the best solution to this problem. We should not have a fixed IV or even a
randomized IV since there remains the problem (the one for which it is deemed
necessary to keep IV a secret), namely, either method requires that the recip-
ient of the message has to know this IV . In the case of a fixed IV we return
to the ECB problem in encryption of the first block of each message. With
the randomized IV , we require a secure randomizer at hand, for each message,

© 2007 by Taylor & Francis Group, LLC

124 2. Cryptographic Basics

which adds more effort in the use of the cipher, since as we will discover later
that obtaining secure randomizers is a difficult task. There is a better method,
which essentially uses the idea behind the one-time-pad (see page 101).

First, a nonce is a unique number used exactly once in a given protocol.
(This is derived from number used once.) As with the one-time-pad, a nonce
should never be used more than once. In this fashion, we eliminate the need to
keep the nonce secret. A nonce-generated IV is one where the IV is enciphered
with the block cipher in CBC mode as follows.

1. Using a counter that starts at 0, assign a number to the message and use
this number to generate a (unique) nonce.

2. Encipher the nonce with the block cipher, such as DES, to generate the IV .

3. Encipher the message in CBC mode using the IV .

4. Instead of sending c0 = IV as above, add the message number appended to
the front of the ciphertext.

5. To ensure that there is a safeguard built in to guarantee the nonce is
never accepted more than once by a recipient, the receiver will not accept
messages with an assigned number less than or equal to the previously
assigned message numbers.

If there were a popularity contest among the modes, CBC would probably
win as the most utilized of them all. It certainly is an excellent all-purpose
application for sending block data. However, others are gaining ground.

� Cipher Feedback (CFB)

In CFB mode, again we input IV , mj as above, and set c0 = IV . Then we
produce subkeys by enciphering the previous ciphertext block. In other words,
for j ≥ 1,

Ek(cj−1) = kj , then produce ciphertext: cj = mj ⊕ kj .

CFB encryption is similar to CBC encryption in that the chaining mechanism
causes ciphertext block cj to depend on mk for k ≤ j. Moreover, the same issues
with the IV remain.

� Output Feedback (OFB)

In OFB mode, we input IV , k, mj for j ≥ 1 as above, and set k0 = IV .
Then subkeys are computed by repeatedly encrypting the initialization vector,
in a mechanism described by the following.

OFB Feedback Mechanism

kj = Ek(kj−1)

© 2007 by Taylor & Francis Group, LLC

2.5. Mo des of Op eration 125

Then mj is enciphered via

cj = mj ⊕ kj for j ≥ 1.

In ECB and OFB modes, changing one input block mj causes exactly one
ciphertext block cj to be changed. This is valuable in such applications as the
encryption of satellite transmissions. In CBC and CFB modes, a change to
input block mj changes cj , cj +1, This turns out to be useful in applications
involving message authentication. In other words, these latter two modes can
be used to produce a message authentication code (MAC). What this means
is that the MAC can be used as an electronic signature that will convince the
receiving party of the authenticity of the message.

In OFB mode, the block cipher is used to generate a pseudorandom stream
of keys. This is an example of a keystream (see Definition 2.5 on page 109).
The IV has to be random, so it can either be chosen randomly or generated as
a nonce as in CBC mode. Moreover, only the enciphering function is needed
since enciphering is exactly the same method as deciphering. Also, since the
keystream is generated in the above fashion, then there is no padding2.2 required.
In other words, one needs only send a ciphertext as long as the plaintext (and
not have to pad to fill in the blocklength).

A major weakness of OFB mode is that if the same IV is ever used for two
different messages, then a cryptanalyst (for example, Eve) can add ciphertext
modulo 2 to recover plaintext. To see why, assume that ci and cj were enciphered
using the same keystream, ki. Then

ci ⊕ cj = mi ⊕ ki ⊕ mj ⊕ ki = mi ⊕ mj ,

and now Eve has a means of computing the difference between two plaintexts.
This is a disaster if Eve knows one of the plaintexts already because then she
readily gets the other. Moreover, even if she does not know either one, there are
means of recovering both from information about the differences between them.

� Counter (CTR)

Counter mode (CTR) has been around since 1980 or so but was not stan-
dardized until December 2001 by NIST. Thus, it has not appeared in most
textbooks as a mode of operation. However, it has recently been gaining in
popularity and many consider it to be the best mode. As with OFB, it is a
stream cipher, the methodology for which we now describe.

A nonce n is concatenated with the counter i and enciphered to form a
single block of key for i = 1, 2, . . ., ki = Ek(n, i); and ciphertext is obtained via
ci = mi ⊕ ki for given plaintext blocks mi. Therefore, the counter and nonce
must fit into a single block (for instance, a 128-bit block in most modern-day

2.2Padding means appending a randomly generated bitstring of suitable length to the plain-
text prior to encryption, a practice also called salting, since we change the “taste” of the
message, so the result is called a salt. Moreover, the random bitstring must be independently
generated for each separate encryption.

© 2007 by Taylor & Francis Group, LLC

126 2. Cryptographic Basics

ciphers would not present a problem). For reasons discussed in above modes,
the nonce must be used exactly once for each plaintext block encrypted.

To decipher, the same set of nonce/counter concatenated values are used as
follows to recover plaintext: For each i = 1, 2, . . ., execute ki = Ek(n, i), then
mi = ci ⊕ ki.

CTR does not suffer the problems cited for other modes because all the ki

are distinct since they are encipherings of a concatenation of nonce and counter,
used only once. Then all plaintext mi get enciphered via ki to distinct ciphertext
values, so two keyblocks (formed by the ciphertext values) are never the same.

CTR is an all-purpose block-oriented method that is highly useful for high
speed transmissions, the reason being that the keystream can be paralleled to
any desired level. The structure of CTR, moreover, ensures that its use is as
secure as that of the underlying block structure.

CTR, as with OFB, does not require padding, whereas CBC does. CTR
may, in fact, be considered to be a simplification of OFB, which solves one of the
problems inherent in the latter. The counter replaces the feedback mechanism
in OFB, discussed earlier, and this provides a formidable feature of CTR.

CTR Random Access Property
A ciphertext block cj need not be deciphered in order to decipher cj+1.

With the chaining modes such as CBC, one must decipher cj in order to
decipher cj+1.

CTR, due to its high speed configurations, is used in network security appli-
cations, such as IPSec, or IP security (see [64, Section 8.3]). Another palatable
feature of CTR is its simple structure in that, unlike ECB and CBC, CTR re-
quires only the implementation of the enciphering scheme, not the deciphering
algorithm. For instance, if the underlying block cipher were AES (see Section
3.2), this matters a lot since the encryption and decryption transformations
differ so greatly. This simplifies matters since key scheduling for deciphering is
not needed in the CTR implementation. Perhaps, from a security viewpoint,
the greatest selling feature of CTR is that it is provably secure. For all these
reasons, it appears that CTR is on its way to dominance as the mode of choice.

Exercises

2.46. Verify that the deciphering method for CBC mode described on page 123
actually recovers the plaintext.

2.47. Show that for the CFB mode described on page 124 the following decryp-
tion method will recover the plaintext:

mj = cj ⊕ Ek(Cj−1).

2.48. Verify that the CTR random access property, highlighted on page 126, is
indeed valid.

© 2007 by Taylor & Francis Group, LLC

2.6. Attacks 127

2.6 Attacks

Basically, an attack on a cryptosystem is any method that starts with some
information about the plaintext and the corresponding ciphertext, enciphered
under a key, which is yet unknown to the cryptanalyst. Determining the key
and thus the plaintext in its entirety is the end goal. There are two major
classes of attacks. One is passive, where the cryptanalyst monitors the chan-
nels of communications, thereby only threatening confidentiality of data. The
other is active, where the cryptanalyst attempts to add, delete, or somehow
alter the message, threatening not only confidentiality but also integrity and
authentication of data.

� Passive Attacks

Passive attacks may be further subdivided into six classes.
(a) Chosen-plaintext. With this attack the cryptanalyst chooses plaintext, is

then given corresponding ciphertext, and analyzes the data to determine
the enciphering key to obtain plaintext from previously unseen ciphertext.
An example of this type of attack is the DC attack against DES described
on page 145.

(b) Chosen-ciphertext. In this form of attack the cryptanalyst chooses the
ciphertext and is given the corresponding plaintext. Of course, given the
required data, by their very nature such attacks are difficult to mount. For
example, one way to mount a chosen-ciphertext attack is to gain access
to the equipment used to encipher, as was the case, for instance, with the
Americans gaining access to the Japanese cipher machines prior to World
War II. Then the cryptanalyst can use such equipment to deduce plaintext
from other intercepted ciphertext, since the equipment does not give the
cryptanalyst the decryption key.

(c) Known-plaintext. This attack is more practical than chosen-plaintext since
the cryptanalyst has some amount of both plaintext and corresponding
ciphertext. Even a small amount of information in this type of attack
may suffice to find the key. This type of attack was useful against the
German Enigma machine in World War II, for instance.

(d) Ciphertext-only. Even more practical than the latter is this attack, wherein
the cryptanalyst has only the ciphertext as data to deduce the key and
subsequent plaintext. Any cryptosystem that is vulnerable to this type of
attack is completely insecure.

(e) Adaptive chosen-plaintext. This is a chosen-plaintext attack where the
choice of plaintext depends upon the previously received plaintexts.

(f) Adaptive chosen-ciphertext. This attack is a chosen-ciphertext attack with
chosen ciphertext depending upon previously received ciphertexts.

© 2007 by Taylor & Francis Group, LLC

128 2. Cryptographic Basics

There are certain attacks that we will encounter in the text that are described
by name as follows.

� Brute-Force Attacks

In this type of attack, also called an exhaustive serach of the keyspace, all
possible keys are tried to determine which one is being used by communicat-
ing parties. For a well-designed cryptosystem, this type of attack is too time
consuming to undertake.

To understand next two types of attack, we must first define a couple of
items. A hash function is a computationally efficient function that maps bit-
strings of arbitrary length to bitstrings of fixed length, called hash values. A
one-way hash function f : M �→ C is a hash function that satisfies the property
that f(m) is “easy” to compute for all m ∈ M, but for randomly chosen c in the
image of f , finding an m ∈ M such that c = f(m) is computationally infeasible,
namely we can easily compute f , but it is computationally infeasible to compute
f−1. One-way hash functions are called cryptographic hash functions since these
functions prevent unauthorized retrieval of the original bitstring. The process
of using a hash function on a message is called hashing the message.

� Dictionary Attacks

Such an attack occurs when an adversary takes a list of probable passwords,
hashes all the entries on the list, and compares this list with the list of actual
enciphered passwords in an effort to find a match.

We need further data on hash functions to describe the next attack.
A hash function f is said to have a collision if f(x1) = f(x2) for values

x1 �= x2. One can see that if the set of possible messages upon which f acts is
much larger than the set hash values, called message digests, then there should
be many examples where collisions occur. This fact is used in the next type of
attack.

� The Birthday Attack

If we are given a hash function f : M �→ C with |C| = n and |M| > n,
then there is at least one collision. Now we show how to find such collsions by
describing a phenomenon that gives the birthday attack its name.

The following is taken from [64].

The Birthday Paradox: Suppose there are n > 1 balls in a container
numbered from 1 to n inclusive. Also, let us assume that m > 1 balls are drawn
one at a time, listed, and replaced each time (where m < n). What is the
probability that one of the balls is drawn at least twice?

Let Pj(n, m) be the probability that one ball is drawn at least j times. Then,
we are seeking

P2(n, m) = 1 − P1(n, m).

To find P1(n, m), note that the probability that the second drawn ball is different
from the first is 1− 1/n, the probability that the third ball is different from the
first two is 1 − 2/n, and so the probability that the first three balls are all

© 2007 by Taylor & Francis Group, LLC

2.6. Attacks 129

different is (1 − 1/n)(1 − 2/n). Continuing in this fashion, we see that the
probability that all of the m balls drawn are different is

P1(n, m) =
m−1∏
j=1

(
1 − j

n

)
=

1
nm−1

m−1∏
j=1

(n − j) =

(n − 1)(n − 2) · · · (n − m + 1)
nm−1

.

Thus,

P2(n, m) = 1 − (n − 1)(n − 2) · · · (n − m + 1)
nm−1

.

In particular, suppose we want to prove that in any room of twenty-three
people, the probability that at least two of them have the same birthday is
greater than 50%. From the above this is a fact since

P2(365, 23) ≈ 0.5072972343.

This phenomenon is called the birthday paradox.
The birthday paradox is a special case of the occupancy problem, which is

given as follows. Suppose that a container has n balls numbered 1 through
n inclusive. Again assume that m balls are drawn one at a time, listed, and
replaced each time. Then the probability that exactly � of the m balls are
different for 1 ≤ � ≤ m is given by

1
�!

�∑
j=0

(−1)�−j

(
�

j

)
jmP1(n, m),

where
(

�
j

)
is the binomial coefficient. Now we return to the birthday attack that

began this discussion. We initially asked how we can find a collision. From the
above, the probability that there do not exist any collisions is

m−1∏
j=1

(1 − j/n),

so
1 − x ≈ e−x

for small x values (such as ours). Hence, the probability of no collisions is

m−1∏
j=1

(1 − j

n
) ≈

m−1∏
j=1

e−j/n = e−m(m−1)/(2n).

Therefore, the probability of at least one collision occurring is

pc ≈ 1 − e−m(m−1)/(2n). (2.2)

© 2007 by Taylor & Francis Group, LLC

130 2. Cryptographic Basics

Since
e−m(m−1)/(2n) ≈ 1 − pc,

then
−m(m − 1)/(2n) ≈ ln(1 − pc).

Hence,
m2 − m ≈ −2n ln(1 − pc),

and so
m2 ≈ −2n ln(1 − pc) ≈ 2n ln(1/(1 − pc)),

since we can safely ignore the smaller factor of −m in an approximation, so

m ≈
√

2n ln(1/(1 − pc)).

If pc = 1/2, then m ≈ 1.17
√

n. Clearly then, by hashing over little more than√
n random elements of S, we have a greater than 50% chance of finding a

collision. This is the birthday attack.
The birthday attack places a lower bound on the number of bits a hash

function should have in order to be secure. The reason is that the birthday
attack can find a collision in O(2k/2) hashings on an k-bit function. Thus, if
k = 64, then it is not secure against the birthday attack since only 232 hashings
are required.

The following illustration of the birthday attack was first presented by Yuval
in 1979 (see [98]).

� Alice Cheats Bob Using the Birthday Attack
The hash function has 64 bits. Alice wants Bob to sign a contract that he

thinks will benefit him, and later she wants to “prove” that he signed a contract
that actually robs him of his life savings.

(1) Alice prepares two contracts, one that is “good” for Bob, CG, and one, CB ,
that will sign away his savings.

(2) Alice makes very minor changes in each of CG and CB . Then she hashes
232 modified versions of CG and 232 modified versions of CB .

(3) She compares the two sets of hash values until she finds a collision h(CG) =
h(CB) and recovers the corresponding preimages.

(4) Alice has Bob sign CG via the hash of its value.

(5) Later Alice substitutes CB for CG whose hash value is the same as that
signed by Bob, who has now lost all his money.

From the discussion preceding the Yuval attack above, we see that a birthday
attack requires an effort of only the order of 232. Thus, simple hash functions
based on a 64-bit message digest are insecure, so from a cryptographic perspec-
tive they are not worth discussing.

© 2007 by Taylor & Francis Group, LLC

Chapter 3

DES and AES

3.1 S-DES and DES

In order to properly describe the DES cryptosystem, we need more mathe-
matically oriented definitions of transposition and substitution ciphers than we
have considered thus far.

Block ciphers, defined on page 91, are classically broken into two types, the
first of which is described as follows. Note that, in the following, if S is a finite
set, then a permutation on S is a bijection σ : S �→ S.

Definition 3.1 Transposition/Permutation Ciphers

A simple transposition cipher, also known as a simple permutation cipher, is
a symmetric-key block cryptosystem having blocklength r ∈ N, with keyspace K

being the set of permutations on {1, 2, . . . , r}. The enciphering transformation
is defined, for each m = (m1,m2 . . . ,mr) ∈ M, and given e ∈ K, by

Ee(m) = (me(1),me(2), . . . ,me(r)),

and for each c = (c1, c2, . . . , cr) ∈ C,

Dd(c) = De−1(c) = (cd(1), cd(2), . . . , cd(r)).

The cryptosystems in Definition 3.1 have keyspace of cardinality |K| = r!.
Permutation encryption involves grouping plaintext into blocks of r symbols and
applying to each block the permutation e on the numbers 1, 2, . . . , r. In other
words, the places where the plaintext symbols sit are permuted. This gives
mathematical rigour to the discussion of transpositions given on page 81. Note
that the enciphering key e implicitly defines r, since it is a permutation on r
symbols. In the following we are going to simplify the notation for permutations
displayed on page 81. In Example 3.1 on the next page, the permutation e =
(1, 2, 3, 6, 5, 4) means that e sends: 1 �→ 2, 2 �→ 3, 3 �→ 6, 4 �→ 1, 5 �→ 4, and

131
© 2007 by Taylor & Francis Group, LLC

132 3. DES and AES

6 �→ 5. (Note that the permutation on page 81 is written, in terms of this new
succinct notation, as (5, 10, 6, 7, 8, 9), where the omission of 1, 2, 3, 4, 11, 12, 13
mean that those values remain fixed.)

Example 3.1 Let r = 6, M = C = Z/26Z, with the English letter equivalents
given by Table 2.2 on page 83. Then if e = (1, 2, 3, 6, 5, 4) is applied to strong,
we get TRGSON since m1 = s, m2 = t, m3 = r, m4 = o, m5 = n, and m6 = g,
so

e(m) = (me(1),me(2),me(3),me(4),me(5),me(6)) = (m2,m3,m6,m1,m4,m5).

Since the inverse transformation is d = e−1 = (4, 1, 2, 5, 6, 3), then another way
to visualize encryption is to write 4, 1, 2, 5, 6, 3 in the first row, and the plaintext
letter equivalents in the second row, then read the letters off in numerical order.
For instance, (

4 1 2 5 6 3
s t r o n g

)
.

Thus, the first ciphertext in numerical order is T , the second is R, and so on.

An easy means for finding the inverse of a given key e such as in Example
3.1 is given as follows. The key in that example can be written, as we showed
on page 81, in the form

e =
(

1 2 3 4 5 6
2 3 6 1 4 5

)
,

since 1 �→ 2, 2 �→ 3, and so on. To find the inverse, just read off in numeric
order (determined by the second row) the terms in the first row. For instance,
the term in the first row sitting above the 1 is 4, so 4 is the first term in e−1.
The term in the first row sitting above the 2 is 1, so 1 is the second term in
e−1, and so on. Permutation ciphers are subject to cryptanalysis by frequency
analysis since they preserve the frequency distribution of each character.

Now we provide a more rigorous definition than that given on page 81 for
the substitution cipher and on page 87 for monoalphabetic and polyalphabetic
ciphers.

Definition 3.2 Substitution Ciphers

Let A be an alphabet of definition consisting of n symbols, and let M be the
set of all blocks of length r over A. The keyspace K will consist of all ordered
r-tuples e = (σ1, σ2, . . . , σr) of permutations σj on A. For each e ∈ K, and
m = (m1,m2, . . . ,mr) ∈ M let

E(m) = (σ1(m1), σ2(m2), . . . , σr(mr)) = (c1, c2, . . . , cr) = c ∈ C,

and for d = (d1, d2, . . . , dr) = (σ−1
1 , σ−1

2 , . . . , σ−1
r) = σ−1,

Dd(c) = (d1(c1), d2(c2), . . . , dr(cr)) = (σ−1
1 (c1), σ−1

2 (c2), . . . , σ−1
r (cr)) = m.

© 2007 by Taylor & Francis Group, LLC

3.1. S-DES and DES 133

This type of cryptosystem is called a substitution cipher. If all keys are the
same, namely, σ1 = σ2 = · · · = σr, then this cryptosystem is called a simple
substitution cipher or monoalphabebetic substitution cipher. If the keys differ,
then it is called a polyalphabetic substitution cipher.

Simple substitution ciphers suffer from the inherent weakness that a so-called
frequency analysis can be done on the ciphertext. In other words, a block cipher
does not change the number of times that a letter appears in the plaintext. For
instance, suppose that the letter E is the most frequently occurring letter in
the English language, and we encipher the letter as F . Then the letter that
occurs most often in the ciphertext will be F . Thus, by looking at a relatively
small amount of ciphertext, a cryptanalyst can recover the key. Polyalphabetic
ciphers do not suffer from this weakness since frequencies of symbols are not
preserved in the ciphertext. However, polyalphabetic ciphers are not that much
more difficult to cryptanalyze since, once the block size r is determined, the
ciphertext symbols can be separated into r groups and a frequency analysis can
be performed on each group.

The best-known symmetric-key block cipher, (now replaced by the Advanced
Encryption Standard that we will study in Section 3.2), is the Data Encryption
Standard (DES), which was the first commercially available algorithm (namely
for use with unclassified computer data) put into use in the 1970’s. A complete
description of DES is given in the U.S. Federal Information Processing Standards
Publication number 46 (FIPS-46), Springfield, Virginia, April 1977.

We begin with an informal overview to describe the mechanisms behind S-
DES, which is a simplified version of DES, presented for pedagogical purposes.
Although DES reached the end of its cryptographic usefulness by the beginning
of the twenty-first century, it is valuable to look at its design and implementation
in order to understand how it stood the test for roughly a quarter century before
the cryptanalytic onslaught brought on by new mathematical and computational
power caused it to fall from grace. The following is taken from [64].

� Overview of S-DES
As with any cipher, the encryption function takes the plaintext m and the

key k as input. For S-DES, m has bitlength 8 and k has bitlength 10.
First, m is put through what is called an initial permutation IP, followed by

two rounds of the same function (described below), which uses both permutation
and substitution in its execution, the first round followed by a swap of the left
and right 4 bits of the output. The 8-bit output of round two is put through
the inverse permutation IP−1 to form the 8-bit ciphertext.

Each round of S-DES is described as follows. The 8-bit input is split into
left and right 4-bit blocks, L and R. Then there is an expansion of R to 8
bits via an expansion permutation E, to get E(R). The 8-bit result, E(R), is
added modulo 2, denoted by ⊕, to an 8-bit subkey SK, generated from k in a
separate S-DES key generation stage. The resulting 8-bit output E(R) ⊕ SK
is separated into left and right 4-bit strings, L1 and R1, which are fed into two
separate substitution boxes, S1 and S2, respectively, called S-boxes (described

© 2007 by Taylor & Francis Group, LLC

134 3. DES and AES

in detail below), which are publicly known lookup tables that take 4-bit inputs
and output 2-bit strings, L′

1 and L′
2. The resulting 4-bit string, (L′

1, L
′
2), is put

through a permutation P to produce a 4-bit output Z. Last, Z is added modulo
2 with L to form L′, and (L′, R) is the output of the round.

All of the above is illustrated in Diagram 3.1, which is a single round of the
S-DES cipher. Then, before giving a detailed description of S-DES that will
extrapolate the above to a full explanation of all the detailed features of the
(simplified) cipher, we look at the motivations behind the design of DES itself.

Diagram 3.1 An S-DES Round

E −−−−→
E(R)

SK

�
⊕ −−−−−−→

E(R)⊕SK

↗
↘

L1−−−−→
R1−−−−→

S1

S2

L′
1−−−−→

L′
2−−−−→ (L′

1, L
′
2)

R

� �
INPUT

L−−−−−−−−−−−−−−→ ⊕ Z←−−−−−−−−−−−−−−−− P

�
R R−−−−−−−−−−−−−−→

L′
�

(L′, R) −−−−→ OUTPUT

� DES Design Principles

In a 1994 publication, [18], Coppersmith described the criteria used in the
design of DES. The focus is principally upon the design of the S-Boxes and the
permutation function that processes their outputs.

One important aspect of block ciphers, especially DES, that requires eluci-
dation is the notion of linearity. A linear cipher is one for which each output
bit is a linear combination of the input bits. An example of such a cipher is
the Hill cipher discussed on page 100. The Hill cipher is easily broken with a
known-plaintext attack (see page 127). The reason is that since a key matrix e
acts upon a plaintext matrix m to produce a ciphertext matrix c via c = me,
then this can be analyzed in such a fashion that ultimately an inverse matrix
m−1 can be found, so that

e = m−1c

and the key is recovered.
The only non-linear aspect of DES are the S-Boxes. Hence, an inherent

design of DES stipulates that no output bit of an S-Box can be a linear function
of the input bits. If they were, then the entire cryptosystem would be linear
and could be broken with a known-plaintext attack.

© 2007 by Taylor & Francis Group, LLC

3.1. S-DES and DES 135

Now we list the principles that were revealed by Coppersmith in his article,
which concentrated upon the S-Boxes and their output. Thus, ensuring non-
linearity was the key to ensuring that the cryptosystem could not easily be
broken.

1. Linearity in the S-Box construction must be avoided. In other words, no
bit output by an S-Box is allowed to be anywhere near a linear function
of the input bits.

2. Each row of an S-Box should include all possible output bit combinations.

3. If two inputs to an S-Box differ in precisely one bit, or by exactly two middle
bits, then the outputs must differ in a minimum of two bits.

4. If two inputs to an S-Box differ in their first two bits but have identical last
two bits, the two outputs must be distinct.

5. There are other criteria such as 2–4, that were designed to thwart differential
cryptanalysis and pertain primarily to the permutations that take the
outputs of the S-Boxes. Since these criteria are very technical, we do
not go into the details for the sake of efficiency. The reader may consult
Coppersmith’s paper [18] directly for the specifics, if necessary.

Now, we are ready for a detailed description of S-DES. First, recall our
discussion and notation for permutations given at the outset of this section.
The enciphering and deciphering in S-DES requires several basic components.
We begin with two of them that are permutations.

� Initial Permutation

Let m = (m1m2m3m4m5m6m7m8) be the byte of plaintext input. Then the
initial permutation IP acts according to the following transposition of places
where the plaintext sits, namely, IP retains all the plaintext bits but merely
permutes them according to the rule given below.

IP
j 1 2 3 4 5 6 7 8

IP(j) 2 6 3 1 4 8 5 7

Therefore, the action of IP on x is given in the following.

IP
j 1 2 3 4 5 6 7 8

mIP(j) m2 m6 m3 m1 m4 m8 m5 m7

© 2007 by Taylor & Francis Group, LLC

136 3. DES and AES

Hence, IP(m) = (m2m6m3m1m4m8m5m7). For instance, if m =
(10010111), then IP(m) = (01011101).

The next component is also a permutation used at various stages of S-DES.

� Expansion Permutation

This permutation, denoted by EP, takes a bitstring (binary number) of
length 4 (its bitlength) and expands it into a byte according to the following.

EP
j 1 2 3 4 5 6 7 8

EP(j) 4 1 2 3 2 3 4 1

For instance, if x = (x1x2x3x4) is the input, then the following table gives
us the action of EP on it.

EP
j 1 2 3 4 5 6 7 8

xEP (j) x4 x1 x2 x3 x2 x3 x4 x1

Hence, EP(x) = (x4x1x2x3x2x3x4x1). For example, if x = (1001), then
EP(x) = (11000011).

A very important aspect of S-DES is the key schedule. In other words, we
need to understand how the keys are used and generated in the cipher.

� S-DES Key Generation

S-DES uses a 10-bit secret (shared) symmetric key

k = (e1e2e3e4e5e6e7e8e9e10),

say, and employs k to generate two 8-bit (sub)keys for deployment at various
stages of the encryption and decryption process. Here is how that is accom-
plished.

First, a permutation P10 is applied to k according to the following.

P10

j 1 2 3 4 5 6 7 8 9 10
P10(j) 3 5 2 7 4 10 1 9 8 6

Thus, P10(k) = (e3e5e2e7e4e10e1e9e8e6).
Secondly, there is a circular left shift of one place, denoted by LS1, on

each of the left five bits and the right five bits, as follows. LS1(e3e5e2e7e4) =
(e5e2e7e4e3), and LS1(e10e1e9e8e6) = (e1e9e8e6e10). Hence, under this shifting
process, (e3e5e2e7e4e10e1e9e8e6) becomes

(e5e2e7e4e3e1e9e8e6e10). (3.1)

© 2007 by Taylor & Francis Group, LLC

3.1. S-DES and DES 137

Then we apply yet another permutation called P8, which selects 8 of the 10
bits and permutes them as follows.

P8

j 1 2 3 4 5 6 7 8
P8(j) 6 3 7 4 8 5 10 9

Applying P8 to (3.1) yields

P8(e5e2e7e4e3e1e9e8e6e10) = (e1e7e9e4e8e3e10e6) = k1,

where k1 is now our first subkey for use later.
Now, we return to (3.1) and perform a left shift of two places, denoted by

LS2, on both the left and right 5-bit pieces to get

LS2(e5e2e7e4e3) = (e7e4e3e5e2), and LS2(e1e9e8e6e10) = (e8e6e10e1e9),

yielding (e7e4e3e5e2e8e6e10e1e9) to which we apply P8 to get

P8(e7e4e3e5e2e8e6e10e1e9) = (e8e3e6e5e10e2e9e1) = k2,

where k2 is our second subkey for use in the S-DES cipher.

The next essential component of the S-DES cryptosystem is an important
method of substitution, and an innovation of Feistel (see Biography 3.1 on the
next page) in his development of the original DES.

� S-Boxes
An S-Box or substitution box for S-DES is a four-by-four matrix with entries

from Z/4Z (put into binary) with rows and columns labelled from 0 to 3 (put
into binary) that takes a 4-bit input and outputs a 2-bit string as follows.

If (x1x2x3x4) is the input, then the output is given by one of the two S-Boxes
used in S-DES, defined as follows.

S0 x2 0 0 1 1
x3 0 1 0 1

x1 x4

0 0 01 00 11 10
0 1 11 10 01 00
1 0 00 10 01 11
1 1 00 01 11 10

and

S1 x2 0 0 1 1
x3 0 1 0 1

x1 x4

0 0 00 01 10 11
0 1 10 00 01 11
1 0 11 00 01 10
1 1 10 01 00 11

Thus, for example if x = (x1x2x3x4) = (1101) is our input bitstring of
length 4, then if we wish to employ the first S-Box, we get S0(1101) = (11),
since (x1x4) = (11) represents the fourth row, and (x2x3) = (10) represents the
third column, the entry at the intersection of which is 11. Similarly, if we want
to use the S-Box S1, then S1(1101) = (00).

© 2007 by Taylor & Francis Group, LLC

138 3. DES and AES

Biography 3.1 Host Feistel may be considered to be one of the early pioneers
in the drive to secure privacy for the public at large using cryptography. Born
in Germany in 1914, he emigrated to the U.S.A. in 1934 but would not obtain
a U.S. citizenship for another decade. In fact, in 1941, with Germany having
declared war on America, he was placed on a (sort of) house arrest, where his
movements were restricted to the Boston area where he lived. Yet, surprisingly,
on January 31, 1944, the house arrest was lifted, he was granted U.S. citizen-
ship, and the very next day he was given security clearance that allowed him to
work at the Air Force Cambridge Research Center (AFCRC). (There is specu-
lation that something may have been going on behind the scenes between Feistel
and the U.S. government. See Levy’s excellent book Crypto [55] for an account
of some of these possible scenarios as well as with other related cryptographic
activities.) There he set up a cryptography research group that developed some
outstanding cryptographic algorithms. In particular, they developed the MARK
XII, which is widely used in American aircraft. It is known that the NSA had
an ambivalent attitude toward Feistel’s group. On the one hand, they exerted
pressure to steer his work, while at the same time they considered his group
to be a threat. Consequently his group was dissolved in the late 1950’s. Then
Feistel moved to MIT’s Lincoln Laboratory, followed by a move to MITRE
Corporation, a spinoff of the MIT lab. When he tried to form a cryptography
group there, again NSA exerted pressure on MITRE, so his efforts failed, and
his group did not materialize.
The mathematician A.A. Albert, a friend of Feistel, advised him to go to IBM,
since they were hiring the brightest scientists to do their own innovative work, a
kind of think tank. Feistel began work at their Watson Laboratory in Yorktown
Heights, New York. There he created a cryptosystem used in the IBM2984
banking system, known today as the Alternative Encryption Technique, but
then it was called Lucifer. Years later, Feistel said that if it had not been for
the Watergate scandal that rocked Washington, the NSA would probably have
shut down the Lucifer project, as they had so many of his earlier efforts. In
fact, in the early 1970’s, patent secrecy orders were placed on some of Feistel’s
inventions by the U.S. government. Lucifer, which used a 128-bit key, was the
predecessor of DES. However, the NSA did not want such a strong cipher in
public hands, so by the time DES was released the keylength had been cut to 56
bits, less than half of that used by Lucifer.

Perhaps the most complicated part of S-DES is the function that does the
combining of permutation and substitution.

� The S-DES Round Function

First, we need to describe a mapping F that takes bitstrings of length 4
using a subkey SK and outputs bitstrings of length 4.

Let x = (x1x2x3x4) be the input. Then F first uses the expansion EP to
produce EP(x), as described on page 136. Then this 8-bit result is added to

© 2007 by Taylor & Francis Group, LLC

3.1. S-DES and DES 139

the subkey SK, modulo 2. Thus, this result is denoted by

EP(x) ⊕ SK = (y1y2y3y4y5y6y7y8) = y.

For the sake of convenience, we will denote the left four bits of a given byte,
such as y, by

L(y) = (y1y2y3y4) and the right four bits by R(y) = (y5y6y7y8).

The next action of F is to feed L(y) into S0 to produce S0(L(y)) = (z1z2) and
feed R(y) into S1 to get S1(R(y)) = (z3z4). Thus, under this action y gets
sent to (S0(L(y))S1(R(y))) = (z1z2z3z4) = z. Next, we apply the following
permutation to z.

P4

j 1 2 3 4
P4(j) 2 4 3 1

Therefore, we get
P4(z) = (z2z4z3z1) = Z,

which is the final outcome for F , namely,

F (x, SK) = Z.

Now, the definition of the round function, denoted by fSK , which takes an
8-bit plaintext t and a subkey SK, is given as follows.

fSK(t) = (L(t) ⊕ F (R(t), SK),R(t)).

Thus, the round function alters only L(t), the left four bits of t, leaving R(t)
unaltered. However, there is a reason for fSK being called a round function,
since there are two rounds. The next mechanism, the penultimate one, is a
means of swapping left and right bits.

� The Switch/Swap Function

The switch function, denoted by SW, merely exchanges the left and right
four bits of an input m. Hence, if m = (L(m),R(m)) is an 8-bit input, then

SW(m) = (R(m),L(m)).

The last aspect of S-DES is the inverse of the initial permutation.

� The Inverse of IP

The inverse of IP, naturally denoted by IP−1, is given by the following.

© 2007 by Taylor & Francis Group, LLC

140 3. DES and AES

IP−1

j 1 2 3 4 5 6 7 8
IP−1(j) 4 1 3 5 7 2 8 6

(Recall the easy method for finding the inverse of a permutation given on
page 132.)

Now, we are in a position to describe the totality of the S-DES cipher.

� The S-DES Cryptosystem

Given a 10-bit key k and an 8-bit plaintext m, to encipher, we execute the
following.

� S-DES Encryption

1. Apply IP to m.

2. Apply fk1 to the output from step 1. (This is round 1.)

3. Apply SW to the output of step 2.

4. Apply fk2 to the output of step 3. (This is round 2.)

5. Apply IP−1 to the output of step 4.

Hence, the plaintext 8-bit message unit m gets sent to the 8-bit ciphertext
message unit c, the output of step 5, under this sequence of steps of the S-DES
cipher. To decrypt, we perform the following.

� S-DES Decryption

1. Apply IP to c.

2. Apply fk2 to the output from step 1. (This is round 1.)

3. Apply SW to the output of step 2.

4. Apply fk1 to the output of step 3. (This is round 2.)

5. Apply IP−1 to the output of step 4.

The following is derived from Ed Schaefer, the creator of S-DES, [82].

Example 3.2 Suppose we are given plaintext bitstring m = (10100101) and key
bitstring k = (0010010111). First we generate our subkeys as follows.

1. P10(k) = 1000010111.

2. LS1(10000) = (00001) and LS1(10111) = (01111).

© 2007 by Taylor & Francis Group, LLC

3.1. S-DES and DES 141

3. P8(0000101111) = (00101111) = k1.

4. LS2(00001) = (00100) and LS2(01111) = (11101) (applying LS2 to the
output of step 2).

5. P8(0010011101) = (11101010) = k2(applying P8 to the output of step 4).

Now we encrypt as follows. First we calculate IP(m) = (01110100). Then
we need to calculate the round function for the first round fk1(01110100) =
(L(01110100) ⊕ F (R(01110100), k1),R(01110100)). We do this as follows.

1. EP(0100) = (00101000).

2. EP(0100) ⊕ k1 = (00101000) ⊕ (00101111) = (00000111).

3. S0(0000) = (01) and S1(0111) = (11).

4. P4(0111) = (1110) = F (R(01110100), k1).

5. L(01110100) ⊕ F (R(01110100), k1) = (0111) ⊕ (1110) = (1001).

6. fk1(01110100) = (10010100).

Now we apply the switch function, SW(10010100) = (01001001). The reader
may now verify the second round, namely,

fk2(01001001) = (L(01001001)⊕F (R(01001001), k2),R(01001001)) = (01101001).

Last, we apply the inverse of the initial permutation, IP−1(01101001) =
(00110110), which is the ciphertext.

To decrypt, we reverse the process. First feed c into IP to get

IP(c) = (01101001),

then apply fk2 to get (with the reader filling in the details),

fk2(0110 ⊕ F (1001, k2), 1001) = (01001001).

Then SW(01001001) = (10010100). Next,

fk1(1001 ⊕ F (0100, k1), 0100) = (01110100),

then the final application yields the original plaintext, IP−1(01110100) =
(10100101) = m.

Diagrams 3.2 and 3.3 give a succinct presentation of S-DES.

© 2007 by Taylor & Francis Group, LLC

142 3. DES and AES

Diagram 3.2 The S-DES Encryption Flowchart

input: m = (m1m2m3m4m5m6m7m8)

�
IP�

m2m6m3m1 m4m8m5m7� �
�
�

�
�+ ← F (m4m8m5m7, k1)

�
↘ ↙
u1u2u3u4 m4m8m5m7

↘ ↙
SW�

m4m8m5m7 u1u2u3u4� �
�
�

�
�+ ← F (u1u2u3u4, k2)

�
↘ ↙
v1v2v3v4 u1u2u3u4�

IP−1

�
output: c = (c1c2c3c4c5c6c7c8)

The action between IP and SW is round 1, namely, the execution of fk1 ,
and the action between SW and IP−1 is round 2, the action of fk2 .

© 2007 by Taylor & Francis Group, LLC

3.1. S-DES and DES 143

Diagram 3.3 The S-DES Decryption Flowchart

input: c = (c1c2c3c4c5c6c7c8)

�
IP�

c2c6c3c1 c4c8c5c7� ↘
�
�

�
�+ ← F (c4c8c5c7, k1)

�
↘ ↙

m4m8m5m7 c4c8c5c7

↘ ↙
SW�

c4c8c5c7 m4m8m5m7� �
�
�

�
�+ ← F (m4m8m5m7, k1)

�
↘ ↙

m2m6m3m1 m4m8m5m7�
IP−1

�
output: m = (m1m2m3m4m5m6m7m8)

© 2007 by Taylor & Francis Group, LLC

144 3. DES and AES

� Analysis of S-DES and Comparison with DES

Schaefer relabelled S-DES as baby DES since it is a much simpler block
cipher than the full-blown DES. S-DES will encipher one block at a time, and
there are 28 possible plaintext blocks since we are dealing with 8-bit plaintext
bitstrings. In terms of composition of functions, all of the above discussion of
S-DES can be encapsulated in the following.

(IP−1 ◦ fk2 ◦ SW ◦ fk1 ◦ IP)(m) = IP−1(fk2(SW(fk1(IP(m)))) = c.

Full DES takes 64-bit plaintext blocks, a 56-bit key, from which sixteen 48-bit
subkeys are generated, and sixteen round functions, which we will label fkj

for
j = 1, 2, . . . , 16. Hence, we may specify (full) DES now as a single composition
of functions.

(IP−1 ◦ fk16 ◦ SW ◦ fk15 ◦ SW ◦ · · · ◦ fk1 ◦ IP)(m) = c.

Moreover, in DES, we have eight S-Boxes Sj for j = 1, 2, . . . , 8, each having four
rows and sixteen columns, where

Sj(m1m2m3m4m5m6)

picks out the entry in row (m1m6) and column (m2m3m4m5), which represents
sixteen possible entries, in binary, for each such row. Also, P4 in S-DES, is
replaced by P32 in DES, which is half the bitlength of the input in either case.

One of the weaknesses of DES that makes it unsuitable for use and ranks it
as below standard for the modern day are its weak keys, which are keys k such
that

Ek(Ek(m)) = m for all m ∈ M.

DES has four of these as follows, where an exponent means the repetition of
that bitstring the number of times the exponent dictates.

k ∈ {(028, 028), (128, 128), (028, 128), (128, 028) ∈ Z28 × Z28}.

With these keys, encryption is the same function as decryption, so these keys
must be avoided. There are also semiweak keys, which are key pairs (k1, k2)
such that

Ek1(Ek2(m)) = m for all ∈ M.

There are six of them. They are listed as follows:

((01)14(01)14, (10)14(10)14),

((01)14(10)14, (10)14(01)14),

((01)14(0)28, (10)14(0)28),

((01)14(1)28, (10)14(1)28),

© 2007 by Taylor & Francis Group, LLC

3.1. S-DES and DES 145

((0)28(01)14, (0)28(10)14),

and
((1)28(01)14, (1)28(10)14).

Each of these 56-bit key pairs will encipher plaintext to identical ciphertext. In
other words, one key in the pair can decipher messages enciphered with the other
key in the pair. Hence, these key pairs generate only two different subkeys, each
of which is used eight times in the DES algorithm. They have to be avoided.

Another weakness of DES is the complementation property, described as
follows. Let c(k) denote the bitwise complementation of an input key k in
DES. In other words, replace all 0’s with 1’s and all 1’s with 0’s. DES satisfies
the following, which the reader may verify by trying this complementation on
Diagram 3.1 on page 134.

DES Complementation Property

Ec(k)(c(m)) = c(Ek(m)).

In plain words, if one enciphers the complement of the plaintext with
the complement of the key (the left side of the equation), then one
gets the complement of the original ciphertext (the right side of the
equation).

This says that complementation of the plaintext yields complementation in
the ciphertext, and this means that a chosen-plaintext attack against DES has
to test only half of the keyspace of 256 keys, namely, 255 of them.

Differential Cryptanalysis
In Section 2.6 on page 127, we learned about chosen-plaintext attacks.
One of the best-known chosen-plaintext attacks against iterated block
ciphers is differential cryptanalysis (DC). The original idea was devel-
oped by Murphy [67] in 1990 as an attack on another block cipher.
It was improved and perfected by Biham and Shamir [5]–[6] in 1993,
who used it to attack DES. DC involves the comparisons of pairs of
plaintext with pairs of ciphertext, the task being to concentrate on ci-
phertext pairs whose plaintext pairs have certain “differences.” Some
of these differences have a high probability of reappearing in the ci-
phertext pairs. Those that do are called “characteristics,” which DC
uses to assign probabilities to the possible keys, with an end goal being
the location of the most probable key.

As noted on page 133, DES has been replaced. It reached the end of its
usefullness at the end of the twentieth century since it no longer had the ability
to deliver as a secure cryptosystem. Since S-DES is a weaker version, it is
intended only for pedagogical purposes to display the principles behind the
construction of DES itself. In Section 3.2, we will look at its successor, AES.
For now we need to look more deeply into the design principles underlying

© 2007 by Taylor & Francis Group, LLC

146 3. DES and AES

DES since they are important from several perspectives for an understanding of
symmetric-key block ciphers.

� Feistel ciphers

A Feistel cipher is a block cipher that inputs a plaintext pair (L0, R0), where
both halves L0 and R0 have bitlength b ∈ N and outputs a ciphertext pair
(Rr, Lr), where Rr and Lr have bitlength b ∈ N for each r ∈ N, according to
an iterative process, making it what is called an iterated block cipher. A key k
is input and subkeys kj for j = 1, 2, . . . , r are generated from it via a specified
key schedule. Generally, kj 	= ki for j 	= i, and k 	= kj for any j.

A function F , called a round function (iterated over r rounds, all of which
have the same construction, described below), acts on plaintext pairs:

(Rj−1, kj) for j = 1, 2, . . . , r

in a prescribed fashion, in concert with a switching function. The ciphertext
output is

(Lj , Rj), where Lj = Rj−1

and
Rj = Lj−1 ⊕ f(Rj−1, kj). (3.2)

In other words, if
(L0, R0) = (R−1, R0)

is the initial input plaintext, then for rounds j = 1, 2, . . . , r + 1,

(Lj−1, Rj−1) = (Rj−2, Rj−1)

is input and
(Lj , Rj) = (Rj−1, Lj−1 ⊕ f(Rj−1, kj)) (3.3)

is output.
The methodology prescribed for each round is that a substitution is executed

on the left-hand data, from the previous round, via the action in the right-hand
side of (3.2), to yield

(Lj−1 ⊕ f(Rj−1, kj), Rj−1). (3.4)

This is followed by a permutation yielding (3.3), which essentially results from
a swap of the two halves of the data in (3.4). This process turns out to be
a configuration of a methodology called the substitution-permutation network
(SPN) put forth by Shannon, [86], about whom we will say more below.

The above Feistel encryption is essentially the same algorithm as the de-
ciphering scheme. To decipher, one inputs the ciphertext with the use of the
subkeys in the reverse order. Hence, we have a nice feature for implementation in
that essentially the same algorithm is used for both encryption and decryption.

We now look at some design features of Feistel ciphers. We outline only the
barest of statements about each principle, which we will expand in the section
immediately following this list.

© 2007 by Taylor & Francis Group, LLC

3.1. S-DES and DES 147

� Feistel Design Principles

1. Block Size: A large blocklength is chosen for increased security, with
a 64-bit blocklength having been common, but blocklengths of 128 bits
or more, are becoming standard due to modern demands stemming from
increased cryptanalytic developments.

2. Keylength: When first developed, a 64-bit keylength was used, but, as
we have seen, this has not survived the cryptanalytic onslaught. Now
typically 128-bit keylengths are becoming standard.

3. Rounds and Round Functions: More rounds mean more security, with
typically sixteen rounds being most common. A round function with in-
creased complexity adds to the security.

4. Subkeys: Generation of subkeys from an input key during the operation
of the algorithm aids in thwarting cryptanalysis.

S-DES and DES are examples of Feistel ciphers (with the only deviation
from the above being that DES and S-DES begin and end with permutations).
S-DES has a round function given above with r = 2 and subkey generation
described in the above key schedule. DES is a Feistel cipher with r = 16.

Now we are in a position to explain the intimate details of just how the
substitutions and permutations are used in Feistel ciphers in general, and DES
in particular.

� Confusion and Diffusion

DES is basically a block cipher combining fundamental cryptographic tech-
niques, confusion and diffusion. Confusion obscures the relationship between
the plaintext and the ciphertext, which thwarts a cryptanalyst’s attempts to
study the ciphertext by looking for redundancies and statistical patterns. The
best way to cause confusion is through the use of a complex substitution algo-
rithm. (Note that a simple linear substitution such as some we have studied
earlier would add negligible confusion. It is necessary to have a deeply complex
substitution algorithm in order to cause confusion.)

Diffusion dissipates the redundancy of the plaintext by spreading it over
the ciphertext, which frustrates a cryptanalyst’s attempts to search for redun-
dancies in the plaintext through observations of the ciphertext. The simplest
manner in which we can cause diffusion in a binary block cipher is through re-
peatedly performing a permutation on the data followed by the application of
a function to that permutation. This results in bits from different positions in
the plaintext contributing to the same position in the ciphertext. Since DES in-
volves an initial permutation followed by sixteen rounds of substitution, then a
final permutation, DES essentially employs a sequence of confusion and diffusion
techniques.

© 2007 by Taylor & Francis Group, LLC

148 3. DES and AES

In 1949, Shannon published [86] in which the terms “confusion” and “diffu-
sion” were introduced. His idea was to thwart frequency analysis by cryptana-
lysts.

The plaintext block size in DES of a 64-bit key input (reduced to 56 bits in
the algorithm, since eight of the bits are parity check bits that are discarded)
proved to be insecure for modern purposes. The new AES, which we will study
in Section 3.2, has a 128-bit keylength, which is common in much of modern-
day cryptosystems. (Many of us will see at the bottom of our browsers, when
logging into a secure website such as online banking, something akin to

“connection secure — RC4: 128-bit encrypted.”

This is referring to Rivest’s secure 128-bit RC4 cipher, a “stream” cipher —
see Section 2.3.) The greater the number of rounds in a Feistel cipher, the
greater the security. Today, sixteen rounds is typical. Of course, the greater the
complexity of the round function, the greater the difficulty for a cryptanalyst à
la Shannon [86]. In fact, Shannon laid down commandments in the 1940’s for
secure symmetric-key cryptosystems. He first echoed Kerckhoffs’ Principle (see
page 96). Furthermore, he stipulated that any secure cipher must include both
confusion and diffusion techniques, as does DES, for instance.

Let us now review classical ciphers in this light. Monolaphabetic substitution
ciphers fail Shannon’s criterion on both counts since no confusion or diffusion
exists, given that all plaintext symbols are sent to the same ciphertext symbols
and there is no transposition. With polyalphabetic substitution ciphers such as
Vigenère, there is the use of confusion, since plaintext letters do not go to the
same ciphertext letters, but they fail at diffusion since there is no transposition.
Transposition ciphers use diffusion by definition but confusion is not necessarily
employed, certainly not often effectively if it is. Now, we return to to DES.

� Double DES

One may strengthen DES by multiple encryptions (which means the applica-
tion of the encryption algorithm several times in the same fashion as we would
compose functions numerous times). For instance, there is double DES wherein
we have two keys k1 and k2 so that encryption is given by

Ek2 ◦ Ek1(m) = Ek2(Ek1(m)) = c for any m ∈ M,

and decrypt via
m = Dk1(Dk2(c)) = Dk1 ◦ Dk2(c).

On the surface, it would seem that the ostensible keylength in the double DES
scheme involves 2 × 56 = 112 bits, which would be a significant increase in
security over DES. However, reality has a way of interfering with expectations.
Double DES has only a 56-bit keylength security level (which makes it only neg-
ligibly better in use than the original DES, which has 55-bit keylength security
due to the complementation property described on page 145). This weakness
of double DES was proved by Merkle and Hellman [60] in 1981. They show

© 2007 by Taylor & Francis Group, LLC

3.1. S-DES and DES 149

that the security is reduced from 112 bits to 56 bits by making use of the meet-
in-the-middle attack, which we now describe in the interest of completeness.
Moreover, this form of attack is closely related to another attack (called the
“birthday attack” — see page 128).

The meet-in-the-middle attack was introduced in 1977 by Diffie and Hellman
[25]. It is based upon the following simple observation. Since

Ek2(Ek1(m)) = c, then Dk2(c) = Ek1(m),

given that Dk2 ◦Ek2 is the identity function, by definition. The way the attack
works is that we are given a known plaintext/ciphertext pair (m1, c1), and we
set up a table, which we will call T1, of (sorted) values consisting of all 256

possible values of Ek1(m). Now we start calculating another table consisting of
all possible values of Dk2(c), one at a time, checking each one against the values
in table T1. If there is a match, say (K1,K2), then we take another known
plaintext/ciphertext pair (m2, c2) and check for the equality:

EK1(m2) = DK2(c2).

If so, we accept this key pair as the legitimate keys.
To see why this works, consider the following. Suppose that we have an N -

element set of values and we want to find a match of two of them. (Compare the
following with the birthday attack described on pages 128 –130.) Say we split
the values into two sets of n1 and n2 values. There are n1n2 pairs of elements
and each pair has a chance of 1/N in matching up. Hence, the match will likely
occur when (n1n2)/N is close to 1. Thus, if we choose

n1 ≈ n2 ≈
√

N,

we achieve maximum efficiency in this search. Now, go back to the specific situ-
ation with double DES. Since N = 2112 and

√
N = 256, we see why the effective

keylength security of double DES is 256. This level of multiple encryption is
therefore insufficient. We need more.

At the end of the twentieth century when DES had reached the end of its
reign, and before the AES came into effect, NIST proposed an interim standard
as follows; see [28].

� Triple DES

Let Ee and Dd denote the DES enciphering and deciphering transformations,
respectively, and let k denote a DES key. We employ three keys kj for j = 1, 2, 3.
Then enciphering of plaintext is achieved via

Ek3(Dk2(Ek1(m))) = c,

and deciphering occurs via

Dk1(Ek2(Dk3(c))) = m.

© 2007 by Taylor & Francis Group, LLC

150 3. DES and AES

Multiple encryptions strengthen the cipher so long as we do not have k1 = k2

or k2 = k3, because then

either Dk2 ◦ Ek1 or Ek2 ◦ Dk3 is the identity function

so we are back at square one with single DES. It is allowed that k1 = k3, or
that all are distinct.

� DES Security-Related Issues

It turns out that multiple encryption of DES would be rendered useless if it
were the case that for any given keys k1 and k2 there existed a key k3 such that

Ek3(m) = Ek2(Ek1(m))

for all plaintext inputs m. (This property, if it held, would be tantamount to
DES permutations being closed under composition, and this would happen if
DES satisfied the property that the set of permutations is closed as a group under
composition.) Then multiple encryptions would be reduced to single encryptions
and again we would be back to square one. However, in 1992, Campbell and
Weiner saved the day by proving, in [13], that DES is not a group. In fact, they
showed that a lower bound on the size of the group generated by composing the
set of permutations is 102499. Thus, since we are safe on these issues, then with
the proper choice of three keys triple DES has the effective keylength of 168 bits,
making it a reasonable alternative, and triple DES is resistant to the meet-in-
the-middle attack. That said, triple DES still inherits the disadvantages of DES,
such as weak keys, semiweak keys, and the complementation property mentioned
earlier. (It should be pointed out, in anticipation of the later study, that part
of the ANSI X59.52 Triple DES Modes of Operation Standard, involving the
CBC mode described on the next page, was cryptanalyzed in 2002 (see [4]). As
a result, ANSI removed this mode from the proposed standard.)

There are other strengthenings of DES possible. Rivest developed a provably
strong improvement to DES, called DESX. It simply does the following. Choose
three keys k1, k2, k3, and encipher by executing

k1 ⊕ Ek2(k3 ⊕ m).

In other words, we add a 64-bit key k3 modulo 2 to the input plaintext m
before encryption, then we encipher the result with key k2, and last add the
64-bit key k1, modulo 2, to the ciphertext. In 1996, both Kilian and Rogaway
[44] and Rogaway [80] demonstrated the improved security of DESX over DES.
The security of DESX against the DC attack (see the displayed description on
page 145) is roughly equivalent to that of DES.

An attack developed more recently than DC is one by Matsui [57] in 1994,
called linear cryptanalysis (LC). This is one of the most prominent known-
plaintext attacks against block ciphers (see page 127). (Also, see [41] for a
nice tutorial treatment of both LC and DC.) LC uses linear approximations to
describe the behaviour of the block cipher under attack. Matsui successfully

© 2007 by Taylor & Francis Group, LLC

3.1. S-DES and DES 151

used LC against DES to obtain a key with 243 known plaintexts (see [56]). In
general, block ciphers with larger S-Boxes are less susceptible to DC and LC
attacks.

Exercises

Using the key given for the permutation cipher in Example 3.1 on page 132,
decrypt the ciphertexts in each of Exercises 3.1–3.4.

3.1. ANYVIT

3.2. URRMDE

3.3. RASGNT

3.4. RISDNK

3.5. Apply the initial permutation IP described on page 135 to the input

m = (10101011).

3.6. Apply the expansion permutation described on page 136 to the input

x = (1010).

3.7. Apply the S-Boxes S0 and S1 to the input (1110).

3.8. Given:
SK = (01010110) and t = (11111011),

compute fSK(t), the S-DES round function described on page 138.

Hint: The end result is

fSK(t) = (11011011).

3.9. Prove the DES complementation property highlighted on page 145.

Hint: Complementation does not affect modulo 2 addition, namely,

c(x) ⊕ c(y) = x ⊕ y.

© 2007 by Taylor & Francis Group, LLC

152 3. DES and AES

3.2 AES

� Successor for DES

On January 2, 1997, NIST announced the initiation of an effort to develop
the Advanced Encryption Standard (AES) as an unclassified, publicly disclosed
encryption algorithm for protecting sensitive data. On August 9, 1999, NIST
announced five finalists for the AES (in round two of their competition): MARS,
RC6, Rijndael, Serpent, and Twofish. On October 2, 2000, NIST announced that
Rijndael was selected as the proposed AES. (See the Rijndael fan club home
page: http://www.rijndael.com/, where it is stated: “This page is dedicated to
the fans of the Rijndael block cipher, whose selection, in an upset of Karelinean
proportions, as the National Institute of Standards and Technology’s proposed
Advanced Encryption Standard has brought down the Feistel cipher dynasty.”)

� The Advanced Encryption Standard (AES) — Rijndael

The name “Rijndael,” pronounced as any of “Rhine Dahl,” “Rain Doll,”
or “Reign Dahl,” was derived from the names of Rijndael’s Belgian designers,
Vincent Rijmen and Joan Daemen. The Rijndael cipher is based upon the 128-
bit block cipher, called Square, which Rijmen and Daemen originally designed
with a concentration on resistance against linear cryptanalysis. Later, Lars
Knudsen engaged in more cryptanalysis of the square cipher. A paper by these
three authors, describing the details of square, was presented at the workshop
for Fast Software Encryption in the spring of 1997 in Haifa, Israel. In that spring
of 1997, Daemen and Rijmen began working on a variant of the square cipher
that would allow for key and block lengths of 128, 192, and 256 bits. They
called their new cipher design “Rijndael” and submitted it to NIST by the June
1998 deadline. The rest is history. (Rijndael has been called son of square and
alternatively square has been called mother of Rijndael by their creators. See
http://www.esat.kuleuven.ac.be/˜rijmen/square/index.html for a description of
and implementation details for Square.)

In order to give even a brief description of Rijndael, we need to describe the
essential components of it.

� The State

The State, is the intermediate cipher resulting from application of the round
function. The State can be depicted as a 4×Nb matrix, with bytes as entries,
where Nb is the block length divided by 32. For instance, if the input block
has 256 bits, then Nb = 8 = 256/32, and the State would appear as a matrix
(ai,j) ∈ M4×8((Z/2Z)8) of bytes. In this case, the State has 32 bytes. For an
input block of 192 bits, the State would have 24 bytes as a 4×Nb = 4×6 matrix,
and for a block of length 128, it would have 16 bytes as a 4×Nb = 4×4 matrix.
Thus, we have variable State size.

© 2007 by Taylor & Francis Group, LLC

http://www.rijndael.com
http://www.esat.kuleuven.ac.be

3.2. AES 153

Note that the input block (or plaintext if the mode of operation
is ECB — see page 123) is put into the State (matrix) by column:
a0,0, a1,0, a2,0, a3,0, a0,1, a1,1 . . . and at the end of the execution of the cipher
the bytes are taken from the State in the same order.

� The Cipher Key

As with the State, the cipher key is portrayed as a 4 × Nk matrix of bytes,
where Nk is the key length divided by 32. For instance, if the key length is 128
bits, then the cipher key is (ki,j) ∈ M4×4((Z/2Z)8). Hence, we have variable
key size 16, 24, or 32 bytes, depending on key length 128, 192, or 256 bits.

� Key Schedule and Round Keys

The round keys can be derived from the cipher key by means of the following
key schedule. There are two parts.
(1) The total number of round key bits equals B(Nr+1), where B is the block

length and Nr is the number of rounds defined for each case in Table 3.1
below. For instance, if the block length is 128 bits and Nr = 12, then
1664 round key bits are required.

(2) The cipher key is expanded into the expanded key in the following fashion.
The expanded key is a linear array of 4-byte words (i.e. columns of the
key matrix), where the first Nk words contain the cipher key. All other
words are defined recursively in terms of previously defined words. (For a
detailed account of how this is done, see the original description of Rijndael
at http://www.esat.kuleuven.ac.be/˜rijmen/rijndael/.)

Then round keys are extracted from the expanded key as follows. The first
round key consists of the first Nb words, the second round key consists of the
following Nb words, and so on.

� Round Function

First, we note that the number of rounds, denoted by Nr, is defined via the
following table.

Table 3.1
Nr Nb = 4 Nb = 6 Nb = 8

Nk = 4 10 12 14
Nk = 6 12 12 14
Nk = 8 14 14 14

In this table, we are including the final round, which we will describe below,
which slightly differs from the other rounds in that step (3) below is eliminated.

The round function consists of four steps, each with its own name and its
own particular function.

© 2007 by Taylor & Francis Group, LLC

http://www.esat.kuleuven.ac.be

154 3. DES and AES

(1) Bytesub (BSB): In this step, bytes are mapped by an invertible S-Box,
and there is only one single S-Box for the complete cipher. Thus, for
instance, the State (position) matrix

(ai,j) = (8i + j − 9) (for 1 ≤ i ≤ 32, 1 ≤ j ≤ 8)

would be mapped, elementwise, by the S-Box to State matrix (bi,j) via

ai,j −−−−→ S-Box −−−−→ bi,j .

This guarantees a high degree of nonlinearity by operating on each of the
State bytes ai,j independently. To view the S-Box explicitly, together with

(2) Shift Row (SR): In this step, depending upon the value of Nb, row j for
j = 2, 3, 4 of the State matrix are shifted xj units to the right, where xj

is defined by Table 3.2 below.

Table 3.2
Nb x2 x3 x4

4 1 2 3
6 1 2 3
8 1 3 4

For instance, if Nb = 4, then

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

−−−−→
SR

a0,0 a0,1 a0,2 a0,3

a1,3 a1,0 a1,1 a1,2

a2,2 a2,3 a2,0 a2,1

a3,1 a3,2 a3,3 a3,0

 .

The SR step introduces high diffusion over multiple rounds and interacts
with the next step.

(3) Mix Column (MC): In this step, the columns in the State matrix are
treated as polynomials a(x) over

F28 ∼= F2[x]/(m(x)),

where
m(x) = x8 + x4 + x3 + x + 1

is the irreducible Rijndael polynomial (see Appendix C on pages 335–
336 and pages 311–316 in Appendix A). Then a(x) is multiplied modulo
M(x) = x4 +1 with a fixed invertible polynomial c(x) = 3x3 +x2 +x+2,
denoted by c(x) ⊗ a(x). Here multiplying modulo x4 + 1 means that xi

(mod x4 + 1) = xi (mod 4). It can be shown that if

aj(x) = a3,jx
3 + a2,jx

2 + a1,jx + a0,j

© 2007 by Taylor & Francis Group, LLC

a description of how it was constructed, see Appendix C on pages 335–336.

3.2. AES 155

represents column j in the State matrix, then c(x) ⊗ a(x) can be repre-
sented by the matrix product:

CAj =

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

a0,j

a1,j

a2,j

a3,j

 =

b0

b1

b2

b3

 = B,

where the matrix Aj is column j of the State matrix and C is the circulant
matrix representing c(x). Hence, each column Aj of the State matrix is
multiplied in this fashion by C. For instance, if a(x) = x3 + 1, then

c(x) ⊗ a(x) = 5x3 + 4x2 + 2x + 3,

which is given by the matrix product:

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

1
0
0
1

 =

3
2
4
5

 = B.

This step linearly combines bytes in the columns and creates high intra-
column diffusion. This technique is based upon the theory of error cor-
recting codes, such as in cyclic redundancy checks (for example see [64, p.
549]).

(4) Round Key Addition (RKA): In this step, a round key is added modulo
2 to the State. For example,

(ai,j) ⊕ (ki,j) = (bi,j),

where ⊕ is addition modulo 2, (ai,j) is the State matrix, (ki,j) is the round
key matrix, and (bi,j) is the resulting State matrix. Thus, this step makes
the round function key dependent.

There is significant parallelism in the Round Function. All four steps of
a given round operate in a parallel manner on bytes, rows, or columns of the
State.

� Stepwise Description of the Rijndael Cipher

Step 1 (Initial Addition Round) There is an initial RKA step.
Step 2 (Rounds) There are Nr − 1 rounds executed.
Step 3 (Final Round) A final round is executed, where the MC step is

omitted.

Hence, the detailed sequence of steps for Rijndael is an initial round key
addition, then Nr−1 rounds of BSB, SR, MC, RKA each, followed by a final

© 2007 by Taylor & Francis Group, LLC

156 3. DES and AES

round consisting of BSB, SR, RKA. Unlike DES, Rijndael does not require a
“swapping step” in its rounds since the MC step causes every byte in a column
to alter every other byte in the column.

Deciphering Rijndael is executed by reversing the steps using inverses and a
modified key schedule.

� Security of Rijndael

The design of Rijndael practically eliminates the possibility of weak or semi-
weak keys, which exist for DES (see see page 144). Moreover, the design of the
key schedule virtually eliminates the possibility of equivalent keys. Although the
mechanisms of differential and linear cryptanalysis can be adjusted to present
attacks on Rijndael, it appears that Rijndael’s design is sufficient to withstand
these cryptanalytic onslaughts, since its S-Box is nearly perfect for resistance
to differential cryptanalysis and the F28 equivalent of linear cryptanalysis.

A chosen plaintext attack, called the Square attack, which is a dedicated
attack on the Square Cipher, can be used as well, since Rijndael inherited many
features from Square. However, for seven or more rounds in Rijndael, no such
attack, faster than exhaustive key search, has been found. Other attacks such as
Biham’s related-key attack or the interpolation attacks introduced by Jakobsen
and Knudsen have little chance of success against Rijndael due to the diffusion
and non-linearity of Rijndael’s Key Schedule and the complicated construction
of the S-Box.

� Concluding Comments

Unlike the Feistel structure of the round function, such as in DES, where
some of the bits of the intermediate State or simply put into a different position
unchanged, the Rijndael Round function is composed of three different invertible
transformations, called layers, through which every bit of the State is treated in
a similar fashion, called uniformity. The BSB step in each round is a nonlinear
mixing layer (confusion). SR is a linear mixing layer (inter-column diffusion),
and MC is also a linear mixing layer (inter-byte diffusion within columns).
Then there is the Key addition layer. These layers ensure that Rijndael Round
does not have a Fiestel structure. The layers are predominantly based upon the
application of the Wide Trail Strategy, which is a devised system for providing
resistance against Linear and Differential Cryptanalysis, discussed in Daemen’s
Doctoral Dissertation of March 1995.

Rijndael is well tailored to modern processors (Pentium, RISC, and parallel
processors). It is also ideally suited for ATM, HDTV, Voice, and Satellite. Uses
for Rijndael include MAC by employing it in a CBC-MAC algorithm. It is also
possible to use it as a Synchronous Stream Cipher, a Pseudorandom Number
Generator, or a Self-Synchronizing Stream Cipher (the latter, by using it in
CFB mode), which we discussed in Sections 2.3 and 2.5.

© 2007 by Taylor & Francis Group, LLC

Chapter 4

Public-Key Cryptography

4.1 The Ideas Behind PKC

The 1970s also saw a revolutionary change in the manner in which crypto-
graphic keys were handled. Cryptography was about to go public. In order to
begin to describe the ideas behind this approach, we need some terminology.
In what follows, when we speak of an entity we will mean any person or thing,
such as a computer terminal, which sends, receives, or manipulates information.
Also, when we speak of a channel we will mean any means of communicating
information from one entity to another. A secure channel is one that is not
physically accessible to an adversary, whereas an unsecured channel is one from
which entities, other than those for whom the information was intended, can
delete, insert, read, or reorder data. Now let us have look at how this idea
developed (some of which is taken from [64]).

In a paper [24] published in 1976, Whit Diffie and Martin Hellman (see

for two entities who have never met in advance or exchanged keys to establish
a shared secret key by exchanging messages over an open (unsecured) channel.
Up to the time of this idea, all cryptosystems, including DES, were looking for
mechanisms to securely distribute secret keys. As we know, this is necessary
because, once a symmetric enciphering key is known, an entity can easily deduce
the deciphering key from it. Now, with the introduction of the Diffie-Hellman
idea, which has come to be known as the Diffie-Hellman Key-Exchange, entities
could exchange keys in the open and ensure privacy. It seems contrary to the
very notion of secrecy. However, that is the brilliance of the scheme: use two
essentially different keys, one for enciphering that can be made public, and one
for deciphering that can be kept private, a key pair. Moreover, the deciphering
key would be constructed such that it would be be computationally infeasible
to determine it from the public enciphering key. No longer would the key be

157
© 2007 by Taylor & Francis Group, LLC

Biographies 4.1 on the next page and 4.2 on page 159) conceived of a method

158 4. Public-Key Cryptography

symmetric (the deciphering key easily determined from the enciphering key and
vice versa). Now there would be an asymmetric key pair, the advent of public-
key cryptography (PKC). How could this possibly work?

Before giving an introduction to the Diffie-Hellman idea, let us look at an
analogy, a standard one, for PKC, which will provide an easy-to-understand
scenario to give the reader an understanding of how a public key can work. We
invoke our cryptographic cast of characters introduced on page 123 for ease of
elucidation. Suppose that Bob has a public wall safe with a private combination
known only to him. Moreover, the safe is left open and made available to
passers-by. Then, anyone, including Alice, can put messages in the safe and
lock it. However, only Bob can retrieve the message, because, even Alice, who
left the message in the safe, has no way of retrieving it.

Biography 4.1 Martin E. Hellman
was born on October 2, 1945. He
obtained all his academic degrees in
electrical engineering: his bachelor’s
degree from New York University in
1966; his master’s degree in 1967;
and his Ph.D. in 1969, the latter two
from Stanford. He was employed at
IBM and at MIT, but returned to
Stanford in 1971. He remained there
until 1996, when he received his Pro-
fessor Emeritus status. We already
learned above that he was one of
the pioneers of PKC. He has been
involved in computer privacy issues
going back to the debate over the
DES keylength in 1975 (see Levy’s
book [55] for some background to this
fascinating story). He has not only
demonstrated his scholarship with
numerous publications, but also has
excelled in teaching. He was rec-
ognized with four teaching awards;
three of these were from minority-
student organizations. He is now
retired from research and teaching.
He and Dorothie, his wife of some
thirty-five years, live on campus at
Stanford.

In order to give a general overview of
the basic Diffie-Hellman idea, we need the
notion of a one-way function, which we
may view, at this juncture, as a method of
enciphering that cannot be reversed. For
instance, if you write a message on a piece
of paper, then burn it, that is an example
of a one-way function since retrieving the
message is impossible. One says, in math-
ematical terms, that this is a function
whose values are easy (computationally
feasible) to compute, but calculating that
inverse is computationally infeasible (see
Footnote 2.1 on page 86). However, if you
burn the paper, how does the intended re-
cipient read the message? You need ad-
ditional information built into your one-
way function so that the intended recip-
ient can recover the message. This ad-
ditional information is called a trapdoor.
Mathematically speaking, a trapdoor in
a one-way function is additional informa-
tion that makes the finding of the inverse
a feasible task, but without the trapdoor
information the task is computationally
infeasible. For now, think of a trapdoor
as information that allows you to invert
the function (decrypt the message), but
if you do not know it, you cannot invert
the function. It is easy enough, as our
paper-burning example indicated, to find
one-way functions, but getting those with
trapdoors requires a bit more effort. So now let us see how the Diffie-Hellman
idea works.

© 2007 by Taylor & Francis Group, LLC

4.1. The Ideas Behind PKC 159

Biography 4.2 Bailey Whitfield Diffie
was born on June 5, 1944. His advanced
education began when he entered MIT in
1961 from which he graduated in 1965,
later accepting a job at Mitre Corpora-
tion. There he worked under the tutelage of
Ronald Silver. Silver taught Diffie a great
deal and inspired him to look further into
cryptographic issues. In 1969, Diffie left
Mitre and joined John McCarthy’s Artifi-
cial Intelligence Lab at Stanford. By 1975,
as described on page 158, the collabora-
tion with Hellman, with input from Merkle,
created the breakthrough. For his involve-
ment, along with Hellman and Merkle, in
the discovery of the notion of PKC, he was
awarded a Doctorate in Technical Sciences,
Honoris Causa, by the Swiss Federal Insti-
tute of Technology in 1992. His current po-
sition is Chief Security Officer at Sun Mi-
crosystems, in Palo Alto, California, where
he has been since 1991. He has numerous
awards from the Association of Comput-
ing Machinery (ACM), IEEE, NIST, NSA,
and the Franklin Institute. The reader
wanting more details of his involvement
in public policy concerning cryptography,
and his opposition to limitations on the
use of cryptography by individuals and cor-
porations, should consult Levy’s book [55],
wherein Diffie is a central character.

Alice and Bob have never met,
but want to establish a secret
means of communicating with one
another. Bob and Alice both have
unique public keys, which we may
envision as long strings of bits,
published in some public database
of keys that anyone can look up.
Both Alice and Bob also have pri-
vate keys that they keep secure
and known only to themselves,
namely, only Bob knows his pri-
vate key and only Alice knows her
private key. (We use the con-
vention that the term private key
is reserved for use in association
with public-key cryptography, also
called asymmetric-key cryptogra-
phy, whereas the term secret key
is reserved for symmetric-key cryp-
tography. The cryptographic com-
munity has adopted this conven-
tion since it takes two or more en-
tities to share a secret (such as the
symmetric secret key), whereas it
is truly private when only one en-
tity knows about it, such as with
the asymmetric private key.)

Alice takes a message and uses
Bob’s public key via a one-way
function to encipher the message in
a manner that only Bob’s private
key can decipher. So when Alice
sends the cryptogram, the only person in the world who can decipher it is Bob,
with his private key. Now suppose that another of our cast of characters, eaves-
dropping adversary Eve, intercepts the message. Without Bob’s private key,
she has only trial and error at her disposal to try to cryptanalyze it, probably
taking millions of years, so her interception is useless. Thus, since Bob is the
only person who has both elements of the key pair, he can decipher the message
instantly. The message might contain the symmetric-key k, for example, and a
reference to the symmetric-key algorithm, such as DES, for example. Similarly,
Bob uses Alice’s public key and a one-way function to encrypt a response, which
would say that he agrees to use DES with symmetric-key k for their correspon-
dence, and sends this to Alice, who uses her private key to decrypt, and she is
the only one who can do so.

In the Diffie-Hellman scheme, k is the shared secret key independently gener-

© 2007 by Taylor & Francis Group, LLC

160 4. Public-Key Cryptography

ated by both Alice and Bob. The key exchange is complete since Alice and Bob
are in agreement on k. Hence, over an unsecured channel, they have established
a secure means of communicating.

The observant reader may wonder why they do not just use this key pair for
all of their correspondence rather than using it to set up a key exchange for use
with a symmetric-key cryptosystem. The reason has to do with efficiency, as we
will see in detail later. Public-key methods are extremely slow compared with
symmetric-key methods. In later discussions, we will see how both the public-
key and symmetric-key cryptosystems come to be used, in concert, to provide
the best of both worlds combining the efficiency of symmetric-key ciphers with
the increased security of public-key ciphers, called hybrid cryptosystems.

In what follows, we will use the term protocol to mean, in general human
terms, behaviour such as that prearranged etiquette understood at a formal
dinner party. On the other hand, a cryptographic protocol means an algorithm,
involving two or more entities, using cryptography to achieve a security goal,
which might involve issues of authentication, privacy, and secrecy, all of which
we will discuss in detail later in the text.

The Diffie-Hellman paper [24] was the “door-opener” to public-key cryptog-
raphy in that it was the landmark, since it had the first cryptographic protocol
with public-key properties including the idea of a trapdoor one-way function; a
partial solution to the public-key cryptosystem; and digital signatures which we
will study later.

In summary, the Diffie-Hellman key exchange allowed two entities to set
up a shared secret symmetric key, but they did not provide any method for
enciphering messages or any way to extend to digital signatures, which are
digital data strings that associate a given message with its sender. As Diffie
and Hellman put it at the outset of their paper, “We propose new techniques
for developing public key cryptosystems, but the problem is still largely open.”
This would take a couple more years.

RSA and PKC

In 1978, a paper [79] was published by R. Rivest, A. Shamir, and L. Adleman
(see Biographies 4.3 on the facing page, 4.4 on page 162, and 4.5 on page 164).
In this paper they describe a public-key cryptosystem, including key generation
and a public-key cipher, whose security rests upon the presumed difficulty of
factoring integers into their prime factors. This cryptosystem, which has come
to be known by the acronym from the authors’ names, the RSA cryptosystem,
has stood the test of time to this day, where it is used in cryptographic appli-
cations from banking and in e-mail security to e-commerce on the Internet. We
will be discussing all these applications as we progress through the text, and we
will provide the details of the RSA algorithm later. The astonishing aspect of
the RSA cipher is that it rests upon mathematical developments from the eigh-
teenth century, merely updated to our modern-day information-based computer
world. In the RSA paper [79], Alice and Bob make their first appearance as
sender and recipient of messages. These characters were quickly adopted by the

© 2007 by Taylor & Francis Group, LLC

4.1. The Ideas Behind PKC 161

cryptographic community and were expanded to include a family of characters,
such as Eve, and a host of others whom we will meet as our horizons broaden
in our travels.

Biography 4.3 Ronald L. Rivest received
a B.A. in mathematics from Yale Uni-
versity in 1969 and a Ph.D. in computer
science from Stanford University in 1974.
He is a co-inventor of the RSA public-
key cryptosystem and founder of RSA Data
Security (now called RSA Security after
having been bought by Security Dynamics).
Among his numerous, outstanding honours
and positions are Fellow of the American
Academy of Arts and Science, Fellow of
the Association for Computing Machinery,
member of the National Academy of En-
gineering, Director of the the Financial
Cryptographic Association, Director of the
International Association for Cryptologic
Research, Fellow of the World Technology
Network, member of MIT’s Laboratory for
Computer Science; member of MIT’s lab-
oratory’s Theory of Computing Group, a
leader of the MIT Cryptography and In-
formation Security Group, and currently
the Andrew and Erna Viterbi Professor of
Electrical Engineering and Computer Sci-
ence at MIT. He, together with Adleman
and Shamir, was awarded the 2000 IEEE
Koji Kobayashi Computers and Commu-
nications Award, as well as the Secure
Computing Lifetime Achievement Award.
Moreover, he founded PeppercoinTM, a
company that provides a digital payment
service for merchants, which ostensibly al-
lows merchants to process small digital
transactions for only pennies. He is widely
respected as an expert in cryptographic de-
sign and cryptanalysis.

As Diagram 4.1 on the next
page illustrates, if Alice wants to
send a message to Bob, she looks
up his public key eB in a public
database and encrypts her message
m with it to get eB(m) = c, as
ciphertext. Should Eve be listen-
ing on the unsecure channel, over
which Alice and Bob are commu-
nicating, the data of the original
message would still be unknown.
This is because Eve does not have
access to Bob’s securely protected
provate key dB , which is required
to decipher the cryptogram. Of
course, for this to work,

dB(eB(m)) = m

must hold for all messages m, and
it must be impossible (or com-
putationally infeasible) for anyone
to decipher m from eB without
knowledge of dB , to which only
Bob has access. (Think of dB

as Bob’s trapdoor information [his
unique key] for unlocking the en-
crypting [one-way] function eB , to
recover m. Using the analogy
described on page 158, eB(m) is
his wall safe, which Alice locked
with the message m inside, and to
which only he has the combination
[key].) Hence, unlike a symmet-
ric key cryptosytem, an asymmet-
ric key cryptosystem or PKC has
two distinct keys for each person,
a public one, such as Bob’s eB ,
which everyone can access, and a
truly private one, such as Bob’s dB , which he and only he knows and keeps
secure. Hence, we make the distinction between asymmetric-key encryption or
PKC and secret-key encryption or SKC where both the enciphering and deci-
phering keys must be kept secret.

© 2007 by Taylor & Francis Group, LLC

162 4. Public-Key Cryptography

Diagram 4.1 A Generic Public-Key Cryptosystem

(I): Encryption

Public Data Base
Bob’s Public Key�eB

Alice: m

EVE

?

�?

Encipher Message−−−−−−−−−−−−−−−−−−−→
eB(m)

Ciphertext:
eB(m) = c

(II): Decryption

Secure Keysource
Bob’s Private Key�dB

Ciphertext: c
Decipher−−−−−−−−−→

dB(c)

Plaintext:
dB(c) = m

Biography 4.4 Adi Shamir is an Israeli cryptographer who is cur-
rently the Borman Professor in the Applied Mathematics Department
of the Weizman Institute of Science in Israel. He obtained his Ph.D.
from Stanford in 1977 after which he did postdoctoral work at Warwick
University in England. Shamir’s name is attached to a wide variety
of cryptographic schemes, many of which we will study in this text, in-
cluding the Fiat-Shamir identification protocol, RSA, DC (see the boxed
description on page 145), and his polynomial secret-sharing scheme, to
mention only a few. On April 14, 2003, the ACM formally announced
that the A.M. Turing Award (essentially the “Nobel Prize of computer
science”) would go to Adleman, Shamir, and Rivest for their develop-
mental work on PKC.

� Public-Key Cryptosystems (PKC)

A cryptosystem consisting of a set of enciphering transformations {Ee} and
a set of deciphering transformations {Dd} is called a public-key cryptosystem
or an asymmetric cryptosystem if for each key pair (e, d) the enciphering key
e, called the public key, is made publicly available, whereas the deciphering key
d, called the private key (see page 159), is kept secret. The cryptosystem must
satisfy the property that it is computationally infeasible to compute d from e.

© 2007 by Taylor & Francis Group, LLC

4.1. The Ideas Behind PKC 163

In order to motivate the study of PKCs, we provide the following before we
begin to describe the various types of PKCs and their uses.

� PKCs and SKCs — A Comparison

1. Security: With a PKC only the private key needs to be kept a secret,
concealed by one entity, and public keys may be distributed freely. With
an SKC there must be a shared secret key known by at least two entities.
No PKC has been proven secure, yet except for the one-time-pad this is
also true for SKCs.

2. Longevity: With PKCs, key pairs may be used without change in most
cases over long periods of time, years in some situations. With SKCs,
there may have to be a change of keys for each session.

3. Key Management: If a multiuser large network is being used (without a
key server) then fewer private keys will be required with a PKC than with
an SKC. For instance, if n ∈ N entities are communicating, using DES,
then the number of keys required to allow any two entities to communicate
is n(n−1)/2. Also, every user on the system has to store n−1 keys. This
is called key predistribution. With a public-key cryptosystem, only n keys
are required for any two entities to communicate since only one (public)
key for each entity has to be stored. Hence, SKC, by itself, on the Internet
is completely unworkable. Internet e-commerce cannot be supported by
SKCs alone.

4. Key Exchange: In a PKC, no (private) key exchange between communi-
cating entities is necessary. (Note that this tells us that the Diffie-Hellman
key-exchange protocol, discussed on page 167, is not a public-key cryp-
tosystem, although it contained the basic original ideas for it.) With an
SKC, it is difficult and risky to exchange a secret key. In fact, one of the
principal uses of PKC is for the exchange of a secret symmetric key.

5. Digital Signatures and General Authentication: Another of the prin-
cipal roles played by PKC is that of providing digital signatures since they
offer virtually the only means for securely doing so. On the other hand,
the principal use of SKCs is bulk data enciphering.

6. Efficiency: PKCs are slower than SKCs. For instance, the RSA cryptosys-
tem is roughly a thousand times slower than DES.

7. Key Sizes: The key sizes for a PKC are significantly larger than those re-
quired for an SKC. For instance, the private key in the RSA cryptosystem
should be 1024 bits, whereas with an SKC generally 128 bits will suffice.
Usually, private keys are ten times larger than secret keys.

8. Nonrepudiation: This means that the sender of a message cannot deny
having sent it. With PKCs we can ensure nonrepudiation with digital
signatures, whereas with SKCs we need Trent as a trusted third party.

© 2007 by Taylor & Francis Group, LLC

164 4. Public-Key Cryptography

Biography 4.5 Leonard Adleman was
born on December 31, 1945, in San Fran-
cisco, California. He received his B.Sc. in
mathematics from the University of Cali-
fornia at Berkeley in 1972 and his Ph.D.
there in 1976. His doctoral thesis was done
under the guidance of Manuel Blum and
was titled Number Theoretic Aspects of
Computational Complexity. He is married
with three children and is currently Henry
Salvatori Professor of Computer Science
and Professor of Molecular Biology at the
University of Southern California Los An-
geles, California, where he has been since
1980. His professional interests are al-
gorithms, computational complexity, com-
puter viruses, cryptography, DNA comput-
ing, immunology, molecular biology, num-
ber theory, and quantum computing. His
most recent activity is the building of a
DNA computer, that has the potential for
a vastly faster computation for the fu-
ture. He noticed that a protein, called
polymerase, which produces complemen-
tary strands of DNA, resembles the op-
eration of a Turing machine. Adleman
reached the conclusion that DNA forma-
tion essentially functions in a fashion sim-
ilar to a computer, so he is interested in
constructing a viable DNA computer.

We may summarize one salient
point derived from the above:
PKC is not meant to replace SKC
but rather to supplement it for the
goal of achieving maximum secu-
rity and efficiency. This is done
as follows. The general motiva-
tion behind modern cryptographic
usage, especially on the Internet
for e-commerce, is to employ PKC
to obtain symmetric keys, which
are then used in an SKC. Such
cryptosystems are called hybrid
cryptosystems or digital envelopes,
which have the advantages of both
types of cryptosystems. Here is
how they work in practice.

Alice and Bob have access to an
SKC, which we will call S. Also,
Bob has a public-private key pair
(e, d). In order to send a message
m to Bob, Alice first generates a
symmetric key, called a session key
or data encryption key, k to be
used only once. (The property of
producing a new session key each
time a pair of users wants to com-
municate is called key freshness.)
Alice enciphers m using k and S
obtaining ciphertext Ek(m) = c.
Using Bob’s public key e, Alice en-
crypts k to get Ee(k) = k′. Both
of these encryptions are fast since S is efficient in the first enciphering, and the
session key is small in the second enciphering. Then Alice sends c and k′ to
Bob, who deciphers k with his private key d, via Dd(k′) = k. Then Bob easily
deduces the symmetric deciphering key k−1, which he uses to decipher

Dk−1(c) = Dk−1(Ek(m)) = m.

Hence, the PKC is used only for the sending of the session key, which provides
a digital envelope that is both secure and efficient, a very nice and elegant
resolution of the above problems. The next section begins with an illustration
of a typical digital envelope and sets the stage for a discussion of various PKCs.

© 2007 by Taylor & Francis Group, LLC

4.2. Digital Envelopes and PKCs 165

4.2 Digital Envelopes and PKCs

Much of what follows is taken from [64] and adapted to the needs of this
text.

Diagram 4.2 Digital Envelope — Hybrid Cryptosystem

�

�

�

�S −−−−→
k

�

�

�

�Public Key

e
�

�

�

�

�Alice
(Ee(k),Ek(m))−−−−−−−−−−−−→

= (k′, c)

�

�

�

�Private Key

d
�

Bob
Dd(k′) = k

Dk−1(c) = m

We are ready to look at the various PKCs. The ideas behind the most
famous PKC, namely RSA, about which we will learn the details in the next
section, are based upon the simple mathematical idea of exponentiation and
related matters. The first of the related matters is a notion that we need to set
up the first exponentiation cipher. The security of many cryptosystems depends
upon the difficulty of solving certain problems such as the following.

If we are dealing with real numbers, then finding e from αe is called the
logarithm function. In F∗

p (or more generally in any finite group) this is called
the discrete logarithm problem (DLP). Thus, we present the problem formally
as follows.

Discrete Log Problem (DLP):

Given a prime p, a generator m of F∗
p, and an element c ∈ F∗

p, find the unique
integer e with 0 ≤ e ≤ p − 2 such that

c ≡ me (mod p). (4.1)

The DLP is often called simply discrete log. Here e ≡ logm(c) (mod p−1). If
p is “properly chosen,” this is a very difficult problem to solve. One of the ways
that p has to be properly chosen is to insist upon p−1 having at least one large
prime factor. This is due to the Silver-Pohlig-Hellman Algorithm, which allows
for efficient calculation of discrete logs when p− 1 has only small prime factors.
Due to the technical nature of the algorithm, we have placed a description of it
in Appendix E.

It can be shown that the complexity of finding e in (4.1) when p has n digits
is roughly the same as factoring an n-digit number (for instance, see [68]).
Therefore, computing discrete logs is virtually of the same degree of difficulty

© 2007 by Taylor & Francis Group, LLC

166 4. Public-Key Cryptography

as factoring, and since there are no known tractable factoring algorithms, we
assume that the integer factoring problem (IFP) is intrinsically difficult (see [64,
Appendix C]). Hence, cryptosystems based upon the discrete log problem are
assumed to be secure. Yet, there is no verification of this abstractly in the sense
that no nontrivial lower bounds have been found for the complexity of integer
factorization. (See the discussion of complexity in Section 1.8.)

A symmetric-key cipher whose security depends upon the discrete log prob-
lem is our next topic. It involves the name of a contributor whom we met earlier
— see Biography 4.1 on page 158.

Now it is time for us to go back to symmetric-key cryptography (SKC) and
learn about an exponentiation cipher that will help us set the stage for PKC in
general and RSA in particular.

� The Pohlig-Hellman4.1 Symmetric-Key Exponentiation Cipher

(a) A secret prime p is chosen and a secret enciphering key e ∈ N with e ≤ p−2.

(b) A secret deciphering key d is computed via ed ≡ 1 (mod p − 1).

(c) Encryption of plaintext message units m is: c ≡ me (mod p).

(d) Decryption is achieved via m ≡ cd (mod p).

Example 4.1 Let p = 181, and set e = 97, with plaintext 1, 4, 19, 17, 0, 24, 0, 11.
Then we encipher each by exponentiating as follows, where all congruences are
modulo 181.

197 ≡ 1; 497 ≡ 94; 1997 ≡ 19; 1797 ≡ 92;

097 ≡ 0; 2497 ≡ 158; 097 ≡ 0; 1197 ≡ 168.

Then we send off the ciphertext. To decipher, we need the inverse of e modulo
180 = p−1, and this is achieved by using the Euclidean algorithm (see Theorem
1.2 on page 3) to solve

97d + 180x = 1,

which has a solution d = 13 for x = −7, and this is the least positive such value
of d. So we may decipher via 9413 ≡ 4 and so on to retrieve the plaintext.

� Analysis

Since knowledge of e and p would allow a cryptanalyst to obtain d, then
both p and e must be kept secret. The security of this cipher is based on the
difficulty of solving the DLP; namely, an adversary without knowledge of e or
d would have to compute e ≡ logm(c) (mod p − 1).

The Pohlig-Hellman cipher is an example of the use of fixed-exponent ex-
ponentiation where the base may vary but the exponent is fixed. The next
algorithm, which we mentioned informally discussed on pages 158–160, is an

© 2007 by Taylor & Francis Group, LLC

4.2. Digital Envelopes and PKCs 167

example of the use of fixed-base exponentiation where the exponent may vary
but the base is fixed. This algorithm is a prime motivator for PKC, and its
security depends upon the DLP.

� The Diffie-Hellman Key-Exchange Protocol

Suppose that Alice and Bob have not yet met nor exchanged keys, but
they want to establish a shared secret key k by exchanging messages over an
unsecured channel. First Alice and Bob agree on a large prime p and a generator
α of F∗

p (2 ≤ α ≤ p − 2). These need not be kept secret, so Alice and Bob can
agree over an unsecured channel. Then the protocol proceeds as follows.

(1) Alice chooses a random (large) x ∈ N and computes the least positive
residue X of αx modulo p and then sends X to Bob (and keeps x secret).

(2) Bob chooses a random (large) y ∈ N and computes the least positive
residue Y of αy modulo p and then sends Y to Alice (and keeps y secret).

(3) Alice computes the least positive residue of Y x modulo p, and Bob com-
putes the least positive residue of Xy modulo p. Since

Y x ≡ αyx ≡ αxy ≡ Xy ≡ k (mod p),

they have a shared secret key k.

Example 4.2 Suppose that the parameters are p = 2663, α = 2, x = 1085,
and y = 1701. Then X ≡ 21085 ≡ 252 (mod p), Y ≡ 21701 ≡ 1524 (mod p),
Y x ≡ 15241085 ≡ 2103 (mod p), and Xy ≡ 2521701 ≡ 2103 (mod p). Hence,
k = 2103 is the shared secret key.

� Analysis
In the Diffie-Hellman protocol, k is the shared secret key independently

generated by both Alice and Bob. The key exchange is complete, since Alice
and Bob are in agreement on k. The Diffie-Hellman protocol differs from the
Pohlig-Hellman cipher in that the latter requires that both p and e be kept
secret since d could be deduced from them, whereas in the former p and α may
be made public due to the intractability of the DLP. However, there is a subtler
problem here that we need to discuss, not only in reference to the above but
also for later use.

A cryptanalyst, Eve, listening to the channel would know p , α, X and Y
but neither x nor y. Thus, Eve faces what is called the

Diffie-Hellman Problem (DHP):

find αxy (mod p) given α, αx (mod p) and,

αy (mod p) (but not x or y).

© 2007 by Taylor & Francis Group, LLC

168 4. Public-Key Cryptography

If Eve can solve the DLP, then she can clearly solve the DHP. Whether the
converse is true or not is unknown. In other words, it is not known if it is possible
for a cryptanalyst to solve the DHP without solving the DLP. Nevertheless, the
consensus is that the two problems are equivalent. Thus, for practical purposes,
one may assume that the Diffie-Hellman Key-Exchange protocol is secure as
long as the DLP is intractable.

There are two more ingredients for the RSA recipe that we need. The first
we encountered briefly on page 158, and we now formalize the notion.

One-Way Functions

A one-to-one function f from a set M to a set C is called one-way if f(m) is
“easy” to compute for all m ∈ M, but for a randomly selected c in the image
of f , finding an m ∈ M such that c = f(m) is computationally infeasible. In
other words, we can easily compute f , but it is computationally infeasible to
compute f−1.

Diagram 4.3 One-Way Function

�

�

�

�m ∈ M
f: computationally easy−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−−−−

f−1: computationally infeasible

	

�

�
f (m) ∈ C

One-way functions have a plethora of cryptographic uses. For instance,
one use of one-way functions, about which we will see more later, is password
security. Suppose that Alice has a password p and f is a one-way function.
Then p can be stored as f(p) on a computer. When Alice logs in to her account,
the computer takes p, calculates f(p), and checks that it matches the stored
value. A cryptanalyst who gets hold of the password file will have only the f(p)
value for each user, and obtaining p is computationally infeasible.

The above being said, there is no rigorous mathematical proof that one-way
functions actually exist. Yet, as we saw on page 158, we have working definitions,
pragmatic ones, that serve us well. Moreover, we now have “candidate” one-way
functions such as the DLP and the IFP, discussed earlier. The reader interested
in a deeper analysis of this issue may consult books on complexity theory that
go well beyond the basics covered in Section 1.8 (see [34] for instance).

The reader may wonder at this point how it is that we could devise a cryp-
tosystem using one-way functions. The recipient of a message enciphered with
a one-way function would ostensibly be no better off than a cryptanalyst at
finding the plaintext since computing the inverse is computationally infeasible.
This is correct, so the recipient needs more information, the idea for which is
contained in what follows.

© 2007 by Taylor & Francis Group, LLC

4.2. Digital Envelopes and PKCs 169

� Trapdoor One-Way Functions

A trapdoor one-way function or public-key enciphering function is a one-way
function,

f : M �→ C,

satisfying the additional property that there exists information, called trapdoor
information, or simply trapdoor, that makes it feasible to find m ∈ M for a given
c ∈ img(f) such that f(m) = c, but without the trapdoor this task becomes
infeasible.

Diagram 4.4 Trapdoor One-Way Function

�

�

�

�m ∈ M
f: computationally easy−−−−−−−−−−−−−−−−−−→

f−1: computationally easy←−−−−−−−−−−−−−−−−−−−−

f(m) ∈ C

trapdoor �

The essential idea behind the Diffie-Hellman key exchange is the use of trap-
door one-way functions. The Diffie-Hellman protocol, discussed earlier in this
section, allows for entities who have never met or exchanged information to es-
tablish a shared secret key by exchanging messages over an unsecured channel.
Since exponentiation modulo p is polynomial time, then enciphering is easy.
However, finding the inverse, solving the DLP, is computationally infeasible
without the trapdoor, namely, one of the secret pair (x, y). This can be made
to work in a more general context, using the IFP, that is most germane to our
discussion of RSA in the next section and will provide a nice motivator.

Example 4.3 Let f(x) ≡ xe (mod n) where n = pq with p 	= q primes, and
suppose that

de ≡ 1 (mod (p − 1)(q − 1)).

Then applying f is computationally easy, but finding

f−1(xe) ≡ f−1(f(x)) ≡ xed ≡ x (mod n) (4.2)

is computationally infeasible without the trapdoor d.

� Analysis
First, we note that (p − 1)(q − 1) in Example 4.3 is just the Euler function

(see page 37) applied to pq, since

φ(n) = φ(pq) = (p − 1)(q − 1),

and the application of f−1 in Equation (4.2) is just Euler’s generalization of
Fermat’s Little Theorem (see Theorem 1.18 on page 40). This little bit of
elementary number theory is really all that is behind the RSA cipher, so under-
standing this is sufficient to understand the entire cryptosystem.

© 2007 by Taylor & Francis Group, LLC

170 4. Public-Key Cryptography

In order to show that the finding of the trapdoor d in Example 4.3 is based
upon the IFP, in this case factoring n, we need to show that computing d is
“as hard as” factoring n. Determining what as hard as means will involve some
discussion of probabilities.

If we can factor n, obviously we can compute (p − 1)(q − 1). Then we can
use the Euclidean algorithm to find d from e (in computationally feasible time),
since we need merely solve

ed + x(p − 1)(q − 1) = 1

for x and d. A simple example is e = 7, p = 101, and q = 167. Then solving

7d + 100 · 166 · x = 1

is easily achieved, with x = −2, and d = 4743. In fact, it can be shown that
being able to compute d can be converted (with an arbitrarily high probability)
into an algorithm for factoring n (see [63, p. 65] for instance). In other words,
knowledge of d can be converted into an algorithm for factoring n (with an
arbitrarily small probability of failure to do so). Thus, to say that finding d is
as hard as factoring the modulus is not a proven fact, rather a conjecture based
on some (rather solid) evidence. We will formalize this conjecture in the next
section.

Note, as well, that if we have φ(n) and n, then we can factor n. The reason
is that we can find p and q by successively computing

p + q = n − (p − 1)(q − 1) + 1 and p − q =
√

(p + q)2 − 4n, (4.3)

so we get

p =
1
2

[(p + q) + (p − q)] and q =
1
2

[(p + q) − (p − q)] .

Hence, finding d or finding φ(n) means we can factor n.

Exercises

4.1. Prove that the DLP presented on page 165 is independent of the generator
m of F∗

p. (This means you must demonstrate that any algorithm that
computes logs to base m can be used to compute logs to any other base
m′ that is a generator of F∗

p.)

4.2. The generalized discrete log problem is described as follows. Given a finite
cyclic group G of order n ∈ N, a generator α of G, and an element β ∈ G,
find that unique nonnegative integer x ≤ n − 1 such that αx = β. Given
the fact that such a group G is isomorphic to Z/nZ (see page 316), one
would expect that an efficient algorithm for computing discrete logs in
one group would imply an efficient algorithm for the other group. Explain
why this is not the case.

© 2007 by Taylor & Francis Group, LLC

4.2. Digital Envelopes and PKCs 171

Exercises 4.3–4.6 refer to the Pohlig-Hellman exponentiation cipher pre-
sented on page 166. In each exercise, use the data to decipher the given cryp-
togram and produce the plaintext via Table 2.2 on page 83.

4.3. p = 167, e = 3, and c = (125, 162, 0, 154, 9, 11, 26, 12, 9, 64, 35, 0, 26).

4.4. p = 263, e = 73, and

c = (246, 18, 156, 0, 256, 127, 18, 156, 96, 256, 235, 0, 132, 68).

4.5. p = 397, e = 59, and

c = (160, 313, 2, 223, 11, 0, 1, 286, 369, 160, 2, 160).

4.6. p = 1013, e = 5, and

c = (685, 0, 323, 934, 997, 352, 535, 11, 352, 323, 323, 32, 0, 644, 32, 11).

Exercises 4.7–4.10 refer to the Diffie-Hellman key exchange protocol intro-
duced on page 167. In each exercise, use the data to find the shared secret key
k.

4.7. p = 877, α = 2, x = 25, and y = 3.

4.8. p = 907, α = 2, x = 32, and y = 153.

4.9. p = 1193, α = 3, x = 69, and y = 96.

4.10. p = 1471, α = 6, x = 51, and y = 22.

4.11. Explain why selecting α = p − 1 would be a very negative choice.

4.12. Verify the statement made on page 168 to the effect that if Eve can solve
the DLP, then she can solve the DHP.

4.13. Suppose that p is a prime such that q = (p − 1)/2 is also prime, called a
safe prime. Furthermore, assume that α and β are primtive roots modulo
p with αa ≡ β (mod p), where a is kept secret. Define a hash function

h : Z/q2Z → Z/pZ

as follows for a given message m = r0 + r1q where 0 ≤ r0, r1 ≤ q − 1,

h(m) ≡ αr0βr1 (mod p).

Prove that h is strongly collision reistant. In other words, prove that if
h(m) = h(m1) for different messages m and m1, then we can determine a.

© 2007 by Taylor & Francis Group, LLC

172 4. Public-Key Cryptography

4.3 RSA

Although the Diffie-Hellman Key-Exchange protocol, discussed on page 167,
was the genesis of a profound investigation into the notion of PKC, their scheme
did not provide a complete solution to the establishment of a complete PKC.
They provided only a mechanism for the exchange of keys and, by the authors’
own admission, left open the problem of establishing a working secure PKC (see
page 158). The first to do this, as we know, have their names attached to the
acronym that did provide such a solution.

� The RSA Public-Key Cryptosystem

We break the algorithm into two parts with the underlying assumption that
Alice wants to send a message to Bob.

(I) RSA Key Generation
1. Bob generates two large, random primes p 	= q of roughly the same size and

computes both n = pq and

φ(n) = (p − 1)(q − 1).

The integer n is called his (RSA) modulus.

2. He selects a random e ∈ N such that 1 < e < φ(n) and gcd(e, φ(n)) = 1.
The integer e is called his (RSA) enciphering exponent. Then using the
extended Euclidean algorithm (see Theorem 1.7 on page 12), he computes
the unique d ∈ N with 1 < d < φ(n) such that

ed ≡ 1 (mod φ(n)).

3. Bob publishes (n, e) in some public database and keeps d, p, q, and φ(n)
private. Thus, Bob’s (RSA) public-key is (n, e) and his (RSA) private key
is d. The integer d is called his (RSA) deciphering exponent.

(II) RSA Public-Key Cipher

enciphering stage:
In order to simplify this stage, we assume that the plaintext message m ∈ M

is in numerical form with m < n. Also, M = C = Z/nZ, and we assume that
gcd(m,n) = 1.

1. Alice obtains Bob’s public key (n, e) from the database.

2. She enciphers m by computing c ≡ me (mod n) using the repeated squaring
method given on page 31 and sends c ∈ C to Bob.

deciphering stage:
Once Bob receives c, he uses d to compute m ≡ cd (mod n).

© 2007 by Taylor & Francis Group, LLC

4.3. RSA 173

Remark 4.1 To see that Bob’s decryption actually recovers m, we observe the
following. Since

ed ≡ 1 (mod φ(n)),

there exists a g ∈ Z such that

ed = 1 + gφ(n).

If p � m, then by Fermat’s Little Theorem, mp−1 ≡ 1 (mod p). Hence,

med = m1+g(p−1)(q−1) ≡ m(mg(q−1))p−1 ≡ m (mod p). (4.4)

If p|m, then (4.4) holds again since m ≡ 0 (mod p). Hence, med ≡ m (mod p)
for any m. Similarly, med ≡ m (mod q). Since p 	= q, med ≡ m (mod n). Thus,

cd ≡ (me)d ≡ m (mod n).

Example 4.4 Suppose that Bob chooses (p, q) = (3677, 4013). Then n =
14755801 and φ(n) = 14748112. If Bob selects e = 5, then solving 1 = 5d+φ(n)x
(for x = −2), he gets d = 5899245, his private key. Also, (14755801, 5) is his
public key. Alice obtains Bob’s public key and wishes to send the message
m = 279257. She enciphers using Bob’s public key to get

c ≡ m5 ≡ 1028750 (mod n),

which she sends to Bob. He uses his private key d to decipher via

cd ≡ 102871505899245 ≡ 279257 ≡ m (mod n).

� Block Size
We cannot properly encipher the plaintext message unit if it is a numerical

value m ≥ n. (The reader may try an example, say, m = 72892588, in Example
4.4, and see that information is lost [under modular reduction] and the system
fails.) When m ≥ n, we must subdivide the plaintext numerical equivalents
into blocks of equal size, a process called message blocking. If we are dealing
with numerical equivalents of the plaintext in base N integers for some fixed
N > 1, then message blocking is accomplished by choosing that unique integer
� such that N � < n < N �+1 (see Exercise 4.22 on page 180). Then we write
the message as blocks of �-digit, base N integers (with zeros packed to the right
in the last block if necessary), and encipher each separately. Since N � < n,
each block of plaintext corresponds to an element of Z/nZ. Therefore, since
n < N �+1, then each ciphertext message unit can be uniquely written as an
(� + 1)-digit, base N integer in C = Z/nZ = M.

� Modulus Size
For the modern day and the near future, an RSA modulus of 1024 to 4096

bits would be considered secure, but this is dependent upon how long one is

© 2007 by Taylor & Francis Group, LLC

174 4. Public-Key Cryptography

willing to wait for the software to generate a secure keypair as well. Certain
RSA moduli of n digits that are a product of two primes of approximately the
same size are denoted by RSA-n, called an RSA challenge number. These are
published on the Internet, and the reader may request the list from challenge-
rsa-list@rsa.com. These are numbers for which rewards are offered to factor
them. We will return to some concrete examples of these numbers shortly.

� Modulus Parameters
It is worthy of discussion to look at the possible choices for the various

parameters in the RSA Algorithm (or simply RSA henceforth for convenience).
For instance, in the choice of the primes p and q, one should not choose them
too close together. Suppose that p > q and p is “close” to q, in the sense that
(p + q)/2 is only slightly bigger than

√
n =

√
pq. Given that(

p + q

2

)2

− n =
(

p − q

2

)2

,

then we have a solution (x, y) ∈ N × N to x2 − n = y2. To factor n we need
only test those integer values x >

√
n until x2 − n = y2 for some y ∈ N, since

n = (x−y)(x+y). Thus, choosing p and q too close together will make this task
much easier. Take, for instance, our modulus in Example 4.4 on the preceding
page, n = 14755801 where �√n� = 3841. Testing for x = 3842, 3843, 3844 does
not yield a square, but for x = 3845 we get 38452 − 14755801 = 1682, so we
factor n as n = 14755801 = (3845 − 168)(3845 + 168) = 3677 · 4013. (Note
that (p + q)/2 = 3845 > 3841 = n, so the values of p and q are too close to
one another in the preceding sense.) Of course, our example is too small to be
realistic, for reasons discussed above, but even with much larger primes the idea
works, so caution must be exercised. Certain precautions should also be taken
in the choice of p and q to ensure that p − 1 and q − 1 do not have any large
common factor. If they have such a factor, then it becomes easier to obtain the
deciphering exponent d since the inverse of the enciphering exponent e modulo
lcm(p − 1, q − 1) suffices for d. Take an example of the extreme case where
p = 23, q = 67, and e = 5. Here 22 = (p − 1)

∣∣ (q − 1) = 66, so we need only
compute the inverse of e modulo q − 1, which is d = 53. Another caution is
that φ(n) should have a large prime factor, or more precisely not be a product
of only small prime factors. The reasons for this have been discussed when we
talked about the Diffie-Hellman algorithm where we provided a solution to this
problem, namely choose (p− 1)/2 (and (q− 1)/2) to be prime, which solves the
aforementioned lcm problem as well. As seen in Exercise 4.13 on page 171, such
primes are called safe primes. It is suspected, but there is no proof, that there
are infinitely many safe primes. Last, on these cautionary issues, although one
may select an enciphering exponent e in the range 1 < e < φ(n), some of these
choices are very bad. For instance, if e = φ(n)/2 + 1, then by Euler’s Theorem
1.18,

mφ(n)/2+1 = (mφ(p))φ(q)/2m ≡ m (mod p),
and

mφ(n)/2+1 = (mφ(q))φ(p)/2m ≡ m (mod q),

© 2007 by Taylor & Francis Group, LLC

mailto:challengersa-list@rsa.com
mailto:challengersa-list@rsa.com

4.3. RSA 175

so
mφ(n)/2+1 ≡ m (mod n),

namely me ≡ m (mod n) for all m ∈ M, clearly not a desirable outcome.

� The Euler Function and Alternatives

If one needs to execute RSA key generation often, say for numerous com-
munications between banks, then we must ensure that finding such an e over a
large number of trials is fast. In other words, we need to know that calculating
1−φ(n)/n over N trials can be made arbitrarily small for large N . For instance,
this will happen if

(1 − φ(n)/n)N < (1/2)N .

In particular, if n = pq is an RSA modulus, then

φ(n)/n = (1 − 1/p)(1 − 1/q) > (4/5)2 = .64 > 1/2.

It can be shown by more sophisticated techniques that for arbitrary n,

φ(n)/n > (1 + o(1))e−γ/ ln lnn,

where
γ = lim

n→∞(1 + 1/2 + · · · + 1/n − lnn)

is Euler’s Constant.
Instead of φ(n), one may use the Carmichael Function λ(n), which is defined

in the solution to Exercise 2.37 on page 369. If p and q are chosen such that
gcd(p − 1, q − 1) is small, then φ(n) and λ(n) are about the same size.

On pages 169 and 170, we discussed an instance that is tantamount to the
encryption and decryption of the RSA cipher. Therein, we talked about a notion
that we can now name.

The RSA Conjecture
Cryptanalyzing RSA must be as difficult as factoring.

Although there is no proof of this conjecture, the aforementioned discussion
in the previous section tells us that the evidence is strong and the general
consensus is that the conjecture is valid. A good reason for believing this is
that the only known method for finding d given e is the extended Euclidean
algorithm applied to e and φ(n). Yet, to compute φ(n), we need to know p and
q, namely, we need to know how to factor n.

Given the above statement, it is worth a few more words on the extended
Euclidean algorithm. This algorithm calculates the gcd(e, φ(n)), and when
gcd(e, φ(n)) = 1, it calculates the e−1 (mod φ(n)). This is accomplished rel-
atively quickly.

There are numerous cryptosystems that are called equivalent to the difficulty
of factoring. For instance, there are RSA-like cryptosystems whose difficulty to

© 2007 by Taylor & Francis Group, LLC

176 4. Public-Key Cryptography

break is as hard as factoring the modulus. It can be shown that any cryptosys-
tem for which there is a constructive proof of equivalence to the difficulty of fac-
toring is vulnerable to a chosen-ciphertext attack (see Section 2.6 on page 127).
We have already seen that factoring an RSA modulus allows the breaking of the
cryptosystem, but the converse is not known. In other words, it is not known if
there are other methods of breaking RSA.

Although it is not easy to prove, it can be shown that computing the de-
ciphering exponent d in RSA is computationally equivalent to factoring the
modulus, namely they have the same complexity. (See [63, p. 65].) To state
this in another fashion: knowing how to factor the modulus allows us to com-
pute d, and knowing how to compute d can be converted into an algorithm for
factoring the modulus.

� Authentication

We conclude this section with a discussion of mechanisms for authentication,
meaning that both the origin of data and the entity who sent it must somehow
be verified. To see why this is necessary in public-key cryptography, one may
witness one type of interception by a cryptanalyst as described in the following
example.

Example 4.5 Suppose that Mallory wants to decipher

c ≡ me (mod n)

to recover plaintext m enciphered using RSA and sent by Alice to Bob. Further-
more, suppose that Mallory can intercept and disguise c by selecting a random
x ∈ (Z/nZ)∗ and computing

c ≡ cxe (mod n).

Not knowing this, Bob computes

m ≡ cd (mod n)

and sends it to Alice. Now m can be recovered if Mallory intercepts m as follows.
Since

m ≡ cd ≡ cd(xe)d ≡ mx (mod n),

then Mallory merely computes m ≡ mx−1 (mod n). (This is an example of an
adaptive chosen-ciphertext attack on RSA (see page 127). Such attacks on RSA
can be thwarted by ensuring that the plaintext messages have a certain structure,
which is unlikely to be maintained if disguised by Mallory. Then if Bob receives
a ciphertext that decrypts to a plaintext without this structure, c is rejected by
Bob as being fraudulent. For numerous other attacks on RSA, see [58].)

The problem, in general, is described and illustrated as follows. Suppose
that Alice and Bob are communicating via some public-key cryptosystem, and
Mallory is listening to the channel. Mallory can impersonate Bob by sending

© 2007 by Taylor & Francis Group, LLC

4.3. RSA 177

Alice a public key e′ (which Alice will assume to be the public key e 	= e′ of B).
Then Alice sends

Ee′ = me′
= c′

to Bob. Mallory intercepts the enciphered message and deciphers using private
key d′ via

(c′)d′
= me′d′

= m.

Then Mallory enciphers m with public key e and sends c = me to Bob, imper-
sonating Alice, and neither Alice nor Bob is the wiser. This process is illustrated
in the following.

Diagram 4.5 Impersonation Attack on Public-Key Cryptosystems

�
�

�
�Alice

e′
←−−−−

E
e′ (m)=c′−−−−−−→

Mallory
D

d′ (c′)=m
Ee(m)=c−−−−−→

�
�

�
�Bob

Before formalizing the notion of a digital signature, we should compare and
contrast the features of a digital signature vs. a conventional (handwritten)
signature. For instance, once a conventional signature is put upon a document,
then the signature becomes a physical part of that document. With a digital
signature algorithm, there must be some means incorporated for “binding” the
signature to the message. Also, there is the issue of verification. A conventional
signature, such as that on a credit card, is verified by comparing the signature on
the credit card with that on the sales slip. This is, of course, very insecure since
a criminal can forge a signature. Digital signatures, however, are secure since
they can be verified with a (publicly known) verification algorithm, which must
be part of the signature algorithm. Since people cannot disavow signatures, the
verification algorithm must take care of this in some fashion as well. Finally,
copies of documents with handwritten signatures can usually be identified as
distinct from the original, whereas “copies” of digital signatures are identical
to each other. Hence, care must be exercised in order to prevent unauthorized
reuse, for instance by binding the date to the signature.

We have already discussed some methods for authentication, called MACs
(see page 125). We now look at some more in greater detail starting with a
formalization of the notions surrounding authentication.

Definition 4.1 Digital Signatures
Let M be a message space and K be a key space.

(1) A digital signature is a digital data string that associates a given m ∈ M

with its sender. In other words, M is the set of elements to which a signer
can affix a digital signature.

© 2007 by Taylor & Francis Group, LLC

178 4. Public-Key Cryptography

(2) Let S be a set of elements, called the signature space (usually bitstrings), of
fixed length used to bind the signer to the message. A redundancy function
is an injective function

R : M �→ MS,

where MS is a set of elements called the signing space.

For each k ∈ K, there is digital signature transformation, or signature
transformation, which is an injective mapping sigk : MS �→ S.

Note that selection of the redundancy function is critical in signature
schemes. For example, such a selection should not be made independently
of sigk since this could compromise the security of the signature scheme.
The first international standard for digital signatures published in 1991
by the International Standards Organization is called ISO/IEC 9796 (see
[58, pp. 442–444]) This provides secure redundancy function, which can
be used with the RSA Signature Scheme described below.

(3) A method for producing a digital signature, sigk ◦ R : M �→ S, is called a
digital signature generation algorithm, or signature generation algorithm.

(4) A digital verification algorithm or verification algorithm is a method for
verifying that a digital signature is authentic.

(5) A digital signature scheme, or signature scheme is composed of two parts:
a signature generation algorithm and a signature verification algorithm.

(6) A signature scheme with message recovery is a signature scheme for which
the message being sent is not required as input to the validation algorithm.
In this case, the original message is recovered from the signature itself. A
signature scheme with appendix is a signature scheme where the message
is required as input for the verification algorithm.

We now describe a signature scheme related to RSA. Note that any public-
key system with M = C can be used for signatures. The sender can use the
private key to encipher the message m, thereby obtaining the signature s and
the receiver can decipher the signature s using the sender’s public key to compare
it with the message m.

� The RSA Signature Scheme

Let M = C = S = MS = Z/nZ where n = pq with p 	= q randomly chosen
primes. A publicly known redundancy function R : M �→ Ms is chosen.

The first step in the process is that each Alice and Bob generate public and
private keys using the RSA key generation algorithm given on page 172. Then
the following is executed.

RSA Signature Generation and Verification
Alice signs m ∈ M and Bob verifies Alice’s signature as follows.
signature generation stage:
Alice performs the following steps.

© 2007 by Taylor & Francis Group, LLC

4.3. RSA 179

(1) Compute R(m) = m′.

(2) Compute
s = sigd(m) ≡ (m′)d (mod n),

and send s to Bob.

verification stage:
Bob performs the following steps.

(1) Obtain Alice’s public-key (n, e).

(2) Compute m′ ≡ se (mod n).

(3) Verify that m′ ∈ img(R), and reject if it is not.

(4) Recover m = R−1(m′).

Thus, we see that the RSA Signature Scheme is a signature scheme with
message recovery. We now illustrate, where as usual we must use unrealistically
small values, and a trivial redundancy function, for pedagogical purposes.

Example 4.6 Let p = 1783 and q = 2099 be the primes chosen by Alice, and
let R(m) = m for all m ∈ M. Thus, n = 3742517 = pq and φ(n) = 3738636.
Assuming that Alice chooses e = 9667, then using the extended Euclidean
algorithm on

1 = 9667 · d + 3738636 · x,

Alice computes d = 281935 (where x = −729). Therefore, Alice’s public key is

(e, n) = (9667, 3742517)

and the private key is d = 281935. Suppose that the message to be signed is
m = 1011. Then Alice computes

R(m) = m′ = m = 1011,

and
sigd(m

′) = (m′)d = 1011281935 ≡ 739457 ≡ s (mod 3742517)

and sends s to Bob, which completes the signature generation stage. Now Bob
completes the verification stage by computing

se ≡ 7394579667 ≡ 1011 ≡ m (mod 3742517).

The signature and message are accepted since m ∈ img(R).

© 2007 by Taylor & Francis Group, LLC

180 4. Public-Key Cryptography

Exercises
Exercises 4.14–4.17 pertain to the RSA public-key cryptosystem described on

page 172. Find the plaintext numerical value of m from the parameters given.
You will first have to determine the private key d from the given data via the
methodology illustrated in Example 4.4 on page 173. If repeated squaring is
not employed (see page 31), then a computer utilizing a mathematical software
package will be required for these calculations.

4.14. (p, q) = (167, 547), n = 91349, e = 5, and c ≡ 88291 (mod n).

4.15. (p, q) = (211, 691), n = 145801, e = 11, and c ≡ 121919 (mod n).

4.16. (p, q) = (367, 911), n = 334337, e = 17, and c ≡ 226756 (mod n).

4.17. (p, q) = (1187, 1481), n = 1757947, e = 13, and c ≡ 1757118 (mod n).

Exercises 4.18–4.21 refer to the RSA signature scheme developed on page 178.
Use the given parameters in each case to first compute the encryption key e
using the Euclidean algorithm on φ(n) and d. Then compute ce (mod n). If

m ≡ ce (mod n),

then accept the signature as valid, since verk(m, c) = 1. Otherwise, reject the
signature, since verk(m, c) = 0.

4.18. n = 466727, φ(n) = 465336, d = 296123, m = 10101, and c = 369510.

4.19. n = 971743, φ(n) = 969760, d = 74597, m = 2134, and c = 689844.

4.20. n = 1081357, φ(n) = 1079260, d = 571373, m = 7381, and c = 725226.

4.21. n = 141373, φ(n) = 139968, d = 29467, m = 8872, and c = 32961.

4.22. Show that the choice of � in the discussion of message blocking on page 173
is maximal for unique decryption when the plaintext numerical equivalents
m are bigger than n. In other words, if k > � is chosen as the blocklength
when m > n, then decryption will not be unique in the RSA cipher.

In Exercises 4.23–4.29, use Equation (4.3) on page 170 to find the primes p and
q.

4.23. pq = 514541 and φ(pq) = 513084.

4.24. pq = 1009427 and φ(pq) = 1007400.

4.25. pq = 1737251 and φ(pq) = 1734600.

4.26. pq = 3660479 and φ(pq) = 3656640.

4.27. pq = 2579047 and φ(pq) = 2575600.

4.28. pq = 7863043 and φ(pq) = 7855120.

4.29. pq = 3398909 and φ(pq) = 3394560.

© 2007 by Taylor & Francis Group, LLC

4.4. ElGamal 181

4.4 ElGamal

The title for this section is the name of a major contributor to several cryp-
tographic schemes. Much of the following is taken from [64].

Biography 4.6 Taher ElGamal was born in Cairo, Egypt, on August
18, 1955. He obtained his bachelor’s degree in electrical engineering
from Cairo University in 1977. He obtained both his master’s degree
and his Ph.D. from Stanford University in 1981 and 1984, respectively.
His doctorate was done under the supervision of Martin Hellman (see
Biography 4.1 on page 158). While at Stanford, he helped pioneer digi-
tal signatures and PKC. He founded Security Inc. in 1988, which later
became the Kroll-O’Gara Information Security Group, where he became
president of its Information Security Group. From 1991 to 1993, El-
Gamal was the Director of Engineering at RSA Security Inc., where he
produced the RSA cryptographic toolkits and the initial VeriSign cer-
tificate issuance products. From 1993 to 1995, he was Vice President
of Advanced Technologies at OKI Electric. From 1995 to 1998, he held
the position of Chief Scientist of Netscape Communications where he
was a pioneer in Internet security technology. Other accomplishments
include development of Internet credit card payment schemes. He
also serves on various boards of directors and has been a member of the
technical staff at Hewlett-Packard Laboratories since 1984. ElGamal is
a respected leader in the worldwide information security industry.

The following cryptographic scheme bases its security upon the DLP (see
(4.1), page 165). The cryptosystem was first published in [26] in 1985.

The following is performed assuming that Alice wants to send a message m
to Bob, and m ∈ {0, 1, . . . , p − 1} (equivalent to the actual plaintext).

(I) ElGamal Key Generation

1. Bob chooses a large random prime p and a primitive root α modulo p.

2. Bob then chooses a random integer a with 2 ≤ a < p − 1 and computes αa

(mod p).

3. Bob’s public key is (p, α, αa) and his private (session) key is a.

(II) ElGamal Public-Key Cipher

Enciphering stage:

1. Alice obtains Bob’s public key (p, α, αa).

2. She chooses a random natural number b < p − 1.

3. She computes αb (mod p) and mαab (mod p).

© 2007 by Taylor & Francis Group, LLC

182 4. Public-Key Cryptography

4. Alice then sends the ciphertext c = (αb,mαab) to Bob.

Deciphering stage:

1. Bob uses his private key to compute (αb)−a ≡ (αb)p−1−a (mod p).

2. Then he deciphers m by computing (αb)−amαab (mod p).

Example 4.7 Suppose that Alice wants to send the message m = 2132 to
Bob using the ElGamal cipher. Bob chooses p = 3359, α = 11, and a = 5,
his private key. He computes αa ≡ 115 ≡ 3178 (mod p). Bob’s public key is
therefore (p, α, αa) = (3359, 11, 3178), which Alice downloads from some public
database. She chooses b = 69 and computes both

αb ≡ 1169 ≡ 193 (mod p)

and
mαab ≡ 2132 · 317869 ≡ 2719 (mod p).

The ciphertext is c = (193, 2719), which Alice sends to Bob. He uses his private
key to compute

(αb)p−1−a ≡ 1933353 ≡ 2243 (mod p),

and
(αb)−amαab ≡ 2243 · 2719 ≡ 2132 (mod p),

thereby recovering m.

� Analysis

Key Generation Options: Although it is preferable in step 1 of key gen-
eration, one need not choose a primitive root, provided one chooses an element
α ∈ (Z/pZ)∗ whose order is close to the size of p. In other words, the smallest
r ∈ N such that αr ≡ 1 (mod p) must be nearly as large as p. Such α are called
near-primitive roots. In the case of a primitive root, r = p − 1.

Security Issues: The random number b generated by Alice in step 2 of the
enciphering stage must be kept secret since one can recover

m = mαab(αa)−b

from knowledge of it, given that mαab and αa are made public. Furthermore, b
should never be used twice. Suppose that Alice uses b for two different messages
m1 and m2, and Eve knows m1. Then this is how Eve can obtain m2. The two
ciphertexts are c1 = (αb,m1α

ab) and c2 = (αb,m2α
ab). Then she calculates

that
m2α

abm−1
1 m1α

−ab = m2.

We conclude the discussion of security issues with a detailed argument to
show that indeed the security of the ElGamal cipher is based on the DLP.

© 2007 by Taylor & Francis Group, LLC

4.4. ElGamal 183

To see this, we demonstrate first that the ElGamal cipher is equivalent to the
Diffie-Hellman Key-Exchange protocol. Assume Eve can solve the DHP (see
page 167), and she desires to get m from c = (αb,mαab). Since she can solve
the DHP, she can determine β ≡ αab (mod p) from αa and αb. Therefore, she
can reconstruct the message m ≡ β−1mαab (mod p), In other words, if Eve can
break the Diffie-Hellman cipher, she can break the ElGamal.

Now assume that Eve can cryptanalyze the ElGamal cipher above. Then
she can obtain any message m from knowledge of p, α, αa, αb, and mαab. If Eve
wants to get αab from p, α, αa, αb, she computes

(mαab)m−1 ≡ αab (mod p).

In other words, we have shown that cryptanalyzing ElGamal is tantamount
to cryptanalyzing Diffie-Hellman. In fact, the ElGamal cipher may be viewed
as a Diffie-Hellman key exchange on k = αab, which is used to encrypt m in
step 3 of the enciphering stage. Thus, we have demonstrated that although
Diffie-Hellman is not itself a public-key cryptosystem, it is the basis for the
ElGamal public-key cryptosystem. Furthermore, ElGamal’s cipher has difficulty
equivalent to the Diffie-Hellman key exchange. Moreover, as noted on page 167,
if Eve can solve the DLP, she can solve the DHP. The converse is not known,
but the consensus is that it is true. Hence, we assume that the security of the
ElGamal cipher is based on the DLP. Last, as with RSA, a modulus of 1024 to
2048 bits is recommended for long-term security.

Deciphering Verification: The reason Bob’s deciphering stage works is
because

(αb)−amαab ≡ mαab−ab ≡ m (mod p).

In 1985, ElGamal developed a signature scheme (see [26]–[27]). It turns out
that these publications were perhaps a little hasty since he had not applied
for patent rights, thereby forfeiting his rights to those patents. Variations of
ElGamal’s scheme did get patented by others such as Schnorr (see [55, pp.
180–181]). Also, RSA is a signature scheme with message recovery, whereas
ElGamal’s is a signature scheme with appendix.

� ElGamal Signature Scheme

The goal is for Alice to sign and send a message to Bob for verification.
The message should be hashed before signing, but for the sake of simplicity we
will not do this and leave the issue for a discussion in the analysis after the
description of the signature scheme.

Key Generation Stage: First Alice engages in ElGamal key generation
as described on page 181 for Bob. Thus, Alice’s public key is (p, α, y), α being
a primitive root modulo a large random prime p (with intractable DLP in Fp)
and her private key is a, where y ≡ αa (mod p). The message to be signed is
m ∈ F∗

p.
Signing Stage: Alice performs each of the following:

© 2007 by Taylor & Francis Group, LLC

184 4. Public-Key Cryptography

1. Select a random r ∈ (Z/(p − 1)Z)∗.

2. Compute β ≡ αr (mod p) and γ ≡ (m − aβ)r−1 (mod p − 1).

3. For k = (p, α, a, y) the signed message sigk(m, r) = (β, γ) is sent, along with
m, to Bob.

Verification Stage: Bob does each of the following:

1. Using Alice’s public key (p, α, y) verify that β ∈ F∗
p and reject if not.

2. Compute δ ≡ yββγ (mod p) and σ ≡ αm (mod p).

3. verk(m, (β, γ)) = 1 if and only if σ ≡ δ (mod p). Otherwise reject.

Example 4.8 Let p = 3469, with primitive root α = 2. Alice selects a = 153
as her private key and computes αa ≡ 2153 ≡ 2501 ≡ y (mod 3469). Thus, her
public key is (p, α, y) = (3469, 2, 2501). If m = 1121, and she chooses r = 251,
then she computes

β ≡ 2251 ≡ 2142 (mod 3469).

Then she computes

γ ≡ (m − aβ)r−1 ≡ (1121 − 153 · 2142) · 251−1 ≡ 1849 (mod 3468),

and sends sigk(1121, 251) = (β, γ) = (2142, 1849) to Bob. First Bob verifies
that β ∈ (Z/pZ)∗, then computes

δ ≡ yββγ ≡ 2501214221421849 ≡ 1487 ≡ 21121 ≡ αm (mod 3469),

so Bob accepts the signature as valid.

� Analysis

Suppose that Mallory tries to forge Alice’s signature on m by choosing a
random r1 ∈ (Z/(p− 1)Z)∗ and computing β′ ≡ αr1 (mod p). Mallory is now in
the position of having to compute

γ′ ≡ (m − aβ′)r−1
1 (mod p − 1).

However, if the DLP in Fp is intractable, then this computation is infeasible so
only a guess at the value of γ′ is possible with a probability of success being
1/p. For large p, this is insignificant.

As noted prior to the description of the ElGamal scheme, we purposely did
not hash the message. However, one must hash the message or else Mallory can
forge a signature on a random message. Here is how he does it.

Suppose that Mallory selects r1, r2 ∈ (Z/(p − 1)Z)∗. He then computes

β1 ≡ αr1yr2 (mod p) and γ1 ≡ −β1r
−1
2 (mod p − 1).

© 2007 by Taylor & Francis Group, LLC

4.4. ElGamal 185

Now we show that (β1, γ1) is a valid signature for the message

m1 ≡ γ1r1 (mod p − 1).

We have, yβ1βγ1
1 ≡ αaβ1α(r1+ar2)γ1 ≡ αaβ1α(r1+ar2)(−β1r−1

2) ≡

αaβ1α−β1r1r−1
2 −β1a ≡ α−β1r1r−1

2 ≡ αγ1r1 ≡ αm1 (mod p).

In any case, a hash function h must be applied to the original message,
and the hash is signed. Thus, Mallory would have to find a message m′ such
that h(m′) = m, which he has a very low probability of doing if h is strongly
collision resistant. However, if step 1 of the verification stage is not enforced,
then Mallory can forge certain signatures of his own choosing if he has a previous
legitimate message signed by Alice, as demonstrated in the following.

Suppose that a previous legitimate signature by Alice for a message m is
(β, γ). Furthermore, suppose that Mallory is lucky and m−1 (mod p− 1) exists,
and Mallory chooses a message m1 to forge. Mallory computes both congruences

t ≡ m1m
−1 (mod p − 1)

and
γ1 ≡ tγ (mod p − 1).

By the Chinese Remainder Theorem, he can also compute a solution x = β1 to
the congruences:

x ≡ βt (mod p − 1) and x ≡ β (mod p).

Thus,

yβ1βγ1
1 ≡ αaβ1βtγ ≡ αaβtαrtγ ≡ αt(aβ+rγ) ≡ αtm ≡ αm1mm−1 ≡ αm1 (mod p).

Hence, (β1, γ1) is accepted as a valid signature by the verification stage for m1,
if step 1 in that stage is ignored. The essential nature of step 1 in the verification
stage was first observed in [7].

The value r chosen by Alice in the signing stage has to be kept secret, or
there is a total break of the system since Mallory can get a from knowledge of r.
Since β, γ, and m are known, then knowledge of r means that he may compute

a ≡ (m − rγ)β−1 (mod p − 1).

Also, if Alice is careless and uses r for the signing of two different messages,
then Mallory can get r and break the system as above. Here is how he gets r.

If sigk(m1, r) = (β, γ1) and sigk(m2, r) = (β, γ2), then

yββγ1 ≡ αaβ+rγ1 ≡ αm1 (mod p),

and
yββγ2 ≡ αaβ+rγ2 ≡ αm2 (mod p).

© 2007 by Taylor & Francis Group, LLC

186 4. Public-Key Cryptography

Therefore,
αm2−m1 ≡ βγ2−γ1 ≡ αr(γ2−γ1) (mod p).

Hence,
m2 − m1 ≡ r(γ2 − γ1) (mod p − 1).

If gcd(p − 1, γ2 − γ1) = g, then

m2 − m1

g
≡ r(γ2 − γ1)

g
(mod (p − 1)/g).

Thus,

r ≡
(

m2 − m1

g

) (
γ2 − γ1

g

)−1

(mod (p − 1)/g),

since gcd((γ2 −γ1)/g, (p−1)/g) = 1, and once we have r we can get a as above.

Exercises
In Exercises 4.30–4.33, use the ElGamal public-key cryptosystem described

on page 181 to recover the plaintext m from the ciphertext c via the parameters
given by the prime p and Bob’s private key a in each instance.

4.30. p = 1213, a = 15, c = (αb,mαab) = (661, 193).

4.31. p = 1973, a = 71, c = (αb,mαab) = (596, 146).

4.32. p = 2833, a = 17, c = (αb,mαab) = (522, 982).

4.33. p = 3359, a = 19, c = (αb,mαab) = (1093, 2530).

Exercises 4.34–4.37 pertain to the ElGamal signature scheme delineated on pages
183 and 184. For the given parameters, determine if Bob should accept the
signature as valid.

4.34. for p = 641, α = 3, y = 88, β = 480, and γ = 532, so Alice sends, m = 121
and sigk(m, r) = (β, γ) = (480, 532).

4.35. for p = 3023, α = 5, y = 2391, β = 335, and γ = 2367, so Alice sends,
m = 203 and sigk(m, r) = (β, γ) = (335, 2367).

4.36. for p = 5023, α = 3, y = 3796, β = 2294, and γ = 3740, so Alice sends,
m = 444 and sigk(m, r) = (β, γ) = (2294, 3740).

4.37. for p = 7481, α = 6, y = 5979, β = 1723, and γ = 7045, so Alice sends,
m = 487 and sigk(m, r) = (β, γ) = (1723, 7045).

© 2007 by Taylor & Francis Group, LLC

4.5. DSA — The DSS 187

4.5 DSA — The DSS

We close this chapter with a description and discussion of the first Digital
Signature Standard recognized by any government. In the 1990’s, NIST pro-
posed the Digital Signature Standard (DSS). Although this evolved into a new
standard in the twenty-first century, for simplicity we present the original stan-
dard here (see [33] for the current DSS, which uses key sizes of 1024 bits or
more).

� Digital Signature Algorithm (DSA — the DSS)

Setup Stage:
1. Alice selects a prime q with 160 bits. Then she selects a prime p with

bitlength a multiple of 64 between 512 and 1024, satisfying the property
that q divides p − 1.

2. She chooses an α ∈ F∗
p of order q modulo p. This can be done, for instance,

by selecting a primitive root a modulo p and setting α ≡ a(p−1)/q (mod p).

3. A cryptographic hash function h : F∗
q �→ B160 (bitstrings of length 160) is

selected. She chooses a private key e ∈ N such that e < q and computes
β ≡ αe (mod p).

4. She publishes (p, q, α, β) and keeps private her key e.

Signing Stage: Alice performs the following in order to sign a message
m ∈ F∗

q . In what follows, we will assume that any powers of α or β have been
reduced modulo p before being used in any congruence modulo q:

1. Select a random r ∈ N such that r ≤ q − 1.

2. Compute γ ≡ αr (mod q).

3. Compute σ ≡ r−1(h(m) + eγ) (mod q).

4. Alice sends m and sigk(m, r) = (γ, σ) to Bob.

Verification Stage: Bob executes the following steps:

1. Obtain Alice’s public data (p, q, α, β).

2. Compute δ1 ≡ σ−1h(m) (mod q) and δ2 ≡ σ−1γ (mod q).

3. Compute δ ≡ αδ1βδ2 (mod q).

4. verk(m, (γ, σ)) = 1 if and only if δ ≡ γ (mod q), in which case Bob accepts,
and rejects otherwise.

© 2007 by Taylor & Francis Group, LLC

188 4. Public-Key Cryptography

� Analysis
First we show why, in step 4 of the verification stage, the criterion actually

verifies Alice’s signature. It does so since, first of all,

δ1 + eδ2 ≡ σ−1h(m) + eσ−1γ ≡ σ−1(h(m) + eγ) ≡ r (mod q),

then

γ ≡ (αr (mod p)) ≡ (ασ−1h(m)+eσ−1γ (mod p)) ≡ (αδ1βδ2 (mod p)) ≡ δ (mod q).

Of course, the key e must be kept private or the scheme can be broken, since
anyone in possession of e can sign any data and thereby impersonate Alice.
Moreover, if r is used more than once, e can be recovered by a cryptanalyst
(easily verified, given our many previous related discussions on such matters).

In order to see why the DSA depends upon the DLP for its security, we
look at step 2 of the setup stage. Since the Silver-Pohlig-Hellman attack (see
Appendix E) is useless against large prime factors of p−1, then this is sufficient
to thwart such attacks, and computing r from knowledge of the public γ is
deemed to be computationally infeasible. This is the DLP. Moreover, the reader
may wonder why we did not just choose a primitive root a modulo p rather than

α ≡ a(p−1)/q (mod p).

The reason is that it is a generally held opinion that many pieces of information
about divisors of p − 1 can collectively add up to something useful, so DSA
avoids this potential problem by keeping all congruences as modulo q data in
the signing and verification stages.

An advantage of DSA is that in a precomputation stage the exponentiation
of α can be done offline and need not be part of the signature generation.
Another positive feature is that DSA has relatively short signatures of 320 bits,
so the signing can be done efficiently. Some disadvantages of DSA include the
fact that it cannot be used for key exchange. Moreover, the modulus at a
mere 512 bits can be a drawback for security, so the prime p should actually
be chosen such that 21023 < p < 21024 for long-term security. There is another
potential problem that one would not imagine and is difficult to detect, namely,
the building of a subliminal channel into DSA. This is a method of signing
an innocuous message with subliminal bits hidden in it. This could be as little
as one bit per message or as much as two bytes per message. For the reader
interested in how this is done in detail see [91, pp. 300–301].

DSA evolved into the new Digital Signature Standard in FIPS 186-1 an-
nounced by NIST on December 15, 1998, and this included the RSA digital
signature scheme. On February 15, 2000, NIST announced the approval of
FIPS 186-2, and this included the upgraded Digital Signature Standard (DSS),
the RSA digital signature standard, and the Elliptic Curve Digital Signature
Algorithm (ECDSA).

The governmental plans for DSA are akin to that of the role played by
DES. They include applications such as cash transactions, data exchange, data
storage, electronic mail, and software distribution, to mention a few.

© 2007 by Taylor & Francis Group, LLC

Chapter 5

Primality Testing

5.1 True Primality Tests

On page 7, we informally agreed upon a definition of primality testing. How-
ever, that definition is only one of the types of primality testing, which we now
formalize. The following is distinct from the probabilistic kinds that we will
study in Section 5.2.

Definition 5.1 Primality Proofs
A Primality Proving Algorithm, also known as a True Primality Test, is

a deterministic algorithm (see Biography 1.4 on page 8) that, given an input
n, verifies the hypothesis of a theorem whose conclusion is that n is prime. A
Primality Proof is the computational verification of such a theorem. In this case,
we call n a provable prime — a prime that is verified by a Primality Proving
Algorithm.

The classical example of a True Primality Test is the following. First, recall
that a Mersenne number is one of the form

Mn = 2n − 1.

� Lucas-Lehmer True Primality Test For Mersenne Numbers
The algorithm consists of the following steps performed on an input

Mersenne number Mn = 2n − 1 with n ≥ 3.

(1) Set s1 = 4 and compute sj ≡ s2
j−1 − 2 (mod Mn) for j = 2, . . . , n − 1.

(2) If sn−1 ≡ 0 (mod Mn), then conclude that Mn is prime. Otherwise, con-
clude that Mn is composite.

189
© 2007 by Taylor & Francis Group, LLC

190 5. Primality Testing

Example 5.1 Input M13 = 8191. Then we compute sj , the least nonnegative
residue of sj modulo M13, as follows: s2 = 14, s3 = 194, s4 = 4870, s5 = 3953,
s6 = 5970, s7 = 1857, s8 = 36, s9 = 1294, s10 = 3470, s11 = 128, and s12 = 0.
Thus, M13 is prime by the Lucas-Lehmer Test. (Exercises 5.2– 5.3 on page 197
pertain to the Lucas-Lehmer Test and Mersenne numbers.)

We now look at a primality test on n for which a partial factorization of n−1
needs to be known in order to determine if it is prime — see Biography 5.1 on
the facing page.

Theorem 5.1 Pocklington’s Theorem
Let n = ab + 1 ∈ N with a, b ∈ N, b > 1 and suppose that for every prime

divisor q of b > 1 there exists an integer m such that mn−1 ≡ 1 (mod n) and
gcd(m(n−1)/q − 1, n) = 1. Then p ≡ 1 (mod b) for every prime p

∣∣ n. Further-
more, if b >

√
n − 1, then n is prime.

Proof. Let p
∣∣ n be prime and set c = m(n−1)/qe

where q is a prime and
e ∈ N with qe||b (see Footnote 1.6 on page 49). Therefore, since

gcd(m(n−1)/q − 1, n) = 1,

then cqe ≡ 1 (mod p), but cqe−1 �≡ 1 (mod p). Thus, ordp(c) = qe, so qe divides
(p − 1) by Proposition 1.5 on page 44. Since q was arbitrarily chosen, then p ≡ 1
(mod b). For the last assertion of the theorem, assume that b >

√
n − 1 and

that n is composite. Let p be the smallest prime dividing n. Then p ≤ √
n, so√

n ≥ p > b ≥ √
n, a contradiction. Hence, n is prime. �

Example 5.2 Suppose that we wish to test n = 54419 for primality using
Pocklington’s Theorem knowing that n − 1 = 2 · 27209, where 27209 is prime,
and if b = 27209 = q, with a = m = 2, then mn−1 = 2n−1 ≡ 1 (mod n) but
gcd(m(n−1)/q −1, n) = gcd(3, 54419) = 1, so n is prime. (See Exercises 5.4–5.5.)

Another figure involved in the development of primality testing was Proth
— see Biography 5.2 on page 192.

Theorem 5.2 Proth’s Theorem
Let k, t ∈ N with t odd and 2k > t. Then n = 2kt + 1 is prime if and only if

c(n−1)/2 ≡ −1 (mod n), where c is a quadratic nonresidue modulo n.

Proof. If n is prime, then by Euler’s Criterion given in Theorem 1.21 on
page 53

c(n−1)/2 ≡ −1 (mod n).

Conversely, we may invoke Theorem 5.1 with a = t, b = 2k and m = c to
conclude that if

c(n−1)/2 ≡ −1 (mod n),

then n is prime. �

© 2007 by Taylor & Francis Group, LLC

5.1. True Primality Tests 191

Example 5.3 Suppose that we wish to use Proth’s Primality Test on n = 7681.
Since n = 7681 = 29 · 15 + 1 and 2

9 = 512 > t = 15, then we have satisfied the
hypothesis of Theorem 5.2. Since 13 is a quadratic nonresidue modulo n, and
133840 = 13(n−1)/2 ≡ −1 (mod n), then n is prime. See Exercises 5.6– 5.7 on
page 197.

The next result involves Fermat numbers, which we introduced in Exer-
cise 1.90 on page 41.

Theorem 5.3 Pepin’s Primality Test

For n ∈ N, Fn = 22n

+ 1 is prime if and only if 5(Fn −1)/2 ≡ −1 (mod Fn).

Biography 5.1 Henry Cabourn Pock-
lington (1870–1952) worked mainly in
physics, the discoveries in which got him
elected as a Fellow of the Royal Society.
His professional career was spent as a
physics teacher at Leeds Central Higher
Grade School in England up to his re-
tirement in 1926. Nevertheless, his six
papers in number theory were practical
and innovative. See [81] for more detail.
As the proof of Theorem 5.2 shows,
Pocklington’s result is more general. In
fact, it turns out that it was Pockling-
ton who generalized Proth’s result, but
he did so without being aware of Proth’s
work. Thus, one may say that Pockling-
ton was an enlightened amateur who was
not aware of the history of number the-
ory that was, after all, merely a hobby
for him.

Proof. Using Proth’s Theorem
with t = 1, the result will follow if
we can show that 5 is a quadratic
nonresidue modulo Fn for any n ≥ 2.
By a simple induction argument one
may verify that 22n ≡ 1 (mod 5) for
all n ≥ 2. Thus, Fn ≡ 2 (mod 5)
for any n ≥ 2. Hence, using the
Quadratic Reciprocity Law, Theo-
rem 1.23 on page 61, we have the
Legendre Symbol equality,

(
5
Fn

)
=

(
Fn

5

)
=

(
2
5

)
= −1,

where the last equality comes from
Proposition 1.8 on page 63. �

Example 5.4 F4 = 65537 is prime
since

5(F4 −1)/2 = 532768 ≡ −1 (mod F4).

Remark 5.1 Pepin’s Test was gen-
eralized by Hurwitz [42] in 1896 and
by Carmichael [14] in 1913 as follows. If r ∈ N and Φr(x) is the rth cyclo-
tomic polynomial, then r is prime if and only if there exists an s ∈ N such that
Φr−1(s) ≡ 0 (mod r). Pepin’s Test is the special case where r = Fn and

Φr−1(x) ≡ x(Fn −1)/2 + 1 ≡ 0 (mod Fn).

See [62, Exercise 2.23, p. 87].

We now engage in a discussion of what unifies the algorithms presented in
this section, and what contrasts them. The Lucas-Lehmer Primality Test for

© 2007 by Taylor & Francis Group, LLC

192 5. Primality Testing

Mersenne numbers, Pepin’s Primality Test, and Proth’s Test are all polynomial-
time algorithms, which are True Primality Tests. However, they lack generality
since they provide only provable primes for special numbers, namely Mersenne
numbers, Fermat numbers, and numbers of the form 2kt + 1 where 2k > t,
respectively. On the other hand, Pocklington’s Theorem relies on a knowledge
of at least a partial factorization of n − 1. This is also a True Primality Test,
since it produces provable primes. However, since the test requires knowledge
of factorization (and as we have seen there are no known fast factorization
algorithms), then this algorithm does not run in polynomial time . In fact, there
is no such test (requiring a knowledge of factorization) that runs in polynomial
time.

Biography 5.2 François Proth (1852–
1879) was a self-taught farmer who lived
in the village of Vaux devant Damloup
near Verdun, France. The theorem that
we prove here is one of four results, which
he produced, that can be used for primality
testing. Proth probably had proofs of his
results, but he did not produce them. For
more information see [36] and [74].

What underlies the above dis-
cussion is essentially a result, en-
countered on page 36, namely Fer-
mat’s Little Theorem 1.16, which
says that if p is prime then ap−1 ≡
1 (mod p) for all a ∈ Z with
gcd(a, p) = 1. The converse of this
theorem, if it were true, would pro-
vide a simple and fast method for
obtaining provable primes. How-
ever, the converse fails in general
and counterexamples abound. In
fact, it has recently been shown that it fails in the worst possible way, infinitely
often. What we mean by the “worst possible way” is that there exist composite
integers n such that

an−1 ≡ 1 (mod n) for any integers a relatively prime to n, (5.1)

such as n = 561. Composite integers n satisfying (5.1) are called Carmichael
numbers, which we introduced in Exercise 1.103 on page 43. In 1994, it was
proved that there exist infinitely many Carmichael numbers, (see [2]). Never-
theless, one can use the converse of Fermat’s Little Theorem to prove primality
of n if one can find an element of order n−1 in (Z/nZ)∗, namely find a primitive
root modulo n (see Exercises 1.110–1.111 on page 50). Credit for the following
result is essentially due to Lehmer, although seeds of it may be found in the
work of Proth and Lucas. (See Biographies 1.18–1.19.)

Theorem 5.4 Proofs Via the Converse of Fermat’s Little Theorem
If n ∈ N with n ≥ 3, then n is prime if and only if there is an m ∈ N such

that
mn−1 ≡ 1 (mod n),

but
m(n−1)/q �≡ 1 (mod n)

for any prime q
∣∣ (n − 1).

© 2007 by Taylor & Francis Group, LLC

5.1. True Primality Tests 193

Proof. If n is prime, then the result follows from Exercise 1.110 on page 50
and Fermat’s Little Theorem 1.16 on page 36. Conversely, let n = ab+1. Then
one of a or b is bigger than

√
n − 1, since otherwise,

n = ab + 1 ≤ (
√

n − 1)2 + 1 = n − 2
√

n + 2,

which implies that
√

n ≤ 1, so n = 1, a contradiction. Hence, we may assume
without loss of generality that b >

√
n − 1, and the result now follows from

Pocklington’s Theorem 5.1 on page 190. �

The following is a variation of Theorem 5.4 given by Brillhart and Selfridge
in [10]. (See Exercises 5.11–5.12.)

Corollary 5.1 n ∈ N with n ≥ 3 is prime if and only if, for each prime q
dividing n − 1, there exists an integer mq such that

mn−1
q ≡ 1 (mod n)

and
m(n−1)/q

q �≡ 1 (mod n).

Proof. If n is prime, then by Theorem 5.4 we have the result with m = mq

for all q|(n − 1). Conversely, if such mq exist, then by the Chinese Remainder
Theorem we may find a solution x = m to the system of congruences

x ≡ mq (mod qe)

for all primes q such that
qe||(n − 1).

Thus, the result now follows from Theorem 5.4. �

Of course, the major pitfall with Theorem 5.4 is that it requires a knowledge
of the factorization of n − 1. However, as we have seen with the algorithms in
this section, it works well with special numbers such as the Fermat numbers to
which Pepin’s Test applies. Also, one can get a test with knowledge of only a
partial factorization as in Pocklington’s Theorem. In the next section, we will
see how probabilistic methods are used in an effort to approach primality testing
using the converse of Fermat’s Little Theorem as enunciated in Theorem 5.4.

The preceding discussion shows us that the True Primality Tests, that are
based upon Theorem 5.4, are broken down into two distinct categories — those
that sacrifice speed and those that sacrifice generality. In the next section,
which deals with “Probabilistic Primality Tests,” we will see that both speed
and generality are maintained, but correctness, obtaining provable primes, is
sacrificed. Thus, in each type of primality test, exactly one of the following
properties is sacrificed: speed, correctness, or generality.

We conclude this section with a discussion of a relatively recent result that
provides an unconditional algorithm for primality testing.

© 2007 by Taylor & Francis Group, LLC

194 5. Primality Testing

� Primes is in P
The following is an unconditional deterministic polynomial-time algorithm

for primality testing presented in [1] by M. Agrawal, N. Kayal, and N. Saxena.
For notation in what follows, see Definition 1.12 on page 37 and Definition 1.14
on page 44, as well as results on polynomial rings especially as they pertain to
finite fields on pages 311–316.

In what follows, Zn for a given integer n > 1 denotes Z/nZ, and if h(X) ∈
Zn[X], then the notation,

f(X) ≡ g(X) (mod h(X), n)),

is used to represent the equation f(X) = g(X) in the quotient ring
Zn[X]/(h(X)). In particular, for suitably chosen r and a, values, we will be
looking at equations of the following type:

(X + a)n ≡ Xn + a (mod Xr − 1, n). (5.2)

Algorithm 5.1 —
Unconditional Deterministic Polynomial-Time Primality Test

Input an integer n > 1, and execute the following steps.

1. If n = ab for some a ∈ N and b > 1, then terminate with output “n is
composite.”

2. Find the smallest r ∈ N such that ordr(n) > 4 log2
2 n.

3. If 1 < gcd(a, n) < n for some a ≤ r, then output “n is composite.”

4. If n ≤ r, then output “n is prime.”

5. Set a = 1 and execute the following:

(i) Compute Y (a) ≡ (X + a)n − Xn − a (mod Xr − 1, n).

(ii) If Y (a) �≡ 0 (mod Xr − 1, n), output “n is composite.” Otherwise,
go to step (iii).

(iii) If Y (a) ≡ 0 (mod Xr − 1, n), set a = a + 1. If

a < �2
√

φ(r) · log2(n)�,

go to step (i). Otherwise, go to step 6.

6. Output “n is prime.”

� Analysis

The reason the authors of [1] considered equations of type (5.2) was that
they were able to prove the following.

© 2007 by Taylor & Francis Group, LLC

5.1. True Primality Tests 195

Polynomial Primality Criterion

If a ∈ Z, n ∈ N with n > 1, and gcd(a, n) = 1, then n is prime if and only if

(X + a)n ≡ Xn + a (mod n). (5.3)

The satisfaction of polynomial congruence (5.3) is a simple test, but the time
taken to test the congruence is too expensive. To save time, the authors looked
at the congruence modulo a polynomial, whence congruence (5.2). However,
by looking at such congruences, they introduced the possibility that composite
numbers might satisfy (5.2), which indeed they do. Yet, the authors were able
to (nearly) restore the characterization given in the above polynomial primality
criterion by showing that for a suitably chosen r, if (5.2) is satisfied for several
values of a, then n must be a prime power. Since the number of a values and the
suitably chosen r value are bounded by a polynomial in log2(n), they achieved
a deterministic polynomial time algorithm for primality testing.

The authors of [1] were able to to establish the following facts about their
algorithm. The reader will need the concepts of ceiling and floor functions (see
Definition 1.3 on page 2 and Exercise 1.12 on page 4).

Facts Concerning Algorithm 5.1

1. The algorithm outputs “n is prime” if and only if n is prime. (Hence, it
outputs “n is composite” if and only if n is composite.)

2. There exists an r ≤ 	16 log5
2(n)
 such that ordr(n) > 4 log2

2(n).

3. The asymptotic time complexity of the algorithm is O(log10.5+ε
2 (n)) for

any ε > 0.

4. It is conjectured that the time complexity of the algorithm can be im-
proved to the best-case scenario where r = O(log2

2(n)), which would
mean that the complexity of the algorithm would be

O(log6+ε
2 (n)) for any ε > 0.

Two conjectures support the authors’ conjecture in part 4 above. They are
given as follows.

Artin’s Conjecture

If n ∈ N is not a perfect square, then the number of primes q ≤ m for which
ordq(n) = q − 1 is asymptotically A(n) · m/ ln(m), where A(n) is Artin’s
constant given by

A(n) =
∞∏

j=1

(
1 − 1

pk(pk − 1)

)
= 0.3739558136 . . . ,

with pk being the kth prime.

© 2007 by Taylor & Francis Group, LLC

196 5. Primality Testing

If Artin’s conjecture becomes effective for

m = O(log2
2(n)),

then it follows that there is an

r = O(log2
2(n))

with the desired properties.
The other conjecture that supports their contention is given as follows.

Sophie Germain’s Prime Density Conjecture

The number of primes q ≤ m such that 2q +1 is also a prime (called a Sophie
Germain prime) is asymptotically

2C2m/ ln2(m),

where C2 is the twin prime constant given by

C2 =
∏
p≥3

p(p − 2)
(p − 1)2

≈ 0.6601611816

If the Sophie Germain conjecture holds, then

r = O(log2+ε
2 (n)) for any ε > 0 such that ordr(n) ≥ 4 log2

2(n).

Hence, the algorithm, with this r value, yields a time complexity of:

O(log6+ε
2 (n)) for any ε > 0.

The authors of [1] leave one more conjecture, the affirmative solution of
which would improve the complexity of algorithm 5.1 to O(log3+ε

2 (n)) for any
ε > 0.

Conjecture 5.1 If r is a prime not dividing n > 1 and if

(X − 1)n ≡ Xn − 1 (mod Xr − 1, n),

then either n is prime or n2 ≡ 1 (mod r).

The result given in Algorithm 5.1 is a major breakthrough, and the simplicity
of the approach is even more noteworthy given the attempts at finding such an
algorithm through much more difficult techniques such as those discussed in
the previous section. The algorithm uses essentially only elementary properties
of polynomial rings over finite fields and a generalization of Fermat’s Little
Theorem in that context — quite impressive indeed.

© 2007 by Taylor & Francis Group, LLC

5.1. True Primality Tests 197

Exercises

5.1. Let R be a commutative ring with identity containing Z/mZ as a subring�
for a given fixed m ∈ N and assume that there is an α ∈ R such that
αs = 1 but for all primes p

∣∣ s, αs/p − 1 is a unit in R, namely it is
invertible in R. Prove that if there exists a k ∈ N such that f(x) =∏k−1

j=0 (x − αmj

) ∈ (Z/mZ)[x], then for any r
∣∣ s, there exists a j ≥ 0 such

that r ≡ mj (mod s).

5.2. Let Mn = 2n − 1 with n ≥ 3 odd. Prove that Mn is prime if and only if�
Mn

∣∣ sn−1, where sn−1 is defined in the Lucas-Lehmer Algorithm given
on page 189.

5.3. Prove that all Mersenne numbers Mp are relatively prime for distinct
primes p.

5.4. Use Pocklington’s Theorem to test n = 104759 for primality, knowing that
the prime q = 52379 divides (n − 1).

5.5. Test n = 105817 for primality using Pocklington’s Theorem if you know
that the prime q = 4409 divides n − 1.

5.6. Use Proth’s Theorem to test n = 13313 for primality.

5.7. Test n = 40961 for primality using Proth’s Theorem.

5.8. Use Theorem 5.4 on page 192 to verify that n = 16487 is prime.

5.9. Use Theorem 5.4 on page 192 to verify that n = 16547 is prime.

5.10. Given n ∈ N, set (n − 1)! = q(n)n(n − 1)/2 + r(n), where q(n), r(n) ∈ N
with 0 ≤ r(n) < n(n − 1)/2. In other words, r(n) is the remainder after
dividing (n − 1)! by n(n − 1)/2. Prove that

{r(n) + 1 : r(n) > 0} = {p : p > 2 is prime}.

(Hint: Use Wilson’s Primality Test, which says that n ∈ N is prime if
and only if (n − 1)! ≡ −1 (mod n).) This result was first proved by J. de
Barinaga in 1912 (see [23, p. 428]).

5.11. Use Corollary 5.1 on page 193 to prove that n = 8273 is prime by finding
and testing mq for each prime q dividing n − 1.

5.12. Perform the same task as in Exercise 5.11 for n = 9907.

5.13. Let n ∈ N and assume that an−1 ≡ 1 (mod n) for all a ∈ (Z/nZ)∗ with
gcd(a, n) = 1. Prove that n is squarefree.

© 2007 by Taylor & Francis Group, LLC

198 5. Primality Testing

5.2 Probabilistic Primality Tests

The primality tests in this section will be based upon randomized algorithms,
namely those that make random decisions at certain points in the execution, so
that the execution paths may differ each time the algorithm is invoked with the
same input. This is in contrast to the primality tests in the previous section
that were essentially based upon deterministic algorithms.

Employing probabilistic tests for primality, it is a basic tool to use Fermat’s
Little Theorem 1.16 on page 36 to rule out composites. For instance, if n = 377,
then 2376 ≡ 94 �≡ 1 (mod 377), so by Fermat’s theorem, n = 377 is not prime.
Indeed, 377 = 13 · 29. Notice that we did not have to factor n to determine
this. In general, it is easier to prove compositeness than to actually factor the
number. The following makes use of these facts. This is the most widely used
of the probabilistic tests, so we focus solely upon it here as a highlight of such
tests. The following presentation is adapted from [63]. This test is most often
called the Miller-Rabin Test in the literature — see Biographies 5.4 on page 200
and 5.5 on page 201. However, John Selfridge was using the test in 1974 before
Miller first published the result, so we credit Selfridge here with this recognition
— see Biography 5.3 on page 200.

� The Miller-Selfridge-Rabin (MSR) Primality Test

Let n− 1 = 2tm where m ∈ N is odd and t ∈ N. The value n is the input to
be tested by executing the following steps, where all modular exponentiations
are done using the repeated squaring method described on page 31.
(1) Choose a random integer a with 2 ≤ a ≤ n − 2.

(2) Compute
x0 ≡ am (mod n).

If
x0 ≡ ±1 (mod n),

then terminate the algorithm with

“n is probably prime.”

If x0 �≡ ±1 (mod n) and t = 1, terminate the algorithm with

“n is definitely composite.”

Otherwise, set j = 1 and go to step (3).

(3) Compute
xj ≡ a2jm (mod n).

If xj ≡ 1 (mod n), then terminate the algorithm with

“n is definitely composite.”

© 2007 by Taylor & Francis Group, LLC

5.2. Probabilistic Primality Tests 199

If xj ≡ −1 (mod n), terminate the algorithm with

“n is probably prime.”

Otherwise set j = j + 1 and go to step (4).

(4) If j = t − 1, then go to step (5). Otherwise, go to step (3).

(5) Compute
xt−1 ≡ a2t−1m (mod n).

If xt−1 �≡ −1 (mod n), then terminate the algorithm with

“n is definitely composite.”

If xt−1 ≡ −1 (mod n), then terminate the algorithm with

“n is probably prime.”

Example 5.5 Consider n = 1729. Since n−1 = 26 ·27, then t = 6 and m = 27.
Select a = 2. Then

x0 ≡ 227 ≡ 645 (mod n),

so we set j = 1 and compute

x1 ≡ 22·27 ≡ 1065 (mod n),

so we set j = 2 and compute

x2 ≡ 24·27 ≡ 1 (mod n).

Thus, by step (3) of the MSR test we may conclude that n is definitely composite.
This value of n = 1729 = 7 · 13 · 19 is an example of a Carmichael number
introduced in Exercise 1.103 on page 43.

Remark 5.2 If n is composite but declared to be “probably prime” with base a
by the Miller-Selfridge-Rabin test, then

n is said to be a strong pseudoprime to base a.

Thus, the above test is often called the strong pseudoprime test in the literature.
Strong pseudoprimes to base a are much sparser than composite n for which
an−1 ≡ 1 (mod n), called pseudoprimes to base a. An instance of the latter
that is not an example of the former is given in Example 5.5, since n = 1729
is a pseudoprime to base 2 or, indeed to any base, since it is a Carmichael
number but as the example demonstrates is not a strong pseudoprime to base

© 2007 by Taylor & Francis Group, LLC

200 5. Primality Testing

2. Carmichael numbers are also called absolute pseudoprimes, since they are
pseudoprimes to any base (including those bases a for which gcd(a, n) > 1).

Although strong pseudoprimes are known to be sparser than pseudoprimes,
it is also known that for any set S of bases there exist infinitely many integers
that are strong pseudoprimes for all elements in S. It is also known that the
smallest strong pseudoprime for S = {2, 3, 5, 7} is

n = 3215031751.

This fact was first published in [72].

� Analysis

Let us look a little closer at the Miller-Selfridge-Rabin test to see why it it is
possible to declare that “n is definitely composite” in step (3). If x ≡ 1 (mod n)
in step (3), then for some j with 1 ≤ j < t − 1:

a2jm ≡ 1 (mod n), but a2j−1m �≡ ±1 (mod n).

Thus, it can be shown that gcd(a2j−1m − 1, n) is a nontrivial factor of n.
Hence, if the Miller-Selfridge-Rabin test declares in step (3) that “n is definitely
composite,” then indeed it is. Another way of saying this is that if n is prime,
then Miller-Selfridge-Rabin will declare it to be so. However, if n is compos-
ite, then it can be shown that the test fails to recognize n as composite with
probability at most (1/4).

Biography 5.3 John Selfridge was born in Ketchican, Alaska, on February
17, 1927. He received his doctorate from U.C.L.A. in August of 1958, and
became a professor at Pennsylvania State University six years later. He is a
pioneer in computational number theory. The term “strong pseudoprime” was
introduced by Selfridge in the mid-1970’s, but he did not publish this reference.
However, it did appear in a paper by Williams [94] in 1978.

Biography 5.4 Gary Miller ob-
tained his Ph.D. in computer science
from U.C. Berkeley in 1974. He
is currently a professor in computer
science at Carnegie-Mellon Univer-
sity. His expertise lies in computer
algorithms.

This is why the most we can say is
that “n is probably prime.” However, if
we perform the test r times for r large
enough, this probability (1/4)r can be
brought arbitrarily close to zero. More-
over, at least in practice, using the test
with a single choice of a base a is usually
sufficient.

Also, in step (5), notice that we have
not mentioned the possibility that

a2t−1m ≡ 1 (mod n)

© 2007 by Taylor & Francis Group, LLC

5.2. Probabilistic Primality Tests 201

specifically. However, if this did occur, then that means that in step (3), we
would have determined that

a2t−2m �≡ ±1 (mod n),

from which it follows that n cannot be prime. Furthermore, by the above
method, we can factor n since gcd(a2t−2m − 1, n) is a nontrivial factor. This
final step (4) is required since, if we get to j = t − 1, with x �≡ ±1 (mod n) for
any j < t − 1, then simply invoking step (3) again would dismiss those values
of x �≡ ±1 (mod n), and this would not allow us to claim that n is composite in
those cases. Hence, it allows for more values of n to be deemed composite, with
certainty, than if we merely performed step (3) as with previous values of j.

Biography 5.5 Michael Rabin (1931–) was born in Breslau, Germany (now
Wroclaw, Poland), in 1931. In 1956, he obtained his Ph.D. from Princeton
University where he later taught. In 1958, he moved to the Hebrew University
in Jerusalem. He is known for his seminal work in establishing a rigorous
mathematical foundation for finite automata theory. For such achievements,
he was co-recipient of the 1976 Turing award, along with Dana S. Scott. He
now divides his time between positions at Harvard and the Hebrew University
in Jerusalem.

� Relationship to RSA and Factoring

On page 174 we discussed the ease of factoring an RSA modulus n = pq
when the primes p and q are close together, in the sense defined there. What is
implicit in that discussion is the following.

If we have an n ∈ N such that

x2 ≡ y2 (mod n) with x �≡ ±y (mod n) for some x, y ∈ Z, (5.4)

then n is necessarily composite since gcd(x − y, n) provides a nontrivial factor
of n. This idea was known to Fermat who, in 1643, developed a method of
factoring based upon the following observation.

If n = rs is an odd natural number with 1 < r <
√

n, then

n = a2 − b2 where a = (r + s)/2 and b = (s − r)/2.

Thus, in order to find a factor of n, we need only look at values x = y2 − n for

y = �√n� + 1, �√n� + 2, . . . , (n − 1)/2

until a perfect square is found. This is called Fermat’s difference of squares
method. (In Chapter 6 we will look at factoring methods in detail.)

Fermat’s method is contained within the MSR test as a fundamental prin-
ciple. To illustrate this fact, consider Example 5.5 on page 199 with

x2 ≡ x2
1 ≡ 1 (mod 1729).

© 2007 by Taylor & Francis Group, LLC

202 5. Primality Testing

Here gcd(x1 − 1, 1729) = 133 = 7 · 19 is a nontrivial factor of n and 1729 =
7 · 13 · 19 = 133 · 13.

� How Pseudoprimes Pass MSR

We have mentioned that strong pseudoprimes are necessarily less likely to
occur than pseudoprimes. We have illustrated the MSR test on pseudoprimes
above, and now we compare and contrast with an example of a strong pseu-
doprime and explanation of the mechanism by which it escapes detection via
MSR.

Consider n = 1373653 and a = 2. Since n − 1 = 22 · 343413 = 2t · m, then

x0 ≡ 2m ≡ 890592 (mod n) and x1 = xt−1 ≡ 22m ≡ −1 (mod n),

then by step (3) of MSR, we declare that n is probably prime. However, the
prime decomposition is n = 829 · 1657. Hence, n is a strong pseudoprime. Now,
we look at how this occurs in more detail.

From the above, we have that x0 ≡ −1 (mod q) for each of the prime divisors
q of n, and similarly x1 ≡ 1 (mod q) for each such q. In other words, the first
time each of the xi ≡ 1 (mod q) for each prime q dividing n is at i = 1. It is
rare to have the sequences xi (mod q) reach 1 at the same time for each prime
dividing n. As an instance, we look to Example 5.5, which failed to pass the
MSR even though it is an absolute pseudoprime. In that case,

x0 ≡ 1 (mod 7), x0 ≡ 8 (mod 13), x0 ≡ 1 (mod 19);

x1 ≡ 1 (mod 7), x1 ≡ −1 (mod 13), x1 ≡ 12 (mod 19);

x2 ≡ 1 (mod 7), x2 ≡ 1 (mod 13), x2 ≡ 1 (mod 19).

Notice: the first time xi ≡ 1 (mod 7) is for i = 0, the first time xi ≡ 1 (mod 13)
is for i = 2, and the first time xi ≡ 1 (mod 19) is for i = 0. Hence, they do not
all reach 1 at the same time. The scarcity of this phenomenon points to the
effectiveness of the MSR test.

� Concluding Comments

The Miller-Selfridge-Rabin test is an example of a Monte Carlo algorithm,
meaning a probabilistic algorithm that achieves a correct answer more than 50%
of the time. More specifically, Miller-Selfridge-Rabin is a Monte Carlo algorithm
for compositeness, since it provides a proof that a given input is composite but
provides only some probabilistic evidence of primality. Furthermore, Miller-
Selfridge-Rabin is a yes-biased Monte Carlo algorithm, meaning that a “yes”
answer is always correct but a “no” answer may be incorrect. In this case,
the answer is to the decision problem — (see page 71): “Is n composite?” A
yes-biased Monte Carlo algorithm is said to have error probability α ∈ R+ with
0 ≤ α < 1, provided that for any occurrence in which the answer is “yes”
the algorithm will give the incorrect answer “no” with probability at most α,
where the probability is computed over all possible random choices made by the
algorithm for a given input. Therefore, the Miller-Selfridge-Rabin algorithm is

© 2007 by Taylor & Francis Group, LLC

5.2. Probabilistic Primality Tests 203

a yes-biased Monte Carlo algorithm for the decision problem “Is n composite?”
with error probability α = (1/4)r.

There are many related algorithms that we have not discussed here, such
as the Solovay-Strassen test, because the Miller-Selfridge-Rabin test is com-
putationally less expensive, easier to implement, and at least as correct. For
information on such tests, the reader may consult [63, pp. 84–86], for instance.

Exercises

5.14. Let n = 1 + ptm, p an odd prime, t, m ∈ N, and suppose that there exists
an a ∈ Z such that

an−1 ≡ 1 (mod n).

Prove that if q
∣∣ n is prime, then either

a(n−1)/p ≡ 1 (mod q)

or
q ≡ 1 (mod pt).

5.15. Use the MSR algorithm to test n = 7331 for primality with a = 2.

5.16. With input parameter a = 3, test n = 9377 for primality using the MSR
algorithm.

5.17. Use the MSR test for n = 2152302898747 with a = 5.
(Hint: Use the repeated squaring method, displayed on page 31, since even
with mathematical software packages a single exponentiation will likely
cause overflow. A similar comment holds for Exercise 5.18.)

5.18. Employ the MSR test for n = 3474749660383 with a = 7.

5.19. Prove that if n ∈ N such that 2n ≡ 1 (mod n), then n = 1.

5.20. Given D,n, k ∈ N such that gcd(n, D) = 1, with n odd having canonical
prime factorization

n =
k∏

j=1

p
aj

j ,

define

ψD(n) =
1

2k−1

k∏
j=1

p
aj−1
j

(
pj −

(
D

pj

))
,

where the symbol on the right is the Legendre Symbol. Prove that n is
prime if and only if

ψD(n) = n − (D/n).

5.21. With reference to Exercise 5.20, prove that if n is odd and

(n − (D/n))
∣∣ ψD(n),

then n is prime.

© 2007 by Taylor & Francis Group, LLC

204 5. Primality Testing

5.3 Recognizing Primes

In Exercise 4.13 on page 171, we introduced safe primes, namely those primes
p, those for which (p − 1)/2 is also prime. Safe primes are also important in
selecting an RSA modulus n = pq because if p and q are safe primes, then
RSA is not vulnerable to p − 1 and p + 1 factoring methods, which we will
discuss in Chapter 6. In general, having safe primes in the modulus makes it
more difficult to factor. However, finding such primes is also more difficult. We
present the following algorithm for so doing, which is taken from [63]. First we
need the following concept. If B ∈ N, then a number n ∈ N is said to be a
B-smooth number if all primes dividing n are no larger than B, and B is called
a smoothness bound.

� Algorithm for Generating (Probable) Safe Primes

Let b be the input bitlength of the required prime. Execute the following.
(1) Select a (b− 1)-bit odd random n ∈ N and a smoothness bound B (deter-

mined experimentally).

(2) Trial divide n by primes p ≤ B. If n is divisible by any such p, go to step
(1). Otherwise, go to step (3).

(3) Use the Miller-Selfridge-Rabin test on page 198 to test n for primality. If
it declares that “n is probably prime,” then go to step (4). Otherwise, go
to step (1).

(4) Compute 2n + 1 = q and use the Miller-Selfridge-Rabin test on q. If it
declares q to be a probable prime, terminate the algorithm with q as a
“probable safe prime”. Otherwise go to step (1).

There are primes that have even more constraints to ensure security of the
RSA modulus. They are given as follows, which is taken from [64].

Definition 5.2 Strong Primes

A prime p is called a strong prime if each of the following hold.

(1) p − 1 has a large prime factor q.

(2) p + 1 has a large prime factor r.

(3) q − 1 has a large prime factor s.

The following algorithm was introduced in [39].

� Gordon’s Algorithm for Generating (Probable) Strong Primes

(1) Generate two large (probable) primes r �= s of roughly equal bitlength
using the MRS test described on pages 198–199.

© 2007 by Taylor & Francis Group, LLC

5.3. Recognizing Primes 205

(2) Select the first prime in the sequence {2js + 1}j∈N, and let

q = 2js + 1

be that prime.

(3) Compute
p0 ≡ rq−1 − qr−1 (mod rq).

(4) Find the first prime in the sequence {p0 + 2iqr}i∈N, and let

p = p0 + 2iqr

be that prime, which is a strong prime.

Although it is possible to generate primes that are both safe and strong,
the algorithms are not as efficient as Gordon’s algorithm. Furthermore, choos-
ing random primes large enough will generally thwart direct factoring attacks.
The following, also taken from [63], provides a mechanism for generating large
random primes.

� Large (Probable) Prime Generation

We let b be the input bitlength of the desired prime and let B be the input
smoothness bound (empirically determined). Execute the following steps.

(1) Randomly generate an odd b-bit integer n.

(2) Use trial division to test for divisibility of n by all odd primes no bigger
than B. If n is so divisible, go to step (1). Otherwise go to step (3).

(3) Use the MSR test n for primality. If it is declared to be a probable prime,
then output n as such. Otherwise, go to step (1).

� Large (Provable) Prime Generation

Begin with a prime p1, and execute the following steps until you have a
prime of the desired size. Initialize the variable counter j = 1.

(1) Randomly generate a small odd integer m and form n = 2mpj + 1.

(2) If 2n−1 �≡ 1 (mod n), then go to step (1). Otherwise, go to step (3).

(3) Using the primality test on page 192, with prime bases 2 ≤ a ≤ 23, if for
any such a,

a(n−1)/p �≡ 1 (mod n)

for any prime p dividing n − 1, then n is prime. If n is large enough,
terminate the algorithm with output n as the provable prime. Otherwise,
set n = pj+1, j = j + 1, and go to step (1). If the test fails go to step (1).

© 2007 by Taylor & Francis Group, LLC

206 5. Primality Testing

Note that since we have a known factorization of n−1 in the above algorithm,
and a small value of m to check, then the test is simple and efficient.

Exercises

5.22. Prove that if n is a Carmichael number, introduced in Exercise 1.103 on
page 43, then n is squarefree.

5.23. Given n ∈ N, prove that the following are equivalent.

(a) an ≡ a (mod n) for all a ∈ Z.
(b) an−1 ≡ 1 (mod n) for all a ∈ Z such that gcd(a, n) = 1.
(c) n is squarefree and (p − 1)

∣∣ (n − 1) for all primes p dividing n.

(These equivalent conditions are known as Korselt’s criterion discovered
in 1899.)

5.24. Prove that the prime p output by Gordon’s algorithm is indeed a strong
prime.

5.25. Suppose that we obtain two strong primes p and q using Gordon’s algo-
rithm on page 204. Also, we set

n = pq, n′ = (p − 1)(q − 1)/4,

and choose a random integer e such that

gcd(e, n′) = 1, (p − 1) � (e − 1), (q − 1) � (e − 1).

Show how to set up an RSA cryptosystem with public enciphering key e
and RSA modulus n.

5.26. An odd integer n > 2 is called an Euler probable prime to base a if

a(n−1)/2 ≡
(a

n

)
(mod n) and gcd(a, n) = 1,

where the symbol on the right of the congruence is the Jacobi symbol
(see page 62). A composite probable prime to base a is called an Euler
pseuoprime to base a.

Solve each of the following

(a) Prove that if n is an Euler probable prime, then n is a probable prime
to base a.

(b) Prove that if n ≡ 3 (mod 4) is an Euler pseudoprime to base a, then
n is a strong pseudoprime to base a.

(c) Prove that if n is an Euler pseudoprime to base a and
(

a
n

)
= −1,

then n is a strong pseudoprime to base a.

5.27. Prove that if n is a strong pseudoprime to base a, then n is a strong
pseudoprime to base a2j+1 for any j ∈ N.

© 2007 by Taylor & Francis Group, LLC

Chapter 6

Factoring

6.1 Classical Factorization Methods

Given the importance of factoring in the security of RSA and other cryp-
tosystems, it is worth our having a closer look at the issue to which we devote
this chapter. We first look at the following basic building block.

� The Integer Factoring Problem — (IFP)

Given n ∈ N, find primes pj for j = 1, 2, . . . , r ∈ N with p1 < p2 < · · · < pn

and ej ∈ N for j = 1, 2, . . . , r, such that

n =
r∏

j=1

p
ej

j .

A simpler problem than the IFP is the notion of splitting of n ∈ N, which
means the finding of factors r, s ∈ N such that 1 < r ≤ s such that n = rs. Of
course, with an RSA modulus, splitting and the IFP are the same thing. Yet, in
order to solve the IFP for any integer, one merely splits n, then splits n/r and
s if they are both composite, and so on until we have a complete factorization.

Now we discuss some older methods that still have relevance for the methods
of today.

Trial Division The oldest method of splitting n is trial division, by which
we mean dividing n by all primes up to

√
n. For n < 108, or within that neigh-

bourhood, this is not an unreasonable method in our computer-savvy world.
However, for larger integers, we need more elaborate methods.

Fermat Factoring On page 201, we discussed Fermat’s method for fac-
toring, which we called his difference of squares method. Although the order
of magnitude (see page 67) of Fermat factoring can be shown to be O(n1/2),
Lehman has shown how to reduce the complexity to O(n1/3) when combined

207
© 2007 by Taylor & Francis Group, LLC

208 6. Factoring

with trial division. This is all contained in [49], complete with a computer pro-
gram. There is also a method, from D.H. Lehmer, for speeding up the Fermat
method when all factors are of the form 2k� + 1 (see [10]).

Euler’s Factoring Method This method applies only to integers of the
form

n = x2 + ay2 = z2 + aw2,

where x �= z and y �= w. In other words, n can be written in two distinct ways
in this special form for a given nonzero value of a ∈ Z. Then

(xw)2 ≡ (n − ay2)w2 ≡ −ay2w2 ≡ (z2 − n)y2 ≡ (zy)2 (mod n),

from which we may have a factor of n, namely, provided that xw �≡ ±zy (mod n).
In this case, the (nontrivial) factors of n are given by gcd(xw ± yz, n).

The Euler method essentially is predicated on the congruence (5.4) on page
201, but unlike the Fermat method, not all integers have even one representation
in the form n = x2 + ay2.

Legendre’s Factoring Method This method is a precursor to what we
know today as continued fraction methods for factorization (see pages 321–324
and Section 6.2). Legendre reasoned in the following fashion. Instead of looking
at congruences of the form (5.4), he looked at those of the form

x2 ≡ ±py2 (mod n) for primes p, (6.1)

since a solution to (6.1) implies that ±p is a quadratic residue of all prime factors
of n. For instance, if the residue is 2, then all prime factors of n are congruent
to ±1 (mod 8) (see part (5) of Theorem 1.24 on page 64). Therefore, he would
have halved the search for factors of n. Legendre applied this method for various
values of p, thereby essentially constructing a quadratic sieve by getting many
residues modulo n. (A sieve may be regarded as any process whereby we find
numbers via searching up to a prescribed bound and eliminate candidates as we
proceed until only the desired solution set remains. A [general] quadratic sieve is
one in which about half of the possible numbers being sieved are removed from
consideration, a technique used for hundreds of years as a scheme for eliminating
impossible cases from consideration.) This allowed him to eliminate potential
prime divisors that sit in various linear sequences, as with the residue 2 example
above. He realized that if he could achieve enough of these, he could eliminate
primes up to

√
n, thereby effectively developing a test for primality.

The linchpin of Legendre’s method is the continued fraction expansion of
√

n
since he was simply finding small residues modulo n. Legendre was essentially
building a sieve on the prime factors of n, which did not let him predict, for a
given prime p, a different residue to yield a square. This meant that if he found
a solution to

x2 ≡ py2 (mod n),

he could not predict a solution,

w2 ≡ pz2 (mod n),

© 2007 by Taylor & Francis Group, LLC

6.1. Classical Factorization Methods 209

distinct from the former. If he had been able to do this, he would have been
able to combine them as

(xw)2 ≡ (pzy)2 (mod n)

and have a factor of n provided that xw �≡ ±pzy (mod n) since we are back to
congruence (5.4).

Gauss invented a method that differed from Legendre’s scheme only in the
approach to finding small quadratic residues of n; but his approach makes it
much more complicated (see [35, Articles 333 and 334, pp. 403–406]).

In the 1920’s, one individual expanded the idea, described above, of at-
tempting to match the primes to create a square. We now look at his important
influence.

Kraitchik’s Factoring Method Maurice Kraitchik (see Biography 6.1 on
the following page) determined that it would suffice to find a multiple of n as
a difference of squares in attempting to factor it. For this purpose, he chose
a polynomial of the form, kn = ax2 ± by2, for some integer k, which allowed
him to gain control over finding two distinct residues at a given prime to form a
square, which Legendre could not do. In other words, Kraitchik used quadratic
polynomials to get the residues, then multiplied them to get squares (not a
square times a small number). Kraitchik developed this method over a period
of more than three decades, a method later exploited by D.H. Lehmer and
R.E. Powers (see [52]). They employed Kraitchik’s technique but obtained their
residues as Legendre had done. Later this was exploited in the development of
an algorithm that systematically extracted the best of the above ideas, which
we will present in the next section.

� The MSR Test and Factoring

When we discussed the MSR probabilistic primality test on pages 198–201,
we saw that we got factors of n whenever n is a pseudoprime to base a but
not a strong pseudoprime to base a, namely when an−1 ≡ 1 (mod n). However,
it is rare that the latter occurs. Suppose, on the other hand, that for a given
modulus n ∈ N there exists an exponent e ∈ N such that xe ≡ 1 (mod n) for all
x ∈ N with gcd(x, n) = 1, where e called a universal exponent. Then it may be
possible to factor n as follows.

� Universal Exponent Factorization Method

Let e be a universal exponent for n ∈ N and set e = 2bm where b ≥ 0 and
m is odd. Execute the following steps.
(1) Choose a random base a such that 1 < a < n − 1. If gcd(a, n) > 1, then

we have a factor of n, and we may terminate the algorithm. Otherwise go
to step (2).

(2) Compute x0 ≡ am (mod n). If x0 ≡ 1 (mod n), then go to step (1).
Otherwise, compute xj ≡ x2

j−1 (mod n) for all j = 1, . . . , b. If

xj ≡ −1 (mod n),

© 2007 by Taylor & Francis Group, LLC

210 6. Factoring

then go to step (1). If xj ≡ 1 (mod n), but xj−1 �≡ ±1 (mod n), then
gcd(xj−1 − 1, n) is a nontrivial factor of n so we may terminate the algo-
rithm.

If one compares the above with the Miller-Selfridge-Rabin probabilistic pri-
mality test, striking similarities will be seen. However, the primality test is not
guaranteed to have a value such that xj ≡ 1 (mod n) as we have in the universal
exponent method (due to the existence of the exponent e).

There is also some relevance of the above to the RSA cipher. When n = pq is
an RSA modulus, a universal exponent is sometimes taken to be lcm(p−1, q−1)
instead of φ(n) = (p− 1)(q − 1). Yet these two values will be roughly the same
since gcd(p−1, q−1) has an expectation of being small when p and q are chosen
arbitrarily. Furthermore, given the RSA encryption exponent e and decryption
exponent d, since de−1 is a multiple of φ(n), then de−1 is a universal exponent,
and the above method can be used to factor n. This is the major value of our
universal exponent test since actually finding e is difficult in practice.

Example 6.1 Given n = 15841, since e = 25 · 405, we choose a = 2 for which
2405 ≡ 1 (mod n). Thus, we go to step (1) and choose another base, a = 3.
We compute x0 ≡ 3405 ≡ 2820 (mod n), then x1 ≡ 28202 ≡ 218 (mod n),
and x2 ≡ 2182 ≡ 1 (mod n). Since we know that x1 �≡ ±1 (mod n), then
gcd(217, 15841) = 217 is a factor of n. Indeed n = 217 · 73.

Biography 6.1 Maurice Borisovich Kraitchik (1882–1957) obtained his
Ph.D. from the University of Brussels in 1923. He worked as an engineer
in Brussels and later as a Director at the Mathematical Sciences section of
the Mathematical Institute for Advanced Studies there. From 1941–1946, he
was Associate Professor at the New School for Social Research in New York.
In 1946, he returned to Belgium, where he died on August 19, 1957. His work
over thirty-five years on factoring methods stands tall today because he devised
and used a variety of practical techniques that are found today in computer
methods such as the Quadratic Sieve (see Section 6.4 on page 217). He is
also the author of the popular book Mathematical Recreations [47] .

Exercises

6.1. Use Euler’s method presented on page 208 to factor 10817 = 252 +13 ·282.

6.2. Use Euler’s method to factor 14417 = 652 + 13 · 282.

6.3. Use Legendre’s method, presented on page 208, to factor −952+17∗242 =
767.

6.4. Use Legendre’s method to factor −652 + 17 · 242 = 5567

6.5. Use the universal exponent method on n = 87611 with e = 43212.

6.6. Use the universal exponent method on n = 104957 employing e = 51918.

© 2007 by Taylor & Francis Group, LLC

6.2. The Continued Fraction Algorithm 211

6.2 The Continued Fraction Algorithm

First we need to define a factor base, which is a set of “small” primes that
remain the primes under consideration for the algorithm at hand.

� The Continued Fraction Algorithm

Suppose that we wish to factor n ∈ N and a smoothness bound B has been
selected — see page 204. Then execute the following steps:
(1) Choose a factor base of primes F = {p1, p2, . . . , pk} for some k ∈ N deter-

mined by B and a large upper index value J .

Note that from knowledge about the distribution of smooth integers close
to

√
n, the optimal k is known to be one that is chosen to be

k ≈
√

exp(
√

log(n) log log(n)). (6.2)

(2) Set Q0 = 1, P0 = 0, A−2 = 0, A−1 = 1, A0 = �√n� = q0 = P1. For
each natural number j ≤ J , recursively compute Qj using the following
formulas:

Qj =
n − P 2

j

Qj−1
,

qj =
⌊

Pj + �√n�
Qj

⌋
,

Aj = qjAj−1 + Aj−2,

Pj+1 = qjQj − Pj ,

and trial divide Qj by the primes in F to determine if Qj is pk-smooth. If
it is, use its factorization

Qj =
k∏

i=1

p
ai,j

i

to form the binary k + 1-tuple,

vj = (v0,j , v1,j , v2,j , . . . , vk,j),

where v0,j is, respectively, 0 or 1 according as j is even or odd, and for
1 ≤ i ≤ k, vi,j is, respectively, 0 or 1 according to whether ai,j is even or
odd. If Qj is not pk-smooth, discard it and return to calculate Qj+1.

(3) For each set S of indices j for the vectors vj constructed in (2), for which
it is discovered that

∑
j∈S

vi,j ≡ 0 (mod 2), 0 ≤ i ≤ k,

© 2007 by Taylor & Francis Group, LLC

212 6. Factoring

we have x2 ≡ y2 (mod n), where

x =

∏

j∈S

(−1)jQj

1/2

and y ≡
∏
j∈S

Aj−1 (mod n).

If x �≡ ±y (mod n), then gcd(x ± y, n) gives a nontrivial factor of n.

By Corollary A.4 on page 324,

A2
j−1 − nB2

j−1 = (−1)jQj ,

which is the essence of the algorithm. Thus, we have that

nB2
j−1 ≡ A2

j−1 (mod p),

for any prime p
∣∣ Qj , so n is a quadratic residue modulo p. Hence, we only put

primes p in the factor base for which n is a quadratic residue modulo p. The
following gives a small illustration of the continued fraction algorithm, called
CFRAC by some users.

Example 6.2 Let n = 5969. A convenient choice for a factor base will be

F = {2, 5, 23, 43, , 71, 103}.

Since �√n� = 77, then we compute the following table (where J = 8).

j Pj qj Aj−1 (−1)jQj vj

0 0 77 1 1 (0, 0, 0, 0, 0, 0, 0)
1 77 3 77 −40 (1, 1, 1, 0, 0, 0, 0)
2 43 1 232 103 (0, 0, 0, 0, 0, 0, 1)
3 60 5 309 −23 (1, 0, 0, 1, 0, 0, 0)
4 55 1 1777 128 (0, 1, 0, 0, 0, 0, 0)
5 73 30 2086 −5 (1, 0, 1, 0, 0, 0, 0)
6 77 19 64357 8 (0, 1, 0, 0, 0, 0, 0)
7 75 3 1224869 −43 (1, 0, 0, 0, 1, 0, 0)
8 54 1 3738964 71 (0, 0, 0, 0, 0, 1, 0)

We have a set S such that
∑
j∈S

vi,j ≡ 0 (mod 2) for each i = 0, 1, . . . , 6.

This set consists of the vectors for j = 4, 6, namely

S = {v4, v6} = {(0, 1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0)}

© 2007 by Taylor & Francis Group, LLC

6.2. The Continued Fraction Algorithm 213

for which we have Q4 = 27, Q6 = 23, A4 = 1777, and A6 = 64357. We compute
∏
j∈S

Aj−1 ≡ 2318 (mod 5969),

and since

y2 =
∏
j∈S

A2
j−1 ≡ 23182 ≡ x2 =

∏
j∈S

Qj = (32)2 (mod n),

then we check gcd(x ± y, n). We compute that both

gcd(x − y, n) = gcd(2318 − 32, 5969) = 127

and
gcd(x + y, n) = gcd(2318 + 32, 5969) = 47.

Thus, we have factored n = 47 · 127.

The CFRAC algorithm was developed by Brillhart and Morrison in the early
1970’s (see [66]). It is widely acclaimed to be the very first efficient general
factorization algorithm put into use. It is subexponential time (see page 69),
which essentially means that if the running time to factor n is na, then a slowly
decreases as n → ∞.

Exercises

Factor each of the integers in Exercises 6.7–6.16 using the continued fraction
algorithm.

6.7. n = 3090847.

6.8. n = 4446833.

6.9. n = 3774403.

6.10. n = 13556087.

6.11. n = 35923031.

6.12. n = 67168841.

6.13. n = 63382447.

6.14. n = 71685749.

6.15. n = 82979779.

6.16. n = 81491677.

© 2007 by Taylor & Francis Group, LLC

214 6. Factoring

6.3 Pollard’s Algorithms

In 1974, Pollard published a factorization scheme (see [70]) that utilizes
Euler’s generalization of Fermat’s Little Theorem (see Theorem 1.18 on page
40). He reasoned that if (p− 1)

∣∣ n where p is prime, then p
∣∣ (tn − 1) provided

that p � t, which follows from Euler’s theorem, so p may be found by employing
Euclid’s algorithm (see Theorem 1.2 on page 3).

� Pollard’s p − 1 Algorithm

Suppose that we wish to factor n ∈ N, and that a smoothness bound B has
been selected (see page 204). Then we execute the following.
(1) Choose a base a ∈ N where 2 ≤ a < n and compute g = gcd(a, n). If

g > 1, then we have a factor of n. Otherwise, go to step (2).

(2) For all primes p ≤ B, compute m =
⌊

ln(n)
ln(p)

⌋
and replace a by apm

(mod n)
using the repeated squaring method given on page 31. (Note that this
iterative procedure ultimately gives a

∏
p≤B pm modulo n for the base a

chosen in (1).)

(3) Compute g = gcd(a − 1, n). If g > 1, then we have a factor of n, and the
algorithm is successful. Otherwise, the algorithm fails.

� Analysis

Let � =
∏t

j=1 p
aj

j , where p
aj

j runs over all prime powers such that pj ≤ B.

Since p
aj

j ≤ n, then aj ln(pj) ≤ ln(n), so aj ≤
⌊

ln(n)
ln(pj)

⌋
. Hence,

� ≤
t∏

j=1

p
�ln(n)/ ln(pj)�
j .

Now, if p
∣∣ n is a prime such that p− 1 is B-smooth, then (p− 1)

∣∣ �. Therefore,
for any a ∈ N with p � a, a� ≡ 1 (mod p), by Fermat’s Little Theorem. Thus, if
g = gcd(a� − 1, n), then p

∣∣ g. If g = n, then the algorithm fails. Otherwise, it
succeeds.

Example 6.3 Let n = 44717, and choose a smoothness bound B = 13, then
select a = 2. We know that a is relatively prime to n so we proceed to step (2).
The table shows the outcome of the calculations for step (2).

p 2 3 5 7 11 13
m 15 9 6 5 4 4
a 2363 11932 38704 35988 10962 4172

Then we go to step (3) and check gcd(a − 1, n) = gcd(4171, 44717) = 97.
Thus, we have factored n = 97 · 461. Observe that p = 97 is B-smooth since
p − 1 = 25 · 3, but q = 461 is not since q − 1 = 22 · 5 · 23.

© 2007 by Taylor & Francis Group, LLC

6.3. Pollard’s Algorithms 215

� Concluding Comments

The running time for Pollard’s p−1 algorithm is O(B ln(n)/ ln(B)) modular
multiplications, assuming that n ∈ N and there exists a prime p

∣∣ n such that
p − 1 is B-smooth. This is of course the drawback to this algorithm, namely,
that it requires n to have a prime factor p such that p−1 has only “small” prime
factors. A generalization of the p−1 method was given by Lenstra using elliptic
curves, which we will study later in the text. In the Elliptic curve algorithm,
which we study in Section 6.5, we will see that success in factoring depends upon
an integer “close” to p having only small prime factors, which is less demanding
than the p − 1 algorithm and therefore more likely to occur.

Pollard also developed another method for factoring in 1975, called the
Monte Carlo factoring method, also known as the Pollard rho method.

� Pollard’s Rho Method

Given n ∈ N composite, and p an (as yet unknown) prime divisor of it,
perform the following steps.

(1) Choose an integral polynomial f with deg(f) ≥ 2—usually f(x) = x2 + 1
is chosen for simplicity.

(2) Choose a randomly generated integer x = x0, the seed, and compute
x1 = f(x0), x2 = f(x1) . . . , xj+1 = f(xj) for j = 0, 1, . . . B, where the
bound B is determined by step (3).

(3) Sieve through all differences xi − xj modulo n until it is determined that

xB �≡ xj (mod n)

but xB ≡ xj (mod p) for some natural number B > j ≥ 1. Then

gcd(xB − xj , n)

is a nontrivial divisor of n.

Example 6.4 If n = 37351, and x0 = 2 is the seed with f(x) = x2 + 1, then
x1 = f(x0) = 5, x2 = f(x1) = 26, x3 = f(x2) = 677, x4 = f(x3) = 3146,
x5 = f(x4) = 36653, and x6 = f(x5) = 1642, where the bar notation denotes
the fact that we have reduced the values to the least residue system modulo
n. We find that all gcd(xi − xj , n) = 1 for i �= j until gcd(x6 − x0, n) =
gcd(1640, 37351) = 41. In fact, 37351 = 41 · 911.

Now we illustrate the reason behind the name Pollard rho method. We take
n = 29 as the modulus and x0 = 2 as the seed, then we proceed through the
Pollard rho method to achieve the Diagram 6.1 on the next page.

© 2007 by Taylor & Francis Group, LLC

216 6. Factoring

Diagram 6.1 Pollard’s Rho Method Illustrated
We take n = 29 as the modulus and x0 = 2 as the seed, then we proceed

through the Pollard rho method to achieve the following diagram.

.

........................

.........................

.........................

.........................

........................

.......................

.......................

........................

.........................
.........................

...
......................

...

.................
.......

..............
.........

............
...........

............
............

...........
...........
...

...........
...........
...

..........
..........
....

..........

..........

....

�x7 ≡ x9 ≡ 7 (mod 29) ← �x8 ≡ 21 (mod 29)
↑
�x6 ≡ 8 (mod 29)
↑
� x5 = 226 ≡ 23 (mod 29)
↑
� x4 = 3146 ≡ 14 (mod 29)
↑
� x3 = 677 ≡ 10 (mod 29)
↑
� x2 = 26
↑
� x1 = 5
↑
� x0 = 2

Diagram 6.1 shows us that when we reach x9, then we are in the period
that takes us back and forth between the residue system of 7 and that of 21
modulo 29. This is the significance of the left pointing arrow from the position
of x8 back to the position of x7, which is the same as the reside system of x9.
This completes the circuit. The shape of the symbol is reminiscent of the Greek
symbol ρ, rho, pronounced row.

Pollard’s two methods above may be invoked when trial division fails to be
useful. However, if the methods of Pollard fail to be useful, which they will for
large prime factors, say, with the number of digits in the high teens, then we
need more powerful machinery. In the next section we look at one of those.

Exercises
Factor each of the integers in Exercises 6.17–6.20 using both of Pollard’s

methods.

6.17. n = 1324237.

6.18. n = 3162571.

6.19. n = 5951129.

6.20. n = 9480431.

© 2007 by Taylor & Francis Group, LLC

6.4. The Quadratic Sieve 217

6.4 The Quadratic Sieve

On page 209, we discussed the early pioneering efforts invovled in Kraitchik’s
factoring method. In the early 1980’s, Carl Pomerance was able to fine tune the
parameters in Kraitchik’s sieve method (see [71]).

� The Quadratic Sieve (QS) Algorithm

(1) Choose a factor base F = {p1, p2, . . . , pk}, where the pj are primes for
j = 1, 2, . . . , k ∈ N.

(2) For each nonnegative integer j, let t = ±j. Compute

yt = (�√n� + t)2 − n

until k + 2 such values are found that are pk-smooth. For each such t,

yt = ±
k∏

i=1

p
ai,t

i , (6.3)

and we form the binary k + 1-tuple,

vt = (v0,t, v1,t, v2,t, . . . , vk,t),

where vi,t is the least nonnegative residue of ai,t modulo 2 for 1 ≤ i ≤ k,
v0,t = 0 if yt > 0, and v0,t = 1 if yt < 0.

(3) Obtain a subset S of the values of t found in step (2) such that for each
i = 0, 1, 2, . . . , k, ∑

t∈S

vi,t ≡ 0 (mod 2). (6.4)

In this case,
x2 =

∏
t∈S

x2
t ≡

∏
t∈S

yt = y2 (mod n),

where xt = �√n� + t, so gcd(x ± y, n) provides a nontrivial factor of n if
x �≡ ±y (mod n).

In step (2), we have that yt ≡ x2
t (mod n). Thus, if a prime p

∣∣ yt = x2
t − n,

we have x2
t ≡ n (mod p). Thus, we must exclude from the factor base any primes

p for which there is no solution x ∈ Z to the congruence x2 ≡ n (mod p). In
other words, we exclude from the factor base any primes p for which n is not a
quadratic residue modulo p.

Example 6.5 Let n = 60377. From Equation (6.2) on page 211 , k = 13, so
we choose the first thirteen primes for which n is a quadratic residue. They
comprise our factor base F = {2, 7, 11, 23, 29, 31, 37, 41, 53, 59, 61, 67, 71}. In the
table on page 218, we see, by inspection, that a subset S of the values of t such

© 2007 by Taylor & Francis Group, LLC

218 6. Factoring

that
∑

t∈S
vi,t ≡ 0 (mod 2) for each i = 0, 1, 2, . . . , 13 is S = {−1,−3,−6,−22}.

(Note that �√n� = 245 in this case.) Thus,
∏
t∈S

x2
t = 2442 · 2422 · 2392 · 2232 ≡ 508852 ≡ x2 (mod 60377),

and ∏
t∈S

yt = 26 · 72 · 114 · 292 · 372 ≡ 254082 ≡ y2 (mod 60377).

By computing both of the values,

gcd(x − y, n) = gcd(50885 − 25408, 60377) = 349

and
gcd(x + y, n) = gcd((50885 + 25408, 60377) = 173,

we get that n = 60377 = 173 · 349.

t xt yt vt

−1 244 −292 (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
−3 242 −72 · 37 (1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)
3 248 72 · 23 (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
−4 241 −23 · 7 · 41 (1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0)
4 249 23 · 7 · 29 (0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)
−6 239 −23 · 11 · 37 (1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)
6 251 26 · 41 (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0)
7 252 53 · 59 (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0)

−10 235 −25 · 7 · 23 (1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
11 256 7 · 11 · 67 (0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0)
−16 229 −28 · 31 (1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)
16 261 26 · 112 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
−20 225 −23 · 23 · 53 (1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0)
−22 223 −23 · 113 (1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
22 267 25 · 11 · 31 (0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)

� Analysis

Some elementary linear algebra underlies the solution to a factorization prob-
lem using the QS as depicted in Example 6.5. By ensuring that there are k + 2
vectors vt in a k + 1-dimensional vector space Fk+1

2 , we guarantee that there
is a linear dependence relation among the vt. In other words, we ensure the
existence of the set S in step (3) of the algorithm such that congruence (6.4)
holds. There is no guarantee that x �≡ ±y (mod n), but there are usually several
dependency relations among the vt, so there is a high probability that at least
one of them will yield an (x, y) pair such that x �≡ ±y (mod n). The problem, of
course, is that for “large” smoothness bounds B, we need a lot of congruences
before we may be able to get these dependency relations.

© 2007 by Taylor & Francis Group, LLC

6.4. The Quadratic Sieve 219

� Concluding Comments

The first successful implementation of the QS in which a serious number
was factored occurred in 1983 when J. Gerver [37] factored a 47-digit number.
Then, in 1984, the authors of [21] factored a 71-digit number.

The QS has been employed using an approach called factoring by electronic
mail. This is a term used by Lenstra and Manasse in [53] to mean the distri-
bution of the Quadratic Sieve operations to hundreds of physically separated
computers all over the world, and in 1988 they used this approach to factor a
106-digit number. Indeed, it is this parallel computing that picks up the time.

In 1994, the authors of [3] factored the RSA-129 number (see page 174)
by using the electronic mail factoring technique with over 1600 computers and
more than 600 researchers around the globe. The unit of time measurement
for factoring is called a mips year, which is defined as being tantamount to the
computational power of a computer rated at one million instructions per second
(mips) and used for one year, which is equivalent to approximately 3 · 1013

instructions. For instance, factoring the RSA-129 challenge number required
5000 mips years, and in 1989 the aforementioned factorization of the 106-digit
number needed 140 mips years.

This chapter has presented some algorithms that perform more efficiently
on certain numbers of a special form such as the p− 1 Method, as well as more
general purpose algorithms such as the QS technique. An overall strategy should
go down many avenues. First, one should try to get small prime factors, which
may be accomplished using trial division up to some reasonable bound, then
use Fermat’s Difference of Squares Method, after which one could employ other
algorithms for small prime factors such as Pollard’s p − 1 Method or his rho
method. When all else fails to get a complete factorization, the big guns may
be brought to bear such as the Quadratic Sieve. The Elliptic Curve Method,
which we will study in Section 6.5, can also be used in advance of the latter two
sieves for finding small prime factors.

Although there is no known polynomial-time algorithm for integer factoring,
what we have seen in the above presentations is that it is highly unlikely that
there is one. Complexity theory in the modern day does not help us since it
gives mostly upper bounds and we need lower bounds to determine the amount
of time a cryptanalyst would need to break a cryptosystem.

Exercises

Factor each of the integers in Exercises 6.21–6.24 using the QS method.

6.21. n = 3191491.

6.22. n = 12358397.

6.23. n = 42723991.

6.24. n = 74299271.

© 2007 by Taylor & Francis Group, LLC

220 Factoring

6.5 The Elliptic Curve Method (ECM)

Some basic knowledge of elliptic curves is required before we present the
factoring method. We begin with the basic definition.

Definition 6.1 Elliptic Curves
Let F be a field with characteristics not equal to 2 or 3. If a, b ∈ F are given

such that 4a3 + 27b2 �= 0 in F , then an elliptic curve E defined over F is given
by an equation y2 = x3 + ax + b ∈ F [x]. The set of all solutions (x, y) ∈ F to
the equation:

y2 = x3 + ax + b, (6.5)

together with a point o, called the point at infinity, is denoted by E(F), called
the set of F -rational points on E. The value ∆(E) = −16(4a3 +27b2) is called
the discriminant of the elliptic curve E.

� Elliptic Curve Facts

We assume that E(Q) is an elliptic curve over Q given by y2 = x3 + ax + b
where a, b ∈ Z, and o denotes the point at infinity.

(1) (Addition of points): For any two points P = (x1, y1) and Q = (x2, y2)
on E, with P,Q �= o and P �= −Q, define

P + Q = (x3, y3) = (m2 − x1 − x2,m(x1 − x3) − y1), (6.6)

where

m =
{

m1/m2 = (y2 − y1)/(x2 − x1) if P �= Q,
m1/m2 = (3x2

1 + a)/(2y1) if P = Q, (6.7)

and

if P = o, for instance, then P + Q = Q for all points Q on E,

and
if P = −Q, then P + Q = o.

(2) (Reduction modulo n): Let n > 1 be given and fixed with gcd(n, 6) = 1
and gcd(4a3+27b2, n) = 1. Then we refer to E reduced modulo n when the
coefficients a, b are reduced modulo n, and each point P on E is reduced
modulo n in the following fashion. If P = (r1/r2, s1/s2) where

gcd(r1, r2) = gcd(s1, s2) = gcd(r2s2, n) = 1,

then

P = (t1, t2), where t1 ≡ r1r
−1
2 (mod n) and t2 ≡ s1s

−1
2 (mod n),

with r−1
2 and s−1

2 being the multiplicative inverses of r2 and s2 modulo
n, respectively. We denote the reduced curve by E(Z/nZ), and if n is a
prime, then this is a group.

© 2007 by Taylor & Francis Group, LLC

6.5. The Elliptic Curve Method 221

(3) (Modular group law): Suppose that P1, P2 are points on E(Q) where
P1 +P2 �= o and the denominators of P1, P2 are prime to n. Then P1 +P2

has coordinates having denominators prime to n if and only if there does
not exist a prime p

∣∣ n such that P1 +P2 = o (mod p) on the elliptic curve
E(Z/pZ).

In the following algorithm, n ∈ N is assumed to be composite, prime to 6,
and not a perfect power, and r ∈ N is a parameter. The goal is to split n.

(1) (Select and Elliptic Curve): Choose a random pair (E,P) where E =
E(Z/nZ) is an elliptic curve:

y2 = x3 + ax + b and P is a point on E.

Check that g = gcd(n, 4a3 + 27b2) = 1. If not, then we have split n if
1 < g < n, and we may terminate the algorithm. Otherwise, we select
another (E,P) pair.

(2) (Choosing bounds): Select M ∈ N and bounds A,B ∈ N such that the
canonical prime factorization for M is M =

∏�
j=1 p

apj

j for small primes
p1 < p2 < · · · < p� ≤ B where apj

= �ln(A)/ ln(pj)� is the largest
exponent such that p

aj

j ≤ A. Set j = k = 1.

(3) (Calculating multiple points): Using (6.6) and (6.7) from page 220,
compute pjP .

(4) (Computing the gcd):

(a) If pjP �≡ o (mod n), then set P = pjP , and reset k to k + 1.

(i) If k ≤ apj
, then go to step (3).

(ii) If k > apj
, then reset j to j + 1, and reset k to k = 1. If j ≤ �,

then go to step (3). Otherwise go to step (5).

(b) If pjP ≡ o (mod n), then compute gcd(m2, n) for m2 in (6.7). If
n > g, terminate the algorithm, since we have split n. If g = n, go
to step (5).

(5) (Selecting a new pair): Set r = r−1. If r > 0, go to step (1). Otherwise,
terminate with “failure”.

Example 6.6 Let n = 923 and select (E,P) = (y2 = x3 + 2x + 9, (0, 3)). Then
gcd(4 · 23 + 27 · 92, 923) = 1, so we choose B = 4, based upon (6.8), and let
A = 3,M = 6 = 2 ·3 = p1 ·p2. Now, using (6.6)–(6.7), with p1 = 2, we calculate

p1P = 2(0, 3) ≡ (9−1,−82 · 27−1) ≡ (718, 373) �≡ o (mod n).

Thus we set P = (718, 373) and compute

p2P = 3P ≡ 2P + P ≡ (505, 124) + (718, 373) ≡ o (mod n).

© 2007 by Taylor & Francis Group, LLC

222 Factoring

Thus, we have that a denominator in (6.7) is not prime to n. In fact, the
calculation of m for 4P + 2P yields m = (124− 373)/(505− 718) = 83/71, and
gcd(923, 71) = 71. Indeed, n = 13 · 71, and we have split n.

What Example 6.6 illustrates is that the failure of the existence of a modular
inverse for some m in the calculations may lead to a factor of n. Another way
of saying this is that the group law for multiplication actually fails in Z/nZ
since n is not prime and this allows us to get the factor. Indeed, it is somewhat
inaccurate in the ECM algorithm to say that pjP ≡ o (mod n), when in fact it
is pjP ≡ o (mod p) where p is the factor for which we were searching. However,
this is legitimate since we were, in a sense, assuming n to be prime and doing
the calculations as if it were so, in the hope that the calculations would “break
down” with an undefined denominator for some value of m in (6.7).

A significant advantage of the ECM is that its running time is highly reliant
on the factor, p

∣∣ n, found. Hence, one of the most useful means of employing
the ECM is for finding “small” prime factors in a number n, which is too large
to find all its factors. The reasons behind this are as follows. Assuming that
p is the smallest prime dividing n, the expected running time of the ECM is
known (under certain plausible assumptions) to be

O(exp(
√

(2 + o(1)) ln p(ln ln p)) · ln2 n).

This may be used in practice to select a smoothness bound B in step (2) of the
algorithm as

B = exp(
√

ln p(ln ln p)/2). (6.8)

Since we do not know p in advance, we may nevertheless select (for p) the value
�√n�. In this case, it is estimated that one out of every B iterations will be
successful in splitting n.

The worst-case scenario for the ECM is when n is an RSA modulus, in which
case we have that the expected running time is

O
(
exp(

√
(2 + o(1)) lnn(ln lnn)

)
= O

(
n
√

(2+o(1))(ln ln n)/ ln n
)

.

This being said, it is not surprising that ECM is most successful at splitting non-
RSA moduli, usually finding prime factors of fewer than forty decimal digits in
large composite numbers.

Exercises
Factor each of the integers in Exercises 6.25–6.29 using the ECM.

6.25. n = 561707.

6.26. n = 3329663.

6.27. n = 20235773.

6.28. n = 54231487.

6.29. n = 72425447.

© 2007 by Taylor & Francis Group, LLC

Chapter 7

Electronic Mail and
Internet Security

7.1 History of the Internet and the WWW

We begin by looking at the origins of the Internet, which is the system
architecture underpinning the globally interconnected network of computers,
the set of all the computer networks connected, via routers, all over the globe.
The principal information retrieval scheme for the Internet is the World-Wide
Web (WWW). The following is a discussion of where the Internet and WWW
began, how they developed, and how the infrastructure evolved.

Computer networks go back as far as the late 1950’s in the form of special-
purpose systems. For instance, there was the inception of the airline registration
system called SABRE. By the early 1960’s, time-sharing systems, which allowed
multiple employees to access the computer virtually simultaneously, were in
use in many cutting-edge corporations. Such computers came to be known
as hosts and with a vision toward a host-to-host network. By 1969, the first
implementation of a host-to-host, general-purpose network, ARPANET, was put
into service for the U.S. Department of Defence’s Advanced Research Projects
Agency (ARPA). ARPANET supported host-to-host, time-sharing connections
in the United States, mainly at government-supported research sites such as
universities. (However, the military people wanted separate communications, so
they created Milnet, which remained connected and accessible by ARPANET
users.) ARPANET also contained one of the first e-mail protocols called simple
mail transfer protocol (SMTP). The other current e-mail standard is Post Office
Protocol (POP). When e-mail arrives at an SMTP server, it is forwarded to a
POP server where it is stored until accessed by the user who logs on, with
username and password, to the POP server, which then retrieves the mail and
sends it. POP3 is the latest version, which can be used with or without SMTP.

223
© 2007 by Taylor & Francis Group, LLC

224 7. Electronic Mail and Internet Security

From SMTP evolved the file transfer protocol (FTP) needed for use with
much larger data packages than those usually found in an e-mail transmission.
In order to process these bigger blocks of data, ARPANET used a new segment-
ing mechanism called packet switching, which broke down large blocks of data
into manageable packets for independent dispatch, and later reconstruction at
the target site. This new notion for processing of packets via segmentation
and reconstruction was one of the earliest means of communication without a
dedicated channel, meaning a channel reserved exclusively for one type of com-
munication. The term is often used to mean a leased or private line. On the
other hand, a dedicated server is a particular computer in a network reserved
specifically for the purpose of fulfilling the needs of the network. Today, how-
ever, most servers are not dedicated since the computer may be employed to be
a server in addition to performing other duties. The antithesis of dedicated is
general purpose.

Although packet networks were created in the private sector in the 1970’s,
such as Telnet in the United States, these were not host-to-host connections.
Instead, they were virtual circuits over packet networks. In the 1970’s and
1980’s, the host-to-host networks remained in government control.

ARPA was replaced by DARPA, the Defence Advanced Research Project
Agency, which may be seen as having played a seminal role in the establishing
of a mini-version of the Internet via its researchers employing a network for
their communications. Essentially, DARPA employed a combination of ground-
and satellite-based packet networks, which allowed a combination of ground-
based radio system transportable access to computing facilities, coupled with
a satellite-based connection between the United States and Europe. However,
there was no interconnection among the ground-based net, the satellite-based
net, and other networks. In other words, the modern-day Internet had not yet
come into existence.

By the mid-1970’s, the notion of data packets evolved into a scheme called
Transmission Control Protocol (TCP), allowing interconnected networks all over
the world to transmit and receive data. TCP contained a world-wide address-
ing scheme, called the Internet Protocol (IP), permitting routers to deliver data
packets to their target sites. By the mid-1980’s, the TCP/IP scheme was effec-
tively adopted worldwide.

The National Science Foundation (NSF) in the United States played a
significant role in establishing TCP/IP as a universal standard. In the mid-
1980’s, they funded the first five supercomputing centres, and the development
of NSFNET, a network to connect these centres. However, private enterprise
was not allowed to use NSFNET for their transactions, so in the late 1980’s, a
commercial distribution of networks was developed in the private sector called
the Commercial Internet Exchange (CIX). However, by 1993, federal legisla-
tion allowed NSF to open NSFNET to commerce. Consequently, in 1995, NSF
dropped its support of NSFNET, since they saw the willingness of the private
sector to support a communications network on their own, which marked the end
of government control of the Internet, as with cryptography discussed earlier.

The IETF, the Internet Engineering Task Force, has developed and main-

© 2007 by Taylor & Francis Group, LLC

7.1. History of the Internet and the WWW 225

tained standards. The IETF is indirectly overseen by the Internet Society, a
nonprofit organization that acts as a conscience and guide for the Internet. The
Internet Society supports the Internet Architecture Board (IAB), which over-
sees the technical development of the Internet. In particular, IAB supervises
IETF. (See http://ietf.org/.) By the late 1990’s, the number of Internet Service
Providers (ISPs) had mushroomed, and we now have tens of millions of ISP
subscribers, with no end in sight.

In 1988, the Corporation for National Research Initiatives provided the first
commercial Internet connection linking e-mail, called MCI mail, after which
other e-mail providers entered the fray, and Internet traffic has never been the
same. In September 1993, the National Centre for Supercomputing Applica-
tions at the University of Illinois introduced Mosaic, which was the first of a
new breed of computer programs called a browser, which made it easier to ac-
cess, obtain, and display Internet files. Embedded in Mosaic was a collection of
protocols, developed at Centre Européen de Recherche Nucléaire (CERN), for
an Internet application called the World-Wide Web. From Mosaic Communica-
tions Corporation evolved Netscape Communications Corporation, established
in April 1994, to develop Mosaic for commercial use. Mosaic was released offi-
cially in December 1994, after which it swiftly became the predominant browser.
Later, Microsoft Corporation developed Internet Explorer, which was derived
from the Mosaic idea. In fact, Mosaic was the first program to produce a mul-
timedia graphical user interface (GUI). A GUI refers to the use of pictures, as
well as text, to display the output of a program. This may be presented in the
form of icons or buttons, for instance, which a user can control via a mouse-
controlled pointer. Although the concept of a GUI was conceived at Xerox’s
PARC laboratory in the late 1970’s, it was Apple with its Macintosh operating
system that first employed it in a computer for general use. The term multi-
media refers to the interaction between computer and user including graphics,
text, video, speech, and often hypertext.

In the 1980’s, CERN saw a clear and increasing need for researchers, stu-
dents, and visiting scientists to quickly become conversant with the latest devel-
opments in physics and information processing. CERN’s project included the
use of their hardware and software to implement some elementary browsers for
individual users, at their workstations, who incorporated their ideas into the
framework.

In March 1989, the WWW was initiated as an information retrieval system
based upon the client-server model, which we will study in Section 7.5. To op-
erate the scheme, the researchers at CERN created a protocol named HyperText
Transfer Protocol (HTTP), a measure initiated to standardize server-client com-
munications. The WWW browser was officially released in January 1992, and
the acceptance of the WWW was accelerated by the aforementioned creation of
Mosaic, and the number of users of the WWW quickly became astronomical.

The WWW allows users to access the universe of data all connected to each
other via hypertext (also called hypermedia links or simply hyperlinks), which
are electronic interconnections that tie together blocks of data permitting easy
access by users. The mechanism for this to work is that hypertext is essentially

© 2007 by Taylor & Francis Group, LLC

http://ietf.org

226 7. Electronic Mail and Internet Security

an aspect of a computer program permitting a user to choose a word or phrase
and obtain more data on it — a definition or related commentary within the
text, for example. Mosaic introduced this notion to the WWW to allow users
to employ the point-and-click option they had on their personal computers for
some time. For instance, point at the text “hypertext” at a WWW site, and one
might be taken to a document with comments on “hyperlinks.” This provides
users with instant access, cross-referencing to a large array of linked relevant
data pertaining to their target idea. It allows users to access small pieces of
data at any given time, digest it, and move on to more data through more links.

A hypertext document and its associated hyperlinks are written in HyperText
Markup Language (HTML), which comes with an assigned URL. Users can add
to the documents on the WWW by creating their own homepages written in
HTML, which is a simple, easy-to-learn language. The users merely dictate the
structure and content they want on their sites, and the detailed presentation
and extraction of information is left to the users’ browsers.

© 2007 by Taylor & Francis Group, LLC

7.2. Pretty Good Privacy 227

7.2 Pretty Good Privacy (PGP)

The e-mail encryption program, which is the topic of this section, was in-
vented by Phil Zimmermann (see Biography 7.1 on the following page).

In the early 1980’s, with some friends, Zimmermann created a company
called Metamorphic Systems. He received a phone call at the company one
day, perhaps one that changed the direction of his thinking for good, from a
man named Charlie Merritt, who had accomplished what Zimmermann failed
to do years ago: implement the RSA PKC on a microcomputer. NSA had
effectively shut down Merritt’s company by threatening action if they did not
stop exporting their software program outside the United States. Since this was
the heart of their enterprise, they had to find another way, calling companies
such as Metamorphic Systems to see if their software might be incorporated
in the company’s hardware for export. The idea excited Zimmermann, and it
inspired him to begin writing his own program for e-mail encryption using PKC.

It took a while for the ideas to develop and the relationship to evolve, but
by November 1986, Merritt and Zimmermann had a project for using RSA.
Nevertheless, RSA Data Security Inc. had patents on the protocols they wanted
to use. Attempts were made to strike a deal with the patent holders, but
nothing substantive came out of those discussions. Zimmermann, undeterred,
continued to work on his ideas to produce a cipher without the explicit use of
RSA protocols.

In 1990, he had developed this communications program, which he called
Pretty Good Privacy (PGP), a name derived from a fictitious entity on a radio
show, Ralph’s Pretty Good Grocery. By 1991, Zimmermann became concerned
that some impending legislation by the government might make it illegal for him
to launch PGP 1.0, so he turned to the Internet. He uploaded copies of PGP
1.0 to the Internet for anyone to use, that is, freeware. His intention was not to
profit but to make encryption available to the masses for privacy considerations.
Almost overnight the program became a hit, and Zimmermann was delighted,
but version 1.0 had its failings. He plugged the holes and killed the bugs in 1.0
to produce a vastly superior version 2.0. One particularly important improve-
ment was the addition of certificates. (Think of a certificate as a quantity of
information signed by a trusted authority.) However, Zimmermann’s program
had no access to such trusted authorities, which are part of what is known as
public key infrastructure (PKI) (see [64, Section 6.2] for a detailed description
of PKI), so he had to come up with a new idea. That idea was to make the
users of PGP, themselves, the trusted authorities. To do this, he had the idea of
signed keys, as a symbol of “trust,” for the communicating parties, something
he developed into what he called a web of trust, which we will describe below.

In September 1992, Zimmermann posted PGP 2.0 on the Internet as free-
ware, and as the light of 1992 faded into memory, Zimmermann was becoming a
very famous man indeed. However, fame sometimes engenders costs. In 1993, he
was put under criminal investigation, since the government charged that PGP
was available to criminals, and they were also concerned about export regula-

© 2007 by Taylor & Francis Group, LLC

228 7. Electronic Mail and Internet Security

tions. The exportation of strong cryptography programs, they maintained, was
deemed to be equivalent to illegally exporting munitions! Fortunately, perhaps
because the government finally realized the futility of this war with the Internet
as the battleground, they officially dropped the investigation on January 11,
1996.

Zimmermann launched a new company called Pretty Good Privacy Inc. to
market the software to commercial enterprises, but due to his lack of business
acumen it was going nowhere fast, so he turned over the reigns to some business
types. However, the company eventually went to the brink of bankruptcy before
it was sold to Network Associates Inc. (NAI), an established computer firm,
where Zimmermann remained as its figurative head as well as special adviser
and consultant.

It is worth ending this anecdote with an ironic note about Zimmermann and
the commercial version of PGP. During a party held by NAI at a conference in
2000, Zimmermann staged a demonstration of launching a commercial version
of his product over a computer to a market abroad, an act for which he was,
years earlier, put under criminal investigation. The new millennium has arrived,
and privacy is no longer in the hands of private enterprise or governments.

PGP has enjoyed remarkable success and is now widely used over the globe
as a mechanism for secure e-mail transmission and file storage.

Biography 7.1 Phil Zimmermann was born in 1954 and raised in Florida.
His interest in codes began at an early age, an interest which continued through
his youth, so that by the time he entered Florida Atlantic University in 1972,
he turned to computers as a tool for the cryptographic skills that he, indepen-
dently, had honed over the years. The above discussion of the evolution of
PGP shows his use of those skills.
Zimmermann has received numerous awards for his achievements. Among
them are the Chrysler Award for Innovation in Design in 1995 — see:
http: //www.chrysler.com/design/design influences/design awards/1995/;
the 1995 Pioneer award from the Electronic Frontier Foundation; the Nor-
bert Wiener Award from Computer Professionals for Social Responsibility,
for promoting the responsible use of technology, in 1996; a Lifetime Achieve-
ment Award from Secure Computing magazine in 1998; the Louis Brandeis
Award from Privacy International in 1999; and in 2001, he was inducted into
the CRN Industry Hall of Fame — see:
http://www.crn.com/sections/special/hof/industryHOF Main.asp.

� Web of Trust

One of the trust models employed in PKI is called user-centric trust in
which each user makes the decision as to which certificates to accept or reject.
For instance, a user, such as Alice, exchanges certificates that are public keys
of those other users with whom she wants to communicate. She protects her
certificate from alteration by signing it with her private key. Upon receipt of

© 2007 by Taylor & Francis Group, LLC

http://www.crn.com
http://www.chrysler.com

7.2. Pretty Good Privacy 229

Bob’s certificate, say, Alice acts as a trusted authority by assigning it one of the
following levels:

(1) Complete trust, meaning that she trusts Bob and anyone whose certificate
is signed with Bob’s key.

(2) Partial trust, meaning that Alice does not completely trust Bob, so certifi-
cates signed by Bob must also be signed by other users (whom she does
trust) before she accepts it.

(3) No trust, meaning that Alice does not trust Bob and will not trust any
certificate signed by Bob.

(4) In some implementations there is a fourth level of uncertain, but this es-
sentially amounts to no trust.

In this way she builds a web of trust with other users, but this model is not
acceptable for such applications as e-commerce.

� Pretty Good Privacy (PGP)

The following is adapted from the more general description given in [64].
PGP embodies four protocols for the secure transmission of e-mail messages.

� PGP Protocols

1. Authentication and compression.

2. Confidentiality.

3. E-mail compatibility.

4. Segmentation.

Now we look at each of these in detail. We assume that Alice is communi-
cating with Bob.

� Authentication (Digital Signature) and Compression

Protocol Steps

1. Alice creates a message, m, to be used for the purpose of authenticating
herself to Bob.

2. SHA-1 (see Appendix F) is used on m to create a 160-bit message digest,
h(m).

3. Alice enciphers h(m) with her private RSA key dA. She sends

DA = (dA(h(m)),m)

to Bob. On the network, DA passes through a ZIP compression operation,
denoted by Z. (For details on ZIP see [64, Section 8.1].) Note however,
that many different types of compression may be used here. We are being
specific by using ZIP for ease of elucidation.

© 2007 by Taylor & Francis Group, LLC

230 7. Electronic Mail and Internet Security

4. After decompression, denoted by Z−1, Bob uses Alice’s public RSA key eA

to decipher and recover h(m).

5. Bob applies h to the value of m sent by Alice and compares the result to
the value of h(m) he deciphered in step 4.

Diagram 7.1 PGP Authentication

h −−−−−−−−→
h(m)

m
�

h(m) dA←−−−−

�
dA(h(m))

Alice
m −−−−→

m
(dA(h(m)),m)

= DA
DA−−−−→ Z DA−−−−→ Z−1

h ←−−−−−−−−−−−−−−−−−−
m

�

DA
←−−−−

eA

↓
h(m) ← Compare →

↓
h(m)

� Confidentiality

Several mechanisms using SKC may be used for ensuring PGP confidential-
ity. Among them is Triple DES (3DES) (see page 149), and this is the one we
assume will be used in what follows, denoted by E herein. (For other options,
see [64, Section 8.1].) Moreover, we will assume that 64-bit CFB mode is also
used in what follows (see page 124). We will use RSA as our PKC, but ElGamal
is also an option (see Section 4.4), as well as Diffie-Hellman/DSS (see page 167
and Section 4.5).

Protocol Steps

Alice wants to send an enciphered message m to Bob.

1. Alice generates a 128-bit nonce k to be used as a one-time-only (session) key
for this message and uses it (after compression of m using Z) via 3DES
to get Ek(Z(m)).

2. Alice enciphers k with Bob’s public RSA key eB to get eB(k) and sends

(eB(k), Ek(Z(m)))

to Bob.

3. Bob deciphers k with his private RSA key dB and recovers m with k (after
decompression with Z−1).

© 2007 by Taylor & Francis Group, LLC

7.2. Pretty Good Privacy 231

� Authentication and Confidentiality

This is illustrated in Diagram 7.2, with the amalgamation of the previous
two protocols as follows.

Steps 1–3 of the authentication protocol are executed, followed by steps
1 and 2 of the confidentiality protocol (acting on Z(DA) rather than Z(m)).
Then Bob recovers k with his private RSA key dB and uses k to recover the
compressed version of DA via E. Then steps 4 and 5 of the authentication
protocol are executed.

Diagram 7.2 PGP Authentication and Confidentiality

h −−−−−−−−−−−−−−−−−−−→
h(m)

m
�

h(m) dA←−−−−

�
dA(h(m))

Alice
m −−−−−−−−−−−−→

m
(dA(h(m)),m)

= DA
−−−−→
DA

Z

eB(k)
�
�

�
�Bob Ek(Z(DA))

← (eB(k),Ek(Z(DA)) ←−−−−−−−−−
Ek(Z(DA))

�

E

�
eB(k)

�
Ek(Z(DA))

�

k ←−−−−
eB

�

k

eB(k) k−−−−→ E−1
k −−−−→ Z−1 −−−−→

eA

�

DA = (dA(h(m)),m)

dB

�

m

�

h

�

�
h(m)

�

h(m) h(m)

↖ ↗

Compare

© 2007 by Taylor & Francis Group, LLC

232 7. Electronic Mail and Internet Security

� Compression Analysis

For the purposes of efficient e-mail transmission and file storage, PGP has
a built-in default mechanism that compresses m after signing but before enci-
phering. The order of signing vs. compression deserves some elucidation.

If Alice were to compress m, forming Z(m), then sign it to form, dA(Z(m)), it
would be necessary to either store Z(m) for the purposes of later verification by
Bob, or once Bob obtains Z(m) via eA, then it would be necessary to form Z(m)
from m for comparison. Both of the latter options entail additional workload
over merely storing (dA(m),m). Furthermore, Z is a randomized operation in
the sense that the same input may produce different compressed outputs at
different times, say, Z(m) = x at time t1, and Z(m) = y at time t2, with x �= y.
However, any version can decompress to get the correct version of compression
by any other version; in other words,

Z−1(x) = Z−1(y) = m.

Yet, forming, say, dA(m) at time t1 would restrict the PGP scheme to the
version of Z applied at time t1, since we would have to verify Alice’s application
of that version of the compression at time t1, which is an unacceptable shackle
to put on the security mechanism. Last, speaking of security, enciphering is
applied after compression for increased cryptographic security since Z(m) has
less redundancy than does m, so cryptanalytic attacks are made much tougher
on Mallory.

Before discussing the next aspect of PGP protocols, we need the following
well-known method of representation of data.

� ASCII

ASCII is the acronym for American Standard Code for Information Inter-
change. Each symbol is represented as a 7-bit word and allows for 128 possible
symbols to be so represented. Typically, a bit is appended to the 7-bit word
as either a parity-check bit or an error-check bit to see if an error occurred in
transmission. The mechanism for ASCII conversion is radix-64 transformation,
wherein binary blocks of three bytes each are converted into four ASCII sym-
bols, each of which is appended with an error check in the form of a cyclic
redundancy check ; see Appendix G. Note that the term “radix” is a synonym
for “base.”

� E-Mail Compatibility

Typically, PGP sends a stream of bytes of data. However, there are certain
e-mail networks allowing only ASCII data to be transmitted. PGP satisfies
this requirement by transforming the stream of bytes into a stream of print-
able ASCII characters, using an encoding technique called radix 64, which we
describe in Appendix G. This inflates the message by 33%, but the aforemen-
tioned compression stage offsets this message expansion. In fact, a standard

© 2007 by Taylor & Francis Group, LLC

7.2. Pretty Good Privacy 233

analysis of the PGP mechanism shows that, even with the message expansion,
the net compression is approximately one-third.

Once h(m) is formed, the concatenation, (m,h(m)), is signed by Alice to get
dA(m,h(m)) = DA, which is compressed via Z. Then she enciphers via k using
E to get, Ek(Z(DA)), then eB(k) is appended to get (eB(k), Ek(Z(DA)), which
is converted to ASCII. Upon receipt, Bob reconverts to binary; he recovers k
via dB , which he uses to get Z(DA). This is passed through Z−1, after which
he uses eA to get (m,h(m)). He applies h to m and compares his h(m) to the
version sent by Alice.

� Segmentation

Anyone who has tried to send a very large e-mail attachment knows that
certain e-mail sites will “bounce back” the message stating that it exceeds the
maximum message length allowable (which typically over the Internet is 5 · 104

bytes). Hence, segmentation, the splitting up of the message into smaller pieces
or segments, is necessary. PGP meets this requirement by segmenting a message
into manageable, acceptable blocks for easy transmission. Segmentation is done
after all of the above processing is completed.

Now that we have described the basics of the fundamental protocols under-
lying PGP, we look in detail at the various aspects of the message transfer and
reassembly, starting with the components of the message itself.

� Message Components

There are three basic components in a message m to be sent by Alice.

1. Session Key: This component has two facets. First there is Bob’s identifier
IeB

for his public RSA key eB , defined by IeB
≡ eB (mod 264), namely,

the least significant 64 bits of eB . The identifier IeB
is the most efficient

means to transfer the key verifier to Bob that does not involve the use
of too much space or too much workload to do the verifying. (Note that
this identifier is essentially a probabilistic identifier in the sense that it is
possible for two different public keys to have the same least significant 64
bits, but the probability is very low given the bitlength involved.)

The second facet of the session key component is the session key k, itself.

2. Signature: This component has four facets. There is the timestamp tA,
which corresponds to the creation time of Alice’s signature. Then there
is the identifier IeA

for Alice’s public key, via eA ≡ IeA
(mod 264) (see the

description of this device, presented for Bob’s key, in part 1 above). Third,
there is the message digest, h(tA,m), which is formed (with tA appended
to thwart replay attacks). Last, there are the two leading bytes L1 and
L2, of h(tA,m), which allows Bob to ensure that the correct public key,
eA, was used to decipher the message for authentication. He does this
by comparing the plaintext copy of these bytes with the first two bytes
of the deciphered message digest. (Note that in the previous discussion

© 2007 by Taylor & Francis Group, LLC

234 7. Electronic Mail and Internet Security

and diagrams we did not mention, explicitly, the timestamp in order to
simplify the presentation. Thus, we are assuming, tacitly, that it is present
and handled in the aforementioned fashion.)

3. Message: This is the component consisting of the message data, m, itself,
accompanied by a timestamp, tm, specifying the creation time of m, as
well as a filename Fm.

Both the message and signature components are ZIP compressed, then en-
ciphered with the session key. The session component together with the com-
pressed components are then converted to ASCII.

In Diagram 7.3, we are assuming that the (otherwise optional) operations of:
ensuring confidentiality by forming eB(k), ensuring authentication by forming
dA(m,h(tA,m)), ZIP compression of the signature and message components is
carried out, and ASCII conversion is executed on all components. Each of the
symbols in the diagram are defined in the discussion preceding the diagram.
Each double box contains a set of operations to be carried out, and the nesting
of the boxes dictates the order of the operations from inner to outer.

Diagram 7.3 PGP Message Components

ASCII Converted

Session Key

IeB
eB(k)

Ek Encrypted

ZIP-Compressed

Signature

IeA
tA dA(m,h(tA,m)) L1,L2

Message Data

Fm tm m

The next topic is a fundamental feature of PGP and is a mechanism for an
individual user to communicate with entities it knows, securely, and efficiently.

© 2007 by Taylor & Francis Group, LLC

7.2. Pretty Good Privacy 235

From the above, it can be seen that the key identities, IeA
and IeB

, for Alice
and Bob, respectively, provide authentication and confidentiality. Bob’s public
and private keys are stored securely at his computer along with public keys of
others, such as Alice, with whom he communicates. PGP uses data structures to
store them, called public key rings and private key rings. We now describe each
of these in turn and delineate the schemes by which private keys are securely
maintained.

� Key Rings

Essentially, key rings are flat files containing a sequential list of keys. How
the key is stored is up to the implementer. The private key ring is stored only on
Alice’s computer, which stores the RSA key pairs owned by her, and is accessible
only to Alice. In the private key ring, each entry for an entity has the following
fields (but typically she will only have one entry, namely, her own public/private
key pair).

� Private Key Ring Individual Field Entry

1. Timestamp: tA, the creation time of (eA, dA).

2. Key ID: IeA
(mod 264).

3. Public Key: eA.

4. Private Key: dA (enciphered using CAST-128, 3DES, or IDEA). The
actual key dA is not stored on Alice’s computer, only the encrypted ver-
sion. Here is the actual mechanism by which Alice accesses the private
key, when needed, in order to achieve maximum security.

Private Key Storage and Access Steps

(i) Alice chooses a passphrase that she will use for enciphering private
keys. (It is paramount that she keep this secure, never write it down,
or disclose it to anyone.)

(ii) When the PGP program generates a new RSA key pair, such as
(eA, dA), it will prompt Alice for her passphrase, P , and using SHA-
1, a 160-bit hash h(P) is formed, and the passphrase is discarded.

(iii) The program enciphers dA, using an SKC, E (which is one of 3DES,
IDEA, CAST-128 or AES), with h(P) as the key, namely, to form
Eh(P)(dA), and discards h(P). Then Eh(P)(dA) is stored on Alice’s
private key ring.

(iv) Whenever Alice wants to access dA, she must provide the passphrase.
The PGP program provides her with Eh(P)(dA), generates h(P), and
deciphers dA using E with h(P), namely, via

E−1
h(P)(Eh(P)(dA)) = dA.

© 2007 by Taylor & Francis Group, LLC

236 7. Electronic Mail and Internet Security

5. User ID: IDA, which could be, for instance: Alice@PGPprivateRing.com.

� Public Key Ring Individual Entry

This ring is used to store the public keys of other users, such as Bob, with
whom Alice communicates. The following are the fields in Bob’s entry. Items 4,
6, and 8 are under a framework, called a trust-flag-byte, the contents of which
are described individually in each field entry, and refer to the web-of-trust model
described on pages 228–229.

1. Timestamp: tB , which is the creation time of the entry.

2. Key ID: IeB
(mod 264).

3. Public Key: eB .

4. Owner Trust: trust-flag-byte, which is the trust, assigned by Alice, that
indicates the degree to which eB can be trusted to sign other public-key
certificates. When a new public key is to be added to the public-key ring,
the PGP program prompts Alice to assign a level of trust to the key owner,
Bob in this case. When the level of trust is complete trust, then the public
key is also put on Alice’s private-key ring. In the case where Bob’s key
appears on Alice’s private-key ring, there is a buckstop bit, which is set to
1 in that instance.

5. User ID: IDB , which is Bob’s identifier, such as Bob@PGPpublicRing.ca.

6. Key Legitimacy: trust-flag-byte, which is the level of trust that the PGP
program (which computes this field), imparts to the binding of Bob’s user
ID to eB . The means by which this is determined by the PGP program is
on a weighted basis, whereby the PGP program bases the weighting upon
the signature trust fields present in item 8. There is also a warnonly bit,
which is set to 1 if Alice only wants to be warned that eB is only used for
enciphering but is not fully validated.

7. Signature: When a new public key, Bob’s in this case, is added, one or
more signatures could be appended to it, and more may be added later.

8. Signature Trust: trust-flag-byte, which is the degree of trust that Alice
assigns Bob to certify public keys, so is essentially a cached version of
field 4 (owner trust), in the following sense. Upon addition of a signature,
the PGP program looks through the public-key ring to determine if Bob’s
signature is among the public-key owners therein. If so, the trust value
given in field 4 is assigned, and if not, an unknown value is assigned to
this field. This field is periodically updated by the PGP program, which
scans the public-key ring for all signatures owned by Bob and updates this
field to be the same as the owner trust field.

© 2007 by Taylor & Francis Group, LLC

mailto:Alice@PGPprivateRing.com
mailto:Bob@PGPpublicRing.ca

7.2. Pretty Go o d Privacy 237

Now that we have the notion of PGP rings, we can give a more detailed and
informed description of PGP message generation, processing, and reception.

� PGP Message Processing Protocol Via Key Rings

This protocol description, and accompanying diagrams on pages 238–239,
depict the PGP message generation and processing upon reception using key
rings. Since we fully described the mechanism for ASCII conversion and ZIP
compression above, we eliminate those stages for the sake of simplicity. More-
over, we are assuming that both signing and encryption are required.

Protocol Steps
We assume, as above, that Alice is sending a message to Bob.

1. The PGP program obtains Alice’s encrypted private RSA key dA from her
private-key ring using IDA (for instance, Alice@PGPprivateRing.com) as
an index for so doing.

2. The PGP program requests Alice’s keyphrase in order to provide her with
this enciphered version, which she provides and dA is obtained as in part
(iv) of private-key storage and access on page 235.

3. Alice generates the message m, and the digital signature dA(h(m)) is formed
as in the authentication protocol described on page 230. However, the
public-key identifier, IeA

, her public-key identifier from the signature com-
ponent of the message (see part 2 on page 233), must be appended to the
signature since Bob must know which public key is intended for use given
that Alice could have many private keys.

4. The PGP program uses a random-number generator to create a session key
k, as above, and forms Ek(m).

5. The PGP program gets eB , Bob’s public key from Alice’s public-key ring
using IDB (for example, BOB@PGPpublicRing.ca) as an index.

6. Then the PGP program forms eB(m), and (eB(k), Ek(m)) is sent to Bob.

7. Upon reception, the PGP program obtains Bob’s encrypted private key, dB ,
from his own private key ring using IeB

, from the session key component
of the message (see part 1 on page 233), as an index.

8. The PGP program requests Bob’s passphrase, which he delivers, and de-
crypts to get the session key, k, which is used to recover the message
(dA(h(m)),m).

9. The PGP program gets eA from Bob’s public key ring, using IeA
from the

signature component of the message (see part 2 on page 233), as an index.
This is used to recover the h(m) sent by Alice.

10. The PGP program computes h(m) from Alice’s sent message m and com-
pares it with the h(m) sent by Alice for authentication.

© 2007 by Taylor & Francis Group, LLC

mailto:Alice@PGPprivateRing.com
mailto:BOB@PGPpublicRing.ca

238 7. Electronic Mail and Internet Security

Diagram 7.4 PGP Message Generation and Encryption Via Rings

Passphrase

P

�

h

h(P)

�

E

dA

�

Eh(P)(dA)←−−−−−−−−

�

�

�

�
Alice’s Private

Key Ring

...
Eh(P)(dA) | IDA | IeA

...

IDA-index←−−−−−−−−−
select

dA

�

dA(h(m)) −−−−→ dA(h(m),m) −−−−→ (dA(h(m)),m)
= D′

A

h(m)

�

h ←−−−−
m

m

�

Alice Creates
Message

�
D′

A

Signature and Message
Output for Encryption

PGPRNG k−−−−→
k

�

eB
eB(k)−−−−→

�D′

A

E

�Ek(D′

A)

(Ek(D′
A), eB(k))

IDB-index−−−−−−−−−→
select

eB

�

�

�

�

�
Alice’s Public

Key Ring

...
eB | IDB | IeB

...

�

−−−−→
IeB

(Ek(D′
A), IeB

, eB(k))

�

Output Encrypted
Signature and Message

© 2007 by Taylor & Francis Group, LLC

7.2. Pretty Good Privacy 239

Diagram 7.5 PGP Message Reception, Decryption, and
Authentication

IeB
-index−−−−−−−−→

select

�

�

�

�
Bob’s Private

Key Ring

...
IeB

| IDB | Eh(P′)(dB)
...

−−−−−−−−−→
Eh(P′)(dB)

Passphrase

�
P′

h

�
h(P′)

E

�
dB

�

IeB

↖
Bob Receives Message

IeB
| Ek(D′

A) | eB(k) eB(k)−−−−→ dB(eB(k))

�
Ek(D′

A)

↘

�
k

↙

E−1
k (Ek(D′

A)) = D′
A ↘

↗ −−−−→
eA

(eA(dA(h(m))),m)

IeA
-index−−−−−−−−→

select

�

�

�

�
Bob’s Public

Key Ring

...
IeA

| IDA | eA

...

�
h(m)

�
h(m)

h(m)

�
m

h

�
h(m)

h(m)

↖ ↗

Compare

© 2007 by Taylor & Francis Group, LLC

240 7. Electronic Mail and Internet Security

� Analysis and Summary

PGP utilizes a package of algorithms, in a general-purpose application, which
is operating system and machine independent, embodying only a few simple op-
erations. It is freeware for individuals and of moderate cost to commercial enter-
prises who enjoy vendor support. Moreover, the scheme is independent of gov-
ernment control. RFC2440 (see [77]) contains the cryptography in OpenPGP.
Note that documents called RFC’s, Requests For Comments, are the official
working notes of the Internet research and development community. See

http://www.rfc-editor.org/rfcxx00.html.
The trust model used by PGP does not include a PKI specification, but its

web-of-trust approach (see pages 228–229) does provide a convenient trust-use
mechanism for the purpose of linking trust with public keys, as depicted by our
discussion of public and private-key rings on pages 235–239. This is a particu-
larly clever and innovative means of dealing with one of the principle weaknesses
of PKC, namely, the protection of public keys from being compromised.

It should be noted that although we used specific protocols in the above
description, PGP is parameterized so that many different protocols may be
used as specified in RFC2440. For instance, to create a PGP key today one
might typically employ AES and SHA-256.

In conclusion, PGP embodies an interwoven collection of protocols (including
public-key management) in an efficient yet secure manner to ensure authentica-
tion and confidentiality of e-mail services, as well as file storage.

� Zimmermann’s Reason’s Why PGP Should Be Used

The following, attributed to Phil Zimmermann, is an appropriate closure to
this section.

“If privacy is outlawed, only outlaws will have privacy. Intelligence agencies
have access to good cryptographic technology. So do the big arms and drug
traffickers. So do defence contractors, oil companies, and other corporate giants,
but ordinary people and grassroots political organizations mostly have not had
access to affordable military grade public-key technology. Until now.

PGP empowers people to take privacy into their own hands. There’s a
growing social need for it. That’s why I wrote it.”

See the following hyperlink for the complete original English text:

http://www.pgpi.org/doc/whypgp/en/.

Exercises

7.1. The description of PGP herein assumed the use of triple DES. Explain
why single DES would not be suitable for use with PGP.

7.2. Why would PGP use CFB mode over the more commonly used CBC
mode?

© 2007 by Taylor & Francis Group, LLC

http://www.rfc-editor.org
http://www.pgpi.org

7.3. Protocol Layers and SSL 241

7.3 Protocol Layers and SSL

To become acquainted with the notion of a “protocol layer,” we must un-
derstand its (formal) inception, which began with the following organization.

� ISO and OSI Models

The International Organization for Standardization (ISO), a nongovernmen-
tal body created in 1947 to promote the development of standardization and
related activities and embodying members from 148 countries, is a world fed-
eration of national standards organizations. ISO is not an acronym, rather its
roots are from the Greek isos meaning equal, which will be recognized as the
prefix iso-, such as in isometric. It happened that equal devolved to standard,
and the ISO name was adopted. Additionally, this provides the feature of not
requiring translation for various languages, as would an acronym.

ISO develops precise criteria for such applications as the development of a
framework of international standards in computer networks, for instance. (A
network is a hardware and software communications system.) In 1978, ISO
developed a model of network protocols, called a protocol stack, which is a
layered set of protocols working together to render a set of network functions.

The ISO model divides the architecture among seven layers, where we un-
derstand a layer to be the environment of two or more communications devices
in which a particular network protocol operates. The ISO model is called the
Open Systems Interconnection Reference Model (OSI-RM). OSI is the umbrella
name for a set of nonproprietary protocols and specifications, which includes
the OSI-RM, having the following seven layers, from the bottom to the top.
Much of the following has been adapted from [64].

� OSI-RM Seven Layer Protocol Stack

1. Physical Layer: This bottom layer deals with electrical and mechanical
connections to the network.

2. Data Link Layer: This layer splits data into frames, which are data packets
containing the header and trailer information required by the physical
layer. The data link layer executes error checking and retransmits correct
frames for any corrupted frames it receives, thereby providing an error-free
connection to the next layer up to which it sends the frames.

3. The Network Layer: This is the communications subnet layer, which
decides the routing of packets received from the data link layer to be used
by the next layer up. Most commonly, IP is used (see page 224).

4. The Transport Layer: This middle layer is essentially the communications
system component of a given protocol. For instance, the TCP protocol,
discussed on page 224, is one such communications system. Although TCP
itself is not cryptographically secure, mechanisms can be used to make it

© 2007 by Taylor & Francis Group, LLC

242 7. Electronic Mail and Internet Security

so. For instance, in 1996 the IETF (see page 224) formed a committee,
the Transport Layer Security (TLS) working group. Their mandate was
to develop a standard for Secure Sockets Layer (SSL), a protocol that
originated at Netscape in 1994 and which we will describe in detail in this
section.

In January 1999, the TLS working group published the TLS protocol.
However, TLS is essentially a version of SSL, so we will not describe it
here but rather wait to get the full description of SSL, which is not, in
itself, a single protocol but rather two layers of protocols using TCP to
provide a secure connection with WWW browsers — see Section 7.1.

To summarize, and expand the role of this layer, essentially the transport
layer decides how to utilize the network layer to render a virtual error-
free connection between hosts. Thus, it both initiates and terminates
connections between hosts.

5. Session Layer: This layer uses the transport layer to establish a connection
between hosts for certain processes, so it essentially handles the security
side and the creation of the session itself.

6. Presentation Layer: This layer executes such functions as text com-
pression and format conversions, which is the mechanism for ironing out
differences between two hosts. If there are incompatible processes in the
next layer up, the presentation layer allows the process to communicate
via the session layer.

7. Application Layer: This top layer essentially handles the user’s needs. For
instance, it deals with such issues as allowing a user to access a remote
resource through a network without having to know if the resource is
remote or local, a feature called network transparency. It will style itself
after the user’s particular desires such as e-mail message formatting.

The application layer also deals with resource allocation and problem par-
titioning. The presentation layer provides the top layer with familiar local
representation of data, which is independent of the format used on the
network.

� Analysis
Network Connections embody a set of independent protocols, each in a dif-

ferent layer. The only variable layer is the applications layer. The function of
each other layer is to employ the layer one step below it and provide a service
to the layer one step above it. Each of the network’s components on a given
host uses protocols applicable to its layer to communicate with its analogous
component in another host. Such layered protocols are sometimes known as
peer-to-peer protocols.

A fundamental strong point in the use of layered protocols is that the mech-
anism for delivering information from one layer to another is specified clearly

© 2007 by Taylor & Francis Group, LLC

7.3. Protocol Layers and SSL 243

as part of the protocol’s definition. Moreover, changes within a protocol layer
are prevented from affecting the other layers, which vastly simplifies the task of
designing and maintaining network communication systems.

� SSL Protocol — Simplified

SSL is an Internet protocol that provides authenticity and secrecy for session-
based communication. It provides a secure channel on the client/server model
(see Section 7.5) using a secret sharing scheme. The security model of SSL
is that it encrypts the channel by enciphering the bits that go through that
channel. As mentioned earlier, SSL began with Netscape, who originated it,
and in 1996 they handed over the specifications of SSL to IETF, who worked
to standardize the SSL version 3 model, which had been released in 1995. In
1999, the TLS working group released TLS version 1, which has now become
the IETF standards-track variant of the SSL version 3 protocol (see [22]). The
cryptographic power of SSL/TLS is that it operates at the transport level so
HTTP runs on top of SSL, called HTTPS.

To understand the layers of SSL, we must introduce the names of the two
main subprotocols to be discussed in detail below:

(1) the handshake protocol

which operates above the

(2) record protocol.

This is illustrated below.

HTTP
SSL Handshake Protocol

SSL Record Protocol
TCP
IP

Data Link Layer
Physical Layer

We begin by describing the lower level of SSL.

� SSL Record Protocol
This protocol defines the format used to transmit data and is used by the

handshake protocol to exchange messages between client and server.
First the message to be transmitted is fragmented, which means it breaks the

message down into manageable blocks. Then it compresses the data (but this
is an optional exercise in SSL). It then applies a MAC (see page 125), enciphers
the data, adds a header, and transmits the cryptogram as a TCP unit. This is
illustrated in Diagram 7.6 on the next page.

© 2007 by Taylor & Francis Group, LLC

244 7. Electronic Mail and Internet Security

Diagram 7.6 SSL Record Protocol Actions

Message Data

↙

�

� ↘

Fragment Fragment · · · Fragment Fragment

�

�
�

�
�Compress

�

Compressed Data Add MAC

�

Encipher

�

Add Header

�

Cryptogram

�

Transmit

Upon receipt of the transmitted data, it is deciphered, authenticated, de-
compressed, reassembled, and delivered to users at higher levels.

© 2007 by Taylor & Francis Group, LLC

7.3. Protocol Layers and SSL 245

� Analysis
The message data is typically fragmented into blocks of 214 bytes, after which

data compression is optional. The encryption is done with an SKC cipher, which
can be any of the suite of ciphers (or sets of ciphers) supported by SSL, listed
below in order of cryptographic strength. These are the cipher suites for SSL
implementations that use the RSA key-exchange algorithm.

1. Triple DES (see page 149), using 168-bit encryption and SHA-1 message
authentication (see Appendix F).

2. The only stream cipher, RC4 (see Appendix H), using 128-bit encryption
and MD5 message authentication (see Appendix F). When the RC4 is
used, the MAC is first computed, then the MAC and compressed data are
enciphered.

3. RC2 (a block cipher developed by Rivest for RSA Data Security), employing
128-bit encryption and MD5 message authentication.

4. DES (see Section 3.1) with 56-bit encryption and SHA-1 message authenti-
cation.

SSL supports the above variety of cipher suites since clients and servers may
support different ciphers depending upon numerous factors.

The following protocol shows how the server and client authenticate one
another, send certificates, and establish session keys. (See Section 7.5 for a
general description of the client-server model.)

� The SSL Handshake Protocol

Below there are actions that are mandatory, situation dependent, or optional.
We will call those that are either situation dependent or optional merely optional
for simplification of presentation in Diagram 7.7 on page 248.

I Contact and Establish Capabilities:

1. The client sends the server a client-hello message, which contains the fol-
lowing fields:

(i) The client’s SSL version number (usually the highest SSL version
supported by the client).

(ii) Cipher suite (usually listed in decreasing order of preference), each
element (cipher suite) of which includes both a key-exchange algo-
rithm and the details of the cipher proposed. The following is the
SSL key-exchange suite of algorithms :

(a) RSA: The RSA public key of the recipient is used to encipher
the secret key, but in order to validate the process, a public-key
certificate for the recipient must be accessible.

© 2007 by Taylor & Francis Group, LLC

246 7. Electronic Mail and Internet Security

(b) Authenticated Diffie-Hellman: In this type of key exchange,
it is mandated that the server certificate contains the Diffie-
Hellman public-key parameters, authenticated (signed) by Trent
as a CA. If the client is required to send a certificate (see step 3
of stage II, below), then the public-key parameters as so included
(see step 2 of stage III). Hence, the Diffie-Hellman-generated se-
cret key is fixed in this case.

(c) Anonymous Diffie-Hellman: Essentially the Diffie-Hellman
key exchange as given on page 167 is used with no authenti-
cation, meaning that the SSL handshake protocol supports a
totally anonymous operation in which neither the client nor the
server is authenticated. As we saw with the Diffie-Hellman pro-
tocol in particular, and with PKC in general (see Diagram 4.5 on
page 177), impersonation is possible since the entities are not au-
thenticated, leaving the scheme open to the man-in-the-middle
attacks.

(d) Fortezza: The Key-Exchange Algorithm (KEA) is the key ex-
change algorithm used with Fortezza. KEA was declassified by
the U.S. Department of Defence on June 23, 1998. KEA requires
a 1024-bit prime modulus, generated via the DSS specifications
in [32]. Moreover, KEA is based on a Diffie-Hellman protocol
that uses SKIPJACK for the purpose of reduction of final values
to an 80-bit key (see [31]).

(iii) Some randomly generated data consisting of a 32-bit timestamp and
28 bits generated by a CSPRNG (see page 109), both of which are
treated as nonces (see page 124) to prevent replay attacks, also called
playback attacks, which are attacks employing data obtained from a
previous execution of the protocol for the purpose of deception.

(iv) List of compression methods supported by the client.
(v) A variable-length session ID.

2. The server sends a server-hello, which consists of the same parameters as
the client-hello. For instance, the server selects a cipher suite from the
list proposed by the client, and the server chooses a compression method
from the client-proposed list. However, the random field is generated by
the server independent of the client-generated random field.

II Key Exchange and Server Authentication:

1. The server sends an identification certificate to the client (required for all
key exchanges except anonymous Diffie-Hellman). (If RSA is used, we
assume that the server’s public key was sent with the certificate.)

2. The server sends a server-key-exchange message (not required only if either
the server has sent a certificate with authenticated Diffie-Hellman param-
eters in step 1, or if RSA key exchange is used). If exercised, this contains
the server’s public keying material.

© 2007 by Taylor & Francis Group, LLC

7.3. Protocol Layers and SSL 247

3. If the server is not using anonymous Diffie-Hellman, it may send a request
for the client’s certificate. Contained in the client certificate request is a
certificate type that dictates the PKC to be employed. For instance, if
either RSA or DSS is used with authenticated Diffie-Hellman, then au-
thentication (only) is accomplished via an RSA or DSS signature on the
certificate.

4. The server sends a server-hello-done message.

III Key Exchange and Client Authentication:

1. After receiving the server-hello-done message, the client verifies the server’s
certificate if sent and other server-hello parameters. If all is valid, the
client responds.

2. If requested, the client sends a certificate. If authenticated Diffie-Hellman
is being used, then the client’s public-key parameters are included.

3. The client-key-exchange message must now be sent. The key-exchange mode
dictates the content as follows:

(i) If RSA is used, then the client generates a 48-byte premaster secret,
which is encrypted with the server’s public key (sent with certificate
in Stage I).

(ii) If anonymous Diffie-Hellman is employed, then the client’s public
Diffie-Hellman parameters are sent.

(iii) If authenticated Diffie-Hellman is used, then the parameters were
already sent in step 1 of stage II, so this is a null action.

(iv) If Fortezza is used, then the client’s Fortezza parameters are sent.

3. If a certificate has been requested, the client signs a piece of datum that is
unique to the handshake and known by both client and server, along with
the encrypted premaster secret.

IV Finish Protocol:
To simplify the final stage, we assume that RSA is being used.

1. If the server verifies the client’s identity, then the server uses its private key
to decipher the premaster secret. Then the server performs a sequence of
steps to create the master secret from the premaster secret, a one-time
48-byte generated for this session. These same steps are followed by the
client to recover the master secret.

2. Both the client and the server use the master secret to generate session
keys, which are symmetric keys used to encipher and decipher information
exchanged over the course of this SSL session, and to verify its integrity,
meaning the detection of changes that might have occurred in the time
period from transmission to reception.

© 2007 by Taylor & Francis Group, LLC

248 7. Electronic Mail and Internet Security

3. The client sends a client-finished message saying that all future messages
will be encrypted with the session key, the first message encrypted with
the secret session-key independently generated by the client and server.

4. The server sends a similar encrypted server-finished message, which assures
the client it is communicating with the server since the client sent the
premaster secret encrypted with the server’s public RSA key, which only
the server could have deciphered to calculate the session key.

5. The handshake is now completed and the client and server may exchange
application layer information with a secure connection. (Caution must be
exercised in certain generic implementations of SSL. See [48], for instance.)

Diagram 7.7 SSL Handshake Protocol Actions

Stage I

C
L
I
E
N
T

Client-Hello−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−

Server-Hello

S
E
R
V
E
R

Stage 2

C
L
I
E
N
T

Server Certificate (optional)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Server-Key-Exchange (optional)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Client Certificate Request (optional)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Server-Hello-Done

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

S
E
R
V
E
R

© 2007 by Taylor & Francis Group, LLC

7.3. Protocol Layers and SSL 249

Diagram 7.7 SSL Handshake Protocol Actions (continued)

Stage 3

C
L
I
E
N
T

Client Certificate (if requested)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Client-Key-Exchange
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Server Certificate Verify (if sent)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

S
E
R
V
E
R

Stage 4

Client

�

Master Secret

�

Session Key

Server-Finished←−−−−−−−−−−−−−−
−−−−−−−−−−−−−−→

Client-Finished

Server

�

Master Secret

�

Session Key

� Analysis
SSL server authentication allows a user to confirm a server’s identity, which

is quite important if, for instance, the user is sending a credit card number over
a network and needs to check the receiving server’s identity. SSL client authen-
tication allows a server to confirm a user’s identity. This is very important if,
for example, a bank is sending confidential financial information to a customer
and needs to check the recipient’s identity. An enciphered SSL session is pro-
tected by a tamper-detection mechanism, which automatically checks to see if
information has been altered in transit, a secure hybrid cryptosystem, with the
handshake allowing independent creation of symmetric keys for fast enciphering,
deciphering, and tamper detection during the session.

If authentication of client and/or server is chosen, management of certificates
is required, which makes the use of SSL somewhat unwieldy given the necessity
for a proper management of those certificates. Yet, the certificates render a
scalable key-management scheme, which is a powerful mechanism. Of course, a
totally anonymous SSL mode provides no authentication and opens the scheme
up to the man-in-the-middle attack, as noted earlier. However, when users want
to take advantage of SSL on their website without being associated with their
host, then anonymous SSL is the way to go. Hence, the anonymous SSL server
has its place, and there are numerous vendors available to sell such packages.

© 2007 by Taylor & Francis Group, LLC

250 7. Electronic Mail and Internet Security

7.4 Internetworking and Security — Firewalls

IPs, or Internet Protocols, provide services for connecting hosts over various
disparate networks, as we have seen. To accomplish this, however, each IP must
be embedded, not only at each host site and its associated network, but also
in routers. This presents challenges for these routers since they connect such
dissimilar systems. Here are some of the differences routers face. (Much of what
is in this section and Section 7.5 is adapted from [64].)

� Network Dissimilarities

Address Labels: The various schemes for networks to allocate a target ad-
dress to data in an Internet mechanism may range from 48-bit assignments to
encoded decimal representations. Therefore, some kind of universal standard-
ization is needed together with a central archive for record keeping.

Fragmentation: On page 243, we already met the concept of message frag-
mentation. Fragmentation is required because of network disparities in maxi-
mum packet sizes permitted.

Interfaces: A router must be designed to execute its duties irrespective of
the disparate hardware and software interfaces among networks.

Network Dependability: A router must be independent of the differences
in network reliability, which may range from unreliable to end-to-end depend-
ability.

� Firewalls
All the above being said, the primary concern is with local security, so we

need firewalls. The term “firewall” is taken from the firefighting profession,
wherein a firewall is a barrier constructed to prevent the spread of fire. In
the computer world, it means keeping the flames of disaster, ubiquitous on the
Internet, away from your local network and preventing entities from inside the
local network from opening a “door” that will let those flames in. A firewall may
be defined as a combination of hardware and software, located at the interface
between two networks, that enforces an access control security policy between
them. For instance, these security gateways may screen IP addresses, or ports
requested on incoming connections, to decide what traffic is permitted into the
local network. A gateway is an access point on a network that plays the role
of an entrance to another network. More generally, a node on the Internet is a
connection point, typically with the capacity to read, process, and forward data
to other nodes. Thus, a node may be a computer or other device. For a user at
home, an ISP (see page 225) is a gateway. For a business enterprise, a gateway
node may play the role of both a proxy server (see page 254) and firewall.

Origins of Firewalls: Development of firewall architecture has been con-
temporaneous with the evolution of the Internet. Not surprisingly, initial fund-
ing for firewall research was the domain of the U.S. Department of Defence.

© 2007 by Taylor & Francis Group, LLC

7.4. Internetworking and Security — Firewalls 251

The origins of the first commercial firewall architecture may be traced to the
mid-to-late 1980’s with Cisco Systems, who introduced (static) packet filters.
In the late 1980’s and early 1990’s the next generation of firewalls called cir-
cuit level firewalls came out of research at AT&T Bell Labs. Then the third
generation of firewalls came to attention in the early 1990’s, out of work from
Bell Labs and others, with application layer firewalls. A fourth generation,
called dynamic packet filtering firewalls, sometimes called stateful inspection,
was epitomized by Firewall-1, the first user-friendly firewall architecture, re-
leased by Check Point Technologies in 1994. This essentially replaced static
packet filtering as a standard. Today there is the fifth generation of firewall,
called Kernel Proxy Architecture, the first commercial incarnation being Cisco
System’s Centri Firewall, released in 1997. All of the aforementioned types will
be discussed below.

� Firewall Design Principals : If the security goal of a local network
that has its own local security policy is to explicitly deny all transmission that
fail those criteria, then the following firewall design goals should be sought: (1)
all data traffic into and out of the local network must physically be directed
through the firewall, and (2) the firewall must be impenetrable.

The local security policy will dictate the level of monitoring and what traffic
will be permitted or denied access. Typically a local network will want a balance
between protection of that local system from threats and access to the Internet.

What A Firewall Can Do

� First of all, in general terms, firewalls guard against unauthorized access
from outside the protected local network but allow access from within the local
network to the outside. A more intricate firewall scheme will ensure that certain
entities within the local network are prevented from accessing certain sensitive
documents inside, as well as prevent users from within the local network from
sending confidential, sensitive, or vulnerable data outside the firewall.

� A firewall provides a single choke point where security, audit, tracking (of
logins, Internet usage, etc.), and other management functions may be concen-
trated into a single system. Security alarms can also be set.

� Firewalls may also serve the function of Network Address Translator
(NAT), by which it can alter data in packets to change the network address,
which means one set of IP addresses is used for local network traffic and another
is used for external traffic. The firewall would have a NAT box installed to make
all the requisite IP address translations. In this fashion, the firewall hides all
local network IP addresses. Moreover, behind the firewall in the local network,
the use of a distinct set of IP addresses means there is no conflicting intersection
with IP addresses from outside.

What Firewalls Cannot Do

� A firewall cannot thwart attacks that go around it. There might be a
dial-out server behind the firewall, for instance, that circumvents it by dialling
directly to an ISP.

© 2007 by Taylor & Francis Group, LLC

252 7. Electronic Mail and Internet Security

� If there are hackers within the local network, the firewall will not detect
them. Possibly, an employee of a corporation operates in concert with Mallory
outside the corporation to steal vital data by giving him needed passwords. No
firewall can prevent this.

� A firewall is not an antivirus program. Thus, infected files or programs may
get through. A firewall is not the place for virus-control software, since there are
simply too many ways for viruses to be sent. It would be virtually impossible
for a firewall to filter every piece of datum for a possible virus. Furthermore,
even if it could be implemented, it would still guard against viruses only from
the Internet. There are viruses that come in CDs, via modems, as well as via
the Internet. A better mechanism is to have antivirus software installed in every
individual computer in the local network.

� A firewall is only as secure as the operating system (OS) in which it sits.
If there are weaknesses in the OS, a firewall cannot protect against them.

� Basic Kinds of Network Firewalls

1. Packet Filters — Screening Routers: A simple firewall configuration
is called a packet filter, which records the permitted origins and target IP
addresses, as well as port number. (Port numbers are integers ranging
from 0 to 65,000, which allow data to be sent directly to a specific device
that is “tuned in” to the designated port on a target computer. Port
numbers less than 1024 are for use and assignment only by a systems
administrator. Typically, a port on a computer is specified by the IP
address [of the computer on which the port is active], followed by a colon,
and the number of the port, such as 123.214.2.7:60.) If a packet has
an address that is not on its list, it is discarded. Given its simplicity,
this type of firewall is both efficient and transparent to users, as well as
being inexpensive to implement. However, this very simplicity makes it
vulnerable to such attacks as network layer address spoofing.

Spoofing: In general (not necessarily computer-related) terms, spoof-
ing means assuming another entity’s identity. In a computer context,
IP spoofing, faking the origin of a message, was an idea tossed around
the cryptographic community in the 1980’s. It first appeared in reality
when there was a problem discovered with the TCP protocol, called se-
quence prediction. Unfortunately, IP spoofing is a problem intrinsic to the
TCP/IP model. Yet there are measures to be taken as we will see below.
First, we look at some spoofing attacks.

In the case of Mallory, say, trying to breach a firewall, he might use a
(source) IP address of a local network host in the hope of his packet
being delivered by a system that “trusts” the IP addresses of internal
hosts. Some examples of IP spoofing are man-in-the-middle attacks (see
page 123). For instance, there is the routing redirect attack, where data
are redirected from the original host to Mallory’s host. There is also
the source routing attack where Mallory redirects individual packets. IP

© 2007 by Taylor & Francis Group, LLC

7.4. Internetworking and Security — Firewalls 253

spoofing is used almost always in denial-of-service attacks, wherein Mal-
lory might spoof a source IP address to thwart tracing his steps, and
thus stopping the attack is made that much more difficult. (Typically a
denial-of-service attack [DOS] is one that impedes the normal functioning
of communications sites, which can invovle anything from disrution of the
entire network to suppressing all messages to a particular target site, or
the opposite, namely overloading the network with messages.) These are
but a few of many attacks involving spoofing.

Diagram 7.8 Simple Firewall: Packet Filter

I
N
T
E
R
N
E
T

Permitted Outgoing←−−−−−−−−−−−−−−−−−−
IP Addresses

F
I
R
E
W
A
L
L

Permitted Incoming−−−−−−−−−−−−−−−−−−→
IP Addresses

L
O
C
A
L

N
E
T
W
O
R
K

2. Stateful Inspection Packet Filters — Dynamic Filtering: Since the
aforementioned packet filter firewall bases its decisions on whether the IP
address or port number correspond to those listed in the packet filter’s
configuration, the filtering process is static. However, there is a method-
ology wherein it is possible to incorporate the notion of the state of a
connection into a packet filter. This is accomplished by using a state ta-
ble and some data in the TCP headers to record those packets previously
given access within a connection. In other words, stateful inspection keeps
track of an IP packet over a period of time; that is, it “remembers” the
interaction between the local network and the Internet. This makes it
possible to thwart unauthorized incoming traffic. This implementation of
a packet filter is called stateful inspection packet filtering. Packets leav-
ing the local network that require a particular kind of incoming packet
are recorded. Any packets coming into the local network are allowed only
if they embody an appropriate response. Whereas static packet filtering
essentially checks only headers, dynamic filtering of packets looks at the
packet in context, namely, all the way to the application layer. With dy-
namic filtering, a network administrator is allowed to define the guidelines
to satisfy the requirements of the local network.

© 2007 by Taylor & Francis Group, LLC

254 7. Electronic Mail and Internet Security

3. Application-Level Gateways — Proxy Servers: First we get some
terminology in order. A server may be viewed as a program, or computer,
that provides services to other programs, or computers. A proxy server is
a server that acts as a go-between for a user in a business enterprise, say,
and the Internet so that enterprise can ensure security and control, as well
as possibly caching. A cache is a memory location that stores data for
quick access. For example, if a user requests a WWW page and the proxy
server has a cache with that page already in it, downloaded previously for
another user, then that page can be forwarded immediately to the next
user on request. This saves a great deal of time over the server having to
actually request the WWW page from where it really sits on the Internet.
Proxy servers are also called application proxies, since they require two
ingredients, a proxy server and a proxy client. Suppose that a user, Alice
in the local network wants to connect to a service on the Internet. Her
request, together with her authentication ID, is first sent to the proxy
server at the gateway/firewall using a TCP/IP application such as HTTP
or FTP. The proxy server, acting in the role of the Internet server, assesses
the request, and based on the local network security policy allows or denies
Alice’s wish. If approved the proxy server sends the data, as TCP pieces,
to the proxy client, which contacts the actual Internet server. Then con-
nections are established between the Internet server and the proxy client,
which relays them to the proxy server for transfer to Alice. Hence Alice’s
outbound connections are always made to the proxy server, and the Inter-
net’s connections are always made with the proxy client. There is never a
direct connection between Alice and the Internet server.
Application gateways execute intricate record keeping and audit of traffic
passing through them, as well as the traditional access restrictions required
of any firewall. These firewalls may be used as NATs (see page 251).
The reason is that the data exit the firewall after having been processed
by an application, which usually conceals the source address of the data.
Thus, the complexity of this type of firewall slows performance and reduces
transparency. On the other hand, they are more secure than packet filters
and render thorough audit records. Moreover, since they do not operate
at the TCP/IP level, rather at the applications level, they need to screen
only a small number of permissible applications.
There are several more advantages to the use of application gateways.
They recognize and administer high-level protocols such as HTTP and
FTP. At the same time, application gateways present the semblance that
they are connecting directly with external servers. They can also be em-
ployed within the local network to route services to other servers therein.
Lastly, these gateways can be used for caching (as described above), and
may be employed for user authentication.
There are some disadvantages to application gateways such as the fact
that the local network cannot run a network server on the firewall server.
Also, if a new protocol has to pass through the gateway, a new proxy has to

© 2007 by Taylor & Francis Group, LLC

7.4. Internetworking and Security — Firewalls 255

be implemented, which causes inefficiencies. Moreover the complication of
the process further reduces efficiency since modifications to configurations
often have to be made.

Diagram 7.9 Application-Level Gateway/Firewall

I
N
T
E
R
N
E
T

Application Gateway

←→

P
R
O
X
Y

C
L
I
E
N
T

−−−−−−−−−−−−−−→
Application

Protocol Analysis←−−−−−−−−−−−−−−−−

P
R
O
X
Y

S
E
R
V
E
R

←→

N
L E
O T
C W
A O
L R

K

4. Circuit-Level Gateway: These firewalls are very fast but have limited
security checks. They are a type of proxy server where a virtual “circuit”
is established between the local network and the proxy server, which re-
ceives requests, via the circuit, from Alice in the local network, and after
changing the IP address delivers data to the Internet host. Any user out-
side the local network sees only the IP address of the proxy server, and
when it receives a response, it is relayed back through the circuit to Alice.

The security checks are restricted to the firewall’s checking of permissions
for Alice to send her message to the Internet, based on local security policy
and whether the target Internet host has permission to receive Alice’s
data. If a connection is established, no further checks are done. Hence,
circuit-level gateways are best used when Alice is a trusted local network
user.

These gateways transmit TCP connections, such as TELNET, wherein
once the connection is established the firewall forwards data unrestricted.
This makes circuit-level gateways more secure than static packet filters but
less so than application gateways, since there is no applications-level check-
ing. The circuit-level firewall security is essentially the decision pertaining
to which connections will be permitted. Whereas the applications-level
gateway operates (necessarily) at the applications level, the circuit-level

© 2007 by Taylor & Francis Group, LLC

256 7. Electronic Mail and Internet Security

gateway functions at the session level, which explains the means by which
the proxy sets a virtual circuit between Alice and the Internet host on a
session-by-session basis.

Disadvantages to the circuit-level gateways are that they are restricted to
TCP protocol access, they have limited ability to audit events, and they
cannot interpret the application protocol being employed.

Now we turn to a circuit-level gateway implementation, which is consid-
ered to be an Internet standard firewall. First, we need to expand our
understanding of several notions. On page 223, we (informally) defined
the term (computer) host to mean those computers that provide services to
other computers and to users on a network (such as the Internet). There is
more to it. A host has associated with it a host number, and coupled with
its network number forms its unique IP address (see page 224). The host
number is that part of the IP address that determines which computer on
the subnetwork is being addressed. (A subnetwork is a set of computer
systems under the control of a single administrative domain that uses a
specific network-access protocol. Forming subnets, subnetting, allows a
network supervisor to segment the host part of an IP address into more
than one subnet, which is interconnected but an independent portion of
a network.) The Network number is that part of the IP address that
designates the specific network to which the host belongs.

The term IP reachability is often used synonymously with Internetworking,
which means any technology and associated mechanisms allowing commu-
nications across disparate computer networks. The following firewall has a
basic function, which is to provide hosts on either side of it to communicate
without direct IP reachability.

� The Socks Firewall/Proxy

SOCKSv5 is an IETF standard (see [75]) known as the Authenticated Fire-
wall Traversal (AFT). SOCKS (derived from SOCK etS) is a networking
proxy protocol allowing hosts on one side of the SOCKS server to access
hosts on the other side of the SOCKS server without direct IP reachability.
When used as a firewall, SOCKS redirects requests for connections from
both sides of the SOCKS server; therefore it acts as a proxy server. The
SOCKS protocol makes connection requests, establishes proxy circuits,
relays data, and authenticates clients. This is accomplished as follows.

First an application client, Bob, sends the SOCKSv5 server a request for
connection. If the request succeeds, Bob sends a list of authentication
schemes that he can support. Then the SOCKSv5 server selects one, or
if none of the methods intersects nontrivially with the network admin-
istrator’s security policy, no connection is made with Bob. If a method
is available, the SOCKSv5 server sends the choice to Bob, after which
authentication is set up between Bob and the server.

© 2007 by Taylor & Francis Group, LLC

7.4. Internetworking and Security — Firewalls 257

Once authenticated, Bob sends his request to the SOCKSv5 server, and
that request must contain the IP address of the application server with
which Bob wishes to connect. Then the SOCKSv5 server evaluates Bob’s
request and either rejects it or accepts it. If it is accepted, then using the
address sent by Bob the server connects to the specified application server
and establishes a circuit between Bob and it, notifying Bob in the process.
Once established, the circuit conveys data between Bob and the external
server with the SOCKSv5 server screening each fragment of the data and
relaying them between the two.

There is an earlier version of the protocol, SOCKSv4, but it had some
issues that were not fully considered or were omitted altogether such as
authentication, which SOCKv5 addresses completely. SOCKSv5 is used
as a firewall, proxy server in VPNs, as well as a single communications pro-
tocol that authenticates users and establishes a communications channel.
SOCKSv5 uses the same channel for both authentication and communica-
tion establishment, which has a higher degree of integrity guarantees built
into the process. Moreover, it does so without direct IP reachability.

At this juncture, we need to define another concept. A UDP is a User
Datagram Protocol, which is a communications protocol providing service
for network communications that use IP. In fact, UDP is an alternative to
TCP. UDP actually transfers what is called a “datagram” from one com-
puter to another. A datagram is an independent data unit not requiring
preprocessing in order to be transported from origin to target site on the
network. Datagram is a term that has been replaced by the word packet,
and either term is simply meant to refer to any message unit that the IP
handles and the Internet transfers from one site to another. UDP differs
from TCP in that it does not keep track of the order in which packets
arrive at the target site. Thus, since UDP does not process the sequence
of packets, time is saved, so UDP is used over TCP when there is only a
small amount of data to process. Both TCP and UDP are transport layer
mechanisms.

SOCKS may be configured to work with virtually any application, and
it can set up not only TCP connections, but also UDP connections via
a proxy. UDP capacity is another improvement of SOCKSv5 over its
former version. This is a valuable addition since UDP provides a couple
of services not available with TCP. One is an (optional) capacity, called
a checksum, meaning a value related to the contents of a packet, sent
with the packet, or stored to detect if the data have been altered during
transmission. The other UDP feature (over TCP) is that it provides port
numbers to help differentiate user requests. SOCKS uses sockets to record
and track a given connection. (Think of a socket as one endpoint of an
interprocess communication link between two entities on a network, and
each entity establishes their own socket.)

5. Kernel Proxy Firewall: The fifth and latest generation of firewall is the

© 2007 by Taylor & Francis Group, LLC

258 7. Electronic Mail and Internet Security

most intelligent. It has the capacity to do stateful inspection of network
packets at every protocol layer of the network stack. It does so via the
existence of a proxy within the kernel (core of the firewall) and relays
packets on a session-by-session basis using a custom TCP/IP stack. In
this fashion, each packet is screened at every layer from the physical to
the application and back. Yet, despite this complexity, the filtering can
be done efficiently. It accomplishes this via the kernel embodying the full
set of available proxies. The kernel stands ready to proxy any protocol
layer and execute full security checks.

The proxy server examines each incoming packet against a network secu-
rity policy. If the packet passes this security point, it is checked against
existing sessions. If the packet belongs to one, it is relayed to the proxy
stack for that session. Each such proxy stack is dynamically built for each
session. If the packet does not belong to an existing session, a new proxy
stack is created and the packet is relayed to that stack for analysis.

Each of the dynamically created stacks analyze the network packet for
those protocols determined by the specific session. Each packet may be
discarded at a given layer if it does not meet security standards, or it may
be modified at the pertinent protocol proxy. Furthermore, each proxy
layer records state information for a given session.

If there are particular requested services, the proxy establishes an appli-
cation layer extension. This renders the specific services, such as caching,
without sacrificing efficiency. If no such additional services are needed,
the packet does not go to the applications level.

There is also a native network stack, which stands alone without changes
and has its own separate security policy allocated to it. Packets may be
passed to the native stack after passing security checks/modifications, or
the packets may be delivered to other computers, if so destined.

The new firewall architecture marries the need for some of the best possible
security with exceptional performance. It still suffers from the failing of
all firewalls as outlined on page 251, of course, but is a fantastic stride
forward for network security.

There are hybrid systems employing combinations of the above firewalls
using what is called a bastion host, which is a host that a local network designates
as the only computer allowed to be accessed directly from the Internet and is
used to shield the local network from security breaches. Usually, bastion hosts
are stages for either application-level or circuit-level gateways. An example
would be what is called a screened subnet firewall wherein a packet filter firewall
is positioned on either side of the bastion host, thereby creating an isolated
subnetwork. Another example is one configured to have both the packet filter
and application gateway firewalls positioned on either side of the bastion host.
Numerous such configurations are possible. The end goal is maximum security
with minimum time.

© 2007 by Taylor & Francis Group, LLC

7.5. Client–Server Model and Cookies 259

7.5 Client–Server Model and Cookies

We have informally discussed client-server model applications throughout
the text such as SSL in Section 7.3. Now we look at the general nature of such
models, largely from the perspective of “cookies,” which we will define and study
in detail below. The so-called client-server model is one of the central features
of Internetworking. It is time to settle on a general definition of these terms.

� Client-Server Model

A client, when considered as part of software, is a computer program (al-
though we may use Alice and/or Bob in these roles) that relies on a server to
perform some operations. (In the client-server model, the term “program” may
be replaced by the term “computer” on which the program runs, sometimes
called a “host computer,” but this computer is typically employed for more
tasks than just the client-server architecture.) Think of a client as a “requester
of services.” A server in this context is a computer program that provides access
(for the client) to WWW formats and protocols (or to where HTML documents
are stored). Think of a server as a “provider of services.” The client-server
model is a relationship between two programs in which one program, the client,
makes a request of the other program, the server, which fulfils the request.

Client-Server Origin and Role: The client-server model was introduced
in the 1980’s as message-based modular software intended for use over a network.
The motivation was to improve functionality, versatility, interoperability, and
scalability over a single mainframe computer with time sharing. It is possible to
configure the client-server architecture so that it operates on a single computer;
in other words, the same machine serves the role of both client and server.
However, the intention for, and full value of, the client-server model is realized
over a network with physically separated client and server machines. This is
because the client-server model was introduced largely to address the limitations
of file-sharing architecture where the server downloaded files from the shared
location to the desktop environment. This type of architecture was strained
by a large number of online users and large volumes of data. The client-server
architecture, in contrast, was a means by which the file server was replaced by
the database server. By employing a database management system (DBMS),
user enquiries could be answered directly, thereby reducing network traffic via
an enquiry and response rather than total file transfer. The term Intranet means
the employment of Internet technology for a given organization to implement
client-server applications. To do this, a corporation, for example, would merely
have to change its code on an HTTP server, as opposed to updating the client
code on numerous desktop computers in its organization.

Among the simplest forms of servers are the file servers, whereas among the
more advanced servers are the database servers. As mentioned earlier, use of a
file server to transfer data over a network slows the process considerably. In the
client-server model, the client sends a request to a server, which processes the

© 2007 by Taylor & Francis Group, LLC

260 7. Electronic Mail and Internet Security

request on its own power to find the requested data rather than transferring all
the information back to the client to find its own data.

Client-Server and HTTP: On page 225, we were introduced to HTTP
and shown its application in protocol layers studied in Section 7.3. Here is how
HTTP fits into the client-server model. When Alice opens her WWW browser (a
client software program used for locating and viewing different types of Internet
resources such as data on a WWW site), she indirectly makes use of HTTP.
Each WWW server contains an HTTP daemon denoted by HTTPD, which is
a continuously running program (by itself under the operating system) whose
sole purpose is to (wait for and) handle requests that a given computer system
receives periodically. The etymology of daemon is from the Greek meaning
an attendant supernatural being, on a hierarchy between gods and humans
(pronounced dee-muhn).

Now we need to look at another Internet notion. A URL is the acronym
for Uniform Resource Locator, which is the global address associated with given
data. The first part of the URL specifies which protocol to use, and the second
part indicates the domain name. For example, http://www.math.ucalgary.ca/˜
ramollin/ indicates that this is a WWW page and the HTTP protocol should
be used. The second part is the domain name where my homepage is located.

Alice’s browser is an HTTP client that makes requests to a server by, say,
opening a WWW file via the typing in of a Uniform Resource Locator (URL).
By so doing, her browser formulates an HTTP request and sends it to the IP
address indicated by the URL. The HTTP daemon at the server site receives the
request and sends back a response in the form of requested files. Unfortunately,
HTTP is what is known as a stateless protocol, which means that each time
Alice visits a WWW site (or even when she just clicks to another location from
that site), the server sees this as her first visit. In other words, the server forgets
all that has transpired after each request unless there is a means to somehow
“stamp” Alice so that the server will remember the details of her last visit. The
following is a mechanism for accomplishing this task.

� Cookies

The origin of the term “cookie” is uncertain, although its inventor, Netscape,
claims it was a name chosen at random. Some claim that it was derived from a
similar Unix operating system transaction called a “token.” On MAC computers,
the cookies are kept in a list called “magic cookie,” whereas on IBM CPUs they
are in a file called “cookies.txt.”

What is a cookie and how does it fit into the client-server model? In simplest
terms, a cookie is data (for future use) that are stored by a server on the
client side of a client-server model. For instance, a cookie might record Alice’s
preferences when visiting, QQQ.com. The cookie is a means by which the server
can store its own data about Alice on Alice’s own computer.

Analogy: An analogy is a voucher Alice gets when she brings her shoes
to a cobbler, Corbett, for example. If she returns for her shoes without that
voucher, Corbett will not be able to locate her shoes. To him, she could be

© 2007 by Taylor & Francis Group, LLC

http://math.ucalgary.ca
http://math.ucalgary.ca

7.5. Client–Server Model and Cookies 261

a new customer. Alice’s voucher is necessary for Corbett to maintain record
keeping, and it establishes a formal relationship (which we will call a state)
between him and Alice.

Cookies and HTTP: In Internet terms, a server, when returning an HTTP
object to Alice, includes a cookie that has a description of the range of URLs for
which that cookie is valid. Any future HTTP requests made by Alice that fall
in that range will include the current value of the cookie from Alice sent back
to the server. This means that she can shop online and store information about
the currently selected items, and it frees Alice from retyping her user ID for each
visit. The sites at which she shops can store preferences on her computer and
have Alice supply those preferences every time she visits that site. For instance,
the QQQ.com server provides the cookie to Alice’s browser, which stores it in
its memory as a text file. Each time her browser sends a request to QQQ.com
(when she types in its URL for example), the cookie is sent back to the server.

Types of Cookies: There are different types of cookies. For instance,
a session cookie (or transient cookie) is one that is erased when Alice closes
her browser, because the session cookie is stored in temporary memory and
discarded after the browser is closed. These transient cookies do not obtain
information from Alice’s computer. Rather, they store data in a session ID
format, which does not explicitly identify Alice. Another type of cookie is the
persistent cookie (also called permanent or stored cookie), which is a cookie set
with an expiration date and is stored on Alice’s hard drive until it expires (or
else Alice, herself, deletes it). (A hard disk, also called a disk drive, is part of a
unit that stores [and provides efficient access to] large blocks of data on one or
more electromagnetically charged surfaces.) Persistent cookies gather informa-
tion about Alice, including her WWW surfing behaviour or her preferences at
QQQ.com. The QQQ.com server may use this information to present Alice with
a customized welcome page with, say, “Hello Alice” the next time she visits.

Alice’s browser automatically updates her cookies every time she revisits a
site, since once the browser is closed, the cookies are resaved to disk.

Effect of Cookies: In the final analysis, a cookie is simply a piece of text,
not a program, and only Alice’s browser can store cookies on her hard drive, if
it is a persistent cookie. The data are stored in a special file called a cookie list
and is done without the knowledge or consent of Alice. However, it cannot be
used for, say, a virus, so it is harmless in that regard. Moreover, the number of
cookies allowed for storage on Alice’s hard drive is also restricted. Most browsers
conform to RFC 2109 (see [76] and page 240), which puts a limitation of 300
cookies that may be stored on a given hard drive (with a 4096 byte-per-cookie
maximum). This involves a limit of twenty cookies per WWW site, so if fifteen
sites maximize the cookies on Alice’s hard drive, then the next time a cookie is
to be set, Alice’s browser will discard her least-used cookie to free space for the
new cookie.

When Alice returns to QQQ.com, her browser will automatically and, again
without her knowledge or consent, transmit the cookie containing her personal
data to QQQ.com’s server.

© 2007 by Taylor & Francis Group, LLC

262 7. Electronic Mail and Internet Security

Cookie Ingredients: Cookies transport between server and client as an
HTTP header, and the formal specifics of this header as defined in RFC 2109.
There are six parameters that can be assigned to a cookie. The first two are
mandatory and are set by pairing them together. The others (set optionally),
configured manually or automatically, typically are separated by semicolons.
1. Name: This is any alphanumeric value (excluding semicolons, commas,

and white space) used to identify the cookie.

2. Value: This cookie value may be any scalar.

3. Expiration Date: This determines the valid lifetime of the cookie and,
if not explicitly set, defaults to the end of the session as long as Alice’s
browser is open.

4. Path: This sets the subset of URL paths on a domain for which the cookie
is valid. If a path is not specified, the default is the path of the document
that created the cookie.

5. Domain: This is the textual equivalent of a numerical IP address. When
searching a cookie list, a comparison is made between the tail of the valid
host domain name (such as QQQ.com) and the tail of the cookies on the
list. For instance, it might be shopping.QQQ.com, which indeed satisfies
the tail matching for the domain QQQ.com. Because of this tailmatching,
no domain is allowed to set a cookie with fewer than two dots, in order
to distinguish among tails such as those containing .com, .ca, .gov, and
so on. Thus, for instance, QQQ.com would not be an allowed cookie on
the list. Moreover, the server setting the cookie must be a member of
that domain. For instance, WWW.QQQ.com cannot set a cookie for the
domain WWW.RRR.com, since the security breaches would be severe.

6. Secure Label: If this label is set to TRUE, then the cookie may be sent
only over a secure channel, typically HTTPS (see page 243). The default
is FALSE, since most WWW sites do not need secure connections.

Basically cookies are pieces of textual data generated by a WWW server
for storage on a client’s computer for future access. Cookies are embedded in
HTML information that flows between the client browser and the server. Most
often both the storage of, and access to, cookies goes unnoticed by the client.
However, any client, concerned about privacy issues can set his or her computer
to notify of any attempt to set a cookie and will ask permission. Of course,
this may become a headache since there will be a lot of “alerts.” The crucial
issue is for the client to be “aware” of the issues, which this section addresses.
Cookies cannot damage your computer or give out private data on you without
your giving it out at a WWW site in the first place. The bottom line is that
cookies were meant as a mechanism to make it easier for you to access your
favourite WWW sites by storing information, so you do not have to login each
time you visit, a process that was impossible before the advent of cookies due
to the stateless nature of HTTP.

© 2007 by Taylor & Francis Group, LLC

Chapter 8

Leading-Edge Applications

8.1 Login and Network Security

This chapter is adapted from [64] to suit this text. The following describes
mechanisms for securely logging in to a computer.

� Login Security

To login (also called signing in) to a computer, we must provide a passphrase,
which may be as simple as a single word, called a password, or a sequence
of words used to identify us uniquely for secure access to the system. The
encrypted passphrase will be accompanied by our plaintext username ID. A
user ID, authenticated by its associated passphrase, determines the privileges
allotted to the user, which may vary from personal e-mail access to superuser
status, where actions may be executed that are protected by the operating
system.

If we are trying to login from home, or a hotel when on a trip, to gain
access to a computer at work, for instance, this is called remote login. In this
case, passwords may travel over unsecured channels, making them susceptible to
eavesdropping by Eve or interception by Mallory. Mechanisms exist for dealing
with these situations. E-mail security via PGP and S/MIME were described
in Chapter 7.2. Secure session-based communication via SSL was explored in
Section 7.3. Now we delve further into password protection.

On page 168, we described the use of one-way functions in the role of pass-
word security. Also, we have already been introduced to the concept of a
“salted” message (see Footnote 2.2 on page 125).

� Why Use Salt?

The purposes behind salting a passphrase are threefold.
1. Eliminating the visibility of duplicate passphrases on a user’s file.

2. Increasing the bitlength of the passphrase to thwart password guessing.

263
© 2007 by Taylor & Francis Group, LLC

264 8. Leading-Edge Applications

3. Helping thwart attacks such as the dictionary attack (see see page 128).

� Proactive Password Selection

Since the average person is notoriously lazy about choosing proper pass-
words, instead selecting easy-to-remember words and neglecting security, there
needs to be a mechanism for ensuring that user-chosen passwords are accept-
able. This is where a proactive password checker comes into play. This built-in
checker will determine if a user-selected password is acceptable and reject it if
not, prompting the user to try again. System enforcement may contain some of
the following criteria.

Passphrase Selection Criteria

Parts 1–4 below refer to the criteria for a proactive checker itself, whereas
the remainder are more for a given user to consider when choosing a passphrase.

1. All passphrases must have at least ten symbols.

2. There must be at least three of: lower case letters; upper case letters;
numeric; and characters such as !,#,),&,*,�, and so on.

3. No symbols should be repeated.

4. No actual words should be used.

5. No personal data such as birthdays or telephone numbers should be used.

6. Memorize the passphrase. Never write it down and do not store it on your
computer as a file.

If properly implemented, the above criteria ensure that a brute-force attack
is made less likely to succeed. There exist methods for creating effective and
efficient passphrase checkers that do not require lots of space and time as would,
say, a list of stored “unacceptable” phrases.

Attacks on Passwords

The following list encompasses some current password attacks.

1. Password sniffing : This is an attack in which Eve listens to data traffic
that includes secret passwords in order to capture and use them at a later
time.

2. The birthday attack : This attack is described on page 128.

3. Spoofing : This type of attack is described on page 252.

4. The dictionary attack : This attack is described on page 128.

5. Password-cracking software is available over the Internet.

© 2007 by Taylor & Francis Group, LLC

8.1. Login and Network Security 265

6. Social engineering attacks: This refers to a group of attacks that exploit hu-
man weakness or gullibility. These techniques consist of employing nondig-
ital mechanisms to gain digital data from the victim. One of the most
common is for the criminal to masquerade as a bank official to get the
victim’s PIN usually based on a claim that it is required to fix something
with the account. These attacks, therefore, require that the victim’s trust
is obtained so that the victim will disclose information to the criminal.

7. Packet sniffers: These are programs that monitor, capture, or analyze net-
work traffic, or databases. For instance, a database might be scrutinized
by Mallory to detect passwords. If he is successful at gaining access to a
system-level password, Mallory can create a new account that can be used
at will as a back door to get into the network and its resources, includ-
ing the altering of core system files, such as the password for the system
administrator account, the list of server services and permissions, and the
login information for other machines, containing critically confidential in-
formation. This could create chaos since the daily workings of the network
are up for grabs, and Mallory’s network packet sniffer can be modified to
include his information or change system information in a network packet,
forcing network connections to behave erratically, at best.

Item 7 above also has legitimate uses as follows. A snoop server is a server
that uses a packet sniffer to capture network traffic for analysis. For example, an
employer might want to use a snoop server to monitor the WWW sites visited
by the employees. Snoop servers typically operate in promiscuous mode, which
is a networking mode allowing a network device (a unit of removable hardware)
to access all packets, irrespective of their target addresses. In this manner, a
snoop server, for instance, can seize any data packet, copy, and store it to a
file for later analysis and reporting. For example, the Sun operating system,
Solaris, has a feature called the snoop command, permitting administrators to
capture packets with an attendant packet description or summary. However,
this also permits intruders (running the Solaris OS) to scrutinize the traffic over
the network.

In general, a promiscuous mode is used for legitimate monitoring of net-
work activity. This might involve the performance of diagnostic testing to try
to resolve such problems as bottlenecks in the flow of traffic or general trou-
bleshooting to identify a variety of performance problems. Modern sniffers can
be configured to automatically alert administrators when a performance prob-
lem is triggered by some preset standard that they set as a local bound.

For the following discussion, we should expand our understanding of the
notion of a hard drive, the basic definition of which was given on page 261. We
extend it here to get a better idea of how it functions. A hard disk is essentially
a collection of stacked disks, each storing data electromagnetically recorded in
concentric circles called tracks. Two heads, one located on each side of a disk,
read or write the information on these tracks as the disk spins. The spin speed is

© 2007 by Taylor & Francis Group, LLC

266 8. Leading-Edge Applications

anywhere from 4500 to 7200 rpms. Think of the comparison with a phonograph
record and its player having a phonograph arm (“head”) to “read” the music.
Now we look at packet sniffers more closely.

A packet sniffer can be configured to store copies of packets in memory or
hard drive, which might be done via temporary storage in a buffer for later
analysis. Employers might want to monitor any number of employee activities
such as who visits the employee’s site; what an employee downloads, including
streaming audio and video; contents of incoming and outgoing e-mail messages;
which sites the employee visits; and the contents of what the employee views at
a given site. The amount of traffic scanned by a given packet sniffer will depend
upon the location of the computer in the network. If it is located in a relatively
secluded area of the network, then the sniffer will be able to scan only a tiny
portion of traffic over the network, but if it is the principal domain server, for
instance, the packet sniffer will be able to scan virtually all of the traffic.

The above being said, Mallory still likes packet sniffers, since if successful,
he can use them to seize passwords from data packets traversing the network
and wreak havoc as described above. One method of thwarting Mallory is to
encipher the headers of packets using SSL in browser-based traffic (see Section
7.3).

Before going into a deeper discussion of ethernet and promiscuous mode, we
look at the organization that developed the standards.

IEEE

IEEE, pronounced I-Triple E, is the Institute of Electrical and Electronics
Engineers Incorporated. The AIEE, American Institute of Electrical Engineers,
which was founded in 1884, merged with the IRE, Institute of Radio Engi-
neers, in 1963 to form IEEE. The primary function of IEEE, for our interest, is
the development of standards for communications security, the most famous of
which are the IEEE 802 standards for (LAN)s Local Area Networks and WANs,
Wide Area Networks. A LAN is a collection of computers and their attendant
mechanisms sharing a common communications channel or wireless linkage and
(usually) a shared server. The common server has applications and data storage,
which may be accessed by the LAN users who may vary in number from a couple
to several thousand. A WAN differs from a LAN in that it is a geographically
more dispersed network, which usually includes shared user networks. In size
between a LAN and a WAN is a MAN or Metropolitan Area Network, typically
meaning the interconnection of networks in a city into a single large network. A
MAN, of course, provides a more efficient connection to a WAN. For more infor-
mation on IEEE and its standards, visit http://www.ieee.org/portal/index.jsp.

Ethernet and Promiscuous Mode

Ethernet (as specified in IEEE 802.3) is the most commonly employed Lo-
cal Area Network (LAN). Ethernet evolved from a framework called Alohanet,
named for the Palo Alto Research Center Aloha Network, which was developed
into Ethernet by XEROX then further expanded later by DEC, Intel, and XE-
ROX. There exist Ethernet configurations that provide transmission speeds up

© 2007 by Taylor & Francis Group, LLC

http://www.ieee.org

8.1. Login and Network Security 267

to 10 billion bits per second, called Ten-Gigabit Ethernet, which is specified in
IEEE 802.3a. The future of all interconnections of LANs, WANs, and MANs is
generally predicted to be via the Ten-Gigabit Ethernet.

Now that we know the basics of Ethernet, we describe the use of packet
sniffers in this context. Ethernet was designed to filter out all data traffic not
belonging to it. When a packet sniffer is installed in Ethernet hardware, that
filter is turned off and the hardware goes into promiscuous mode. Thus, if Alice
and Bob are communicating over an Ethernet channel with a packet sniffer
attached, Mallory can read all the traffic between them. Packet sniffers on an
Ethernet consist of the following parts.

Packet Sniffer Components

1. Hardware: In promiscuous mode, every packet is received and read by a
network adapter (sometimes called a network interface) which is a physical
device such as a card (and its software driver); which connects a host
computer to network traffic, allowing the host to send and receive packets.

2. Capture Driver: This type of driver captures the network traffic and
stores it to a buffer, for instance. A driver, in general, is a program that
controls a particular device, such as a printer or disk drive. Either the
driver will come with the operating system or will have to be loaded when
the device is added. Think of a driver as a translator between the device
and the programs using the device.

A device driver is a program that controls a specific device such as a
printer. Thus, we may (informally) think of a capture driver as a program
that controls the capture of information packets for the packet sniffer.

3. Buffer: The captured data from the network are stored in a buffer until
they can be analyzed.

4. Protocol Analyser: This aspect of the packet sniffer strips off any encod-
ing and analyzes the data (see Appendix G).

The antithesis of promiscuous mode is nonpromiscuous mode wherein pack-
ets are scanned and passed on if those data packets are not theirs. Only the
target site device receives and reads the data in this mode.

Now we return to the issue of login security. We have addressed the issue
of password selection and checking, remote logins, and attacks that may obtain
passwords. We turn to a modern secure method for password storage.

� Security Tokens

A security token is a special device (a physical object usually ranging in
size from that of a housekey to that of a credit card) that a user carries for
the purpose of authorized access to a network. For example, the device may
be embedded in a key fob, which has the physical appearance of a key but has
built-in authentication mechanisms consisting of the following:

© 2007 by Taylor & Francis Group, LLC

268 8. Leading-Edge Applications

1. The user’s PIN, authenticating, say Alice, as the fob’s owner.

2. A login ID, which is displayed after Alice correctly enters her PIN, allowing
her to login to the network.

Token Applications

1. A token may be embedded in a smart card, which has the physical ap-
pearance of a credit card but has the above authorization mechanisms
embedded. (We will study smart cards in detail in Section 8.3.) The login
ID is not static and may actually change every few minutes for security
reasons, so if a security token is lost, and Mallory finds it, he cannot ac-
cess the network without Alice’s PIN. Furthermore, an additional security
measure against the possibility that Mallory might launch a brute-force
attack to recover Alice’s PIN is that the device would be disabled after
a small number of attempts to enter the PIN, say, three or four. Hence,
security tokens provide one of the foremost, modern, practical methods
for the storing of secret keys.

2. Since employees of, say, a corporation need to insert their security token
into their computers for network access, the corporate administrators must
guard against human laziness. For instance, a user, such as Alice, might
decide to leave her office to get a coffee and not remove the token from her
computer, which is a security risk. To guard against this, the employers
may require that the token is needed for access to her office, the coffee
machine, the filing cabinets, the department office, the rest room, and so
on. In this fashion, the token cannot be left unattended in any reasonable
scenario. This makes such a system foolproof but not idiot-proof. (An
adage is that genius knows its limitations, but stupidity is unbounded.)

We will learn about other security options such as biometrics in Section 8.4.
For now, we turn to a remote login protocol that is considered to be the industry
standard.

� The Secure Shell Remote Login Protocol (SSH)

We describe the latest version, SSH2, which corrects failings of the original,
including susceptibility to certain attacks. Although the protocols in SSH2
described below may have many differing formats, we do not delve into that
detail. Instead, suitable references will be provided for the interested reader.
We concentrate upon the description of the main protocols and focus upon
SSH2 as a development that is on an approach to becoming the new standard
for remote login.

Before going into further explanation, we need to discuss the system upon
which SSH is based. Unix (pronounced you-niks) originated in 1969 at AT&T
Bell Labs to provide an interactive time-sharing system. In 1974, Unix attained

© 2007 by Taylor & Francis Group, LLC

8.1. Login and Network Security 269

the status of the first operating system to be written in the C programming
language. Being a nonproprietary operating system, it evolved as freeware and
eventually became the first standard operating system that could be openly
developed by virtually anybody. We may rightfully view both the client-server
model and Unix as vital developments in the evolution of the Internet, with a
focus toward computing networks and away from independent computers.

What is SSH?
Secure Shell or SSH (sometimes called Secure Socket Shell — not be be

confused with SSL — see Section 7.3) is essentially a Unix-based command
interface using PKC-oriented, secure remote login protocols. It allows a user to
execute commands on a remote computer, as well as securely move files from one
host to another. It provides strong authentication and secure communication
over an insecure channel. SSH was designed to replace insecure applications
such as Telnet and FTP (see page 224).

Basically, How Does SSH work?
The SSH mode of operation is quite simple on the surface. The host com-

puter first authenticates itself to the client, establishing a unilateral server-to-
client secure channel. Then a user, Alice, say, on a client computer employing
unilateral public-key and/or password-based protocols authenticates herself to
the server. Once the link is secure, not only can files between hosts be trans-
ported, but also other TCP/IP connections may be forwarded over that secure
link. All algorithms used to ensure security are negotiated, so if some algorithm
is cryptanalyzed, it is a simple matter to eliminate it and switch to another in
the cipher suite.

The following is a detailed description of SSH2, starting with an overview of
SSH in general.

� SSH Protocol Architecture
We will assume that Alice is the user on the client computer and she wishes

to establish secure communications with the (remote) host computer.

� Overview of SSH Protocols

1. Transport Layer Protocol: This protocol provides strong host authenti-
cation, confidentiality via strong encryption, and integrity protection from
the server to the client computer. This layer also thwarts the man-in-the-
middle attack. Moreover, it optionally supports compression. Although
there are other possible data streams over which this transport layer may
run, we assume that it does so over the canonical one, TCP/IP. The other
layers of the SSH protocol run on top of the secure tunnel provided by the
transport layer — see pages 241–242.

2. User Authentication Protocol: This protocol runs over the transport
layer protocol for the purpose of authenticating Alice to the server. The

© 2007 by Taylor & Francis Group, LLC

270 8. Leading-Edge Applications

DSA cipher is used for authentication (see page 187). Once this protocol
is completed, there is a mutually authenticated secure channel between
Alice and the host.

3. Connection Protocol: This protocol runs over the encrypted tunnel
estabilised above. It multiplexes (where multiplexing means the use of a
transmission channel to carry two or more signals at the same time) that
tunnel into numerous logical channels that may be used for a rich variety of
application-support services, including remote program execution, signal
propagation, and connection forwarding.

� SSH Protocols in Detail
SSH Transport Layer: The purpose of this layer is to ensure secure com-

munication between Alice, as the client user, and the remote server, as the host.
Once Alice contacts the server, key data must be exchanged in order to con-
struct the tunnel. With SSH2, it is mandated that DSS be used (see page 187).
The host sends its public key, called the host key eS , as identification. In order
for Alice to be certain that she is communicating with the correct server, she
must have prior knowledge of eS , for which two trust models are available.

Key Exchange Protocol
It is mandated in [95]–[96] that the Diffie-Hellman key-exchange protocol

(see page 167) be used to arrive at key agreement as follows.
We assume that p is a large safe prime; α is a primitive root modulo p; h

is a hash cryptographic hash function; and that identification data have been
exchanged in advance such as both Alice’s and the server’s ID, IA and IS , as
well as Alice’s and the server’s protocol versions VA and VS , respectively.

1. Alice generates a random number r with 1 < r < p− 1, then she calculates
cA ≡ αr (mod p), which she sends to the server.

2. The server generates a random number s with 1 < s < p − 1 and computes
each of the following:

(a) cS ≡ αs (mod p).

(b) K ≡ cs
A (mod p).

(c) HS = h(VA, VS , IA, IS , eS , cA, cS ,K).

(d) DS(HS), the server’s digital signature.

Then the server sends DS(HS) to Alice.

3. Alice certifies eS as described in the above discussion preceding the key
exchange protocol. Once done, she computes

K ≡ cr
S (mod p)

and
HS = h(VA, VS , IA, IS , eS , cA, cS ,K).

© 2007 by Taylor & Francis Group, LLC

8.1. Login and Network Security 271

She may then verify the server’s signature DS(HS). If this is valid, then
she accepts the key K as the shared secret session key, which may now be
used for encrypting communication between Alice and the server.

Upon completing construction of the secure tunnel via the transport mode
described above, it is Alice’s turn to authenticate herself to the server.

Authentication
First, the server informs Alice of the various authentication mechanisms

supported. She may choose any of these methods. For instance, the server
might send Alice a challenge that she signs with her private PKC key, allowing
the server to use her public PKC key to authenticate her.

Once the authentication of Alice has occurred, the server will typically log
her into the remote computer and provide her with a shell. Thereafter all
communications with her remote shell will be automatically encrypted. It should
be noted, however, that the SSH shell forbids login to an insecure FTP server,
for instance. The remote host is required to posses SSH-enabled software. There
is a mechanism called SFTP, which is an FTP replacement that runs over an
SSH tunnel.

There is a mechanism for avoiding the use of SFTP altogether but which
supports the SSH SFTP protocol. It is called OpenSSH, which is a version
of SSH available over the Internet, supported by the Open BSD Project ; see
http://www.openbsd.org/. It contains the SSH program, which replaces rlogin
(remote login) and telnet. Rlogin is a UNIX command allowing a user to
login to other UNIX hosts on a network and interact as if physically present
at the remote host. Rlogin is similar to the better-known telnet command.
However, both are insecure. The OpenSSH suite replaces not only these two
UNIX utilities, but also others such as ssh-add, ssh-keygen, and so on, as well
as the sftp-server. Sftp is an interactive file transfer program that operates over
an encrypted SSH tunnel, capable of using many features of SSH. In summary,
we simply use SFTP under the SSH shell supported by OpenSSH.

Given the secure tunnel provided by the transport layer, the authentication
methods do not require the level of security that would be required without
the channel. Once the transport tunnel and the user authentication with key
exchange are completed, Alice and the server can create a new channel. This is
accomplished as follows.

Connection
When the above protocols are completed, Alice and the server may negotiate

the characteristics of each new channel to allow multiplexing the single connec-
tion between Alice and the remote host. Each channel is assigned a different
number for both ends, Alice and the host, according to [50] and [97]. When
Alice wants to open a new channel, she transmits this channel number along
with her request. The host stores this information for the purpose of orienting
communications to that specific channel, which allows differing sessions to be
unaffected and prevents the main SSH connection from being disrupted. This

© 2007 by Taylor & Francis Group, LLC

http://www.openbsd.org

272 8. Leading-Edge Applications

is required since SSH sends different channels over a common secure tunnel.
There is a mechanism for these channels, called flow control, which ensures the
transmission of data in an ordered fashion; for example, the data will not be
sent to Alice, say, until she has already been alerted to the fact that a channel
is open for the message transfer.

� Analysis

SSH protects against any attempts by intervening hosts to intercept plaintext
passwords or general manipulation of data. However, certain generic implemen-
tations of SSH are insecure (see [48]). SSH2 supports PGP keys as well as the
SOCKS firewall (see Section 7.4). Last, we look at how SSH differs from SSL
(see Section 7.3). With SSL, authentication is optional, whereas it is mandatory
in SSH. A totally anonymous SSL, discussed on page 249, is susceptible to the
man-in-the-middle attack, whereas the SSH protocol has built-in mechanisms
to thwart such attacks via automatically maintaining, checking, and updating
public host keys. Also, it is more unwieldy to use the certificate management
necessary via a PKI in SSL, whereas the SSH keys are a relatively simple mat-
ter to handle. Moreover, SSH has a wide range of client-authentication options,
whereas with SSL only PKC is an option. Last, SSH has many more features
implicit in its multiplexing via the connection protocol than does SSL at any
level.

Exercises

8.1. Suppose we have a large codebook that consists of short words with corre-
sponding six-digit numbers. Devise a means of choosing passphrases from
this list based on the roll of dice.

8.2. Assume that you have a password p and each time you logon to a WWW
site the host uses a one-way function f to calculate f(p) and compares
this with a stored value. Devise a means using only this function that will
prompt you to change your password after, say, 100 logins.

8.3. The SSH protocol presented on pages 268–272, has a significant additional
feature called port-forwarding, which means that either Alice or the server
can bind a socket to a collection of specified ports. In practice, what this
means is that when Alice, say, connects to one of these ports, the call is
relayed to the other end of this particular SSH call, from which another
call is made to some other predetermined port. Effectively, this is an SSH
built-in tunnelling mechanism (see page 270 for details). Discuss the pros
and cons of such tunnels.

(Hint: Consider setting up such tunnels to avoid firewalls.)

© 2007 by Taylor & Francis Group, LLC

8.2. Viruses and Other Infections 273

8.2 Viruses and Other Infections

We begin with a description of the most common computer infection known
to the general public.

� Viruses

A virus is a hidden, and typically malicious, program that “infects” your
computer by copying itself into and becoming part of another program called
the host program, without which the virus cannot run. The effect varies from the
merely annoying to the completely destructive, such as deletion of files, erasing
of programs, or even erasing of an entire hard drive. On the other hand, they
may just flash the message “infected” without end, for instance. We will learn
about the various types of viruses and how they work in this section, and later
we will discuss other types of infections that do not need such a host program to
infect a computer. Moreover, although most viruses are written with a computer
in mind, such as those that will attack only a PC but not a Macintosh, there
are platform-independent viruses (see macro viruses below).

The most common vehicle for infection today is the Internet, and many
viruses arrive by e-mail. Downloading files from the Internet or opening an
e-mail file may trigger a virus. However, even the exchange of infected disks is
a mechanism for spreading infection.

The term “virus” from the biological realm is used here since the computer
virus acts in a similar manner to an infectious disease. A biological virus is a
string of nucleic acid (DNA or RNA) that may infect a living cell by assuming
control of it and instructing it to replicate the virus many times over. Simi-
larly, computer viruses attach themselves, replicate themselves, and spread in a
manner akin to biological viruses. They may take control of the computer’s OS,
for instance, and whenever a new piece of software is encountered, they copy
themselves to that new program, thereby infecting it. With the Internet, where
you may access resources running on other computers, there is a rich culture for
the spread of this kind of infection.

Once a program is infected with a virus program, it becomes the host. The
virus program runs secretly when the host program is run, since it stays hidden
in the legitimate program, remaining dormant until the infected program is
run (or, as we will see below, until an infected data file is accessed). A virus
may be embedded in an executable program; then, once run, the virus code is
executed first, then the original program code. The following are the aspects of
a computer that a virus attacks.

Virus Targets

Viruses may infect any of the following:
1. Executable Program Files: An executable program is a set of instructions

that can be input to the memory of a computer and executed. In other
words, it is a program that may be run as a self-contained procedure,
which consists of a main program and, possibly, one or more subprograms.

© 2007 by Taylor & Francis Group, LLC

274 8. Leading-Edge Applications

Usually, the name of such a program is all that is required to run it, merely
the typing in of the program name and requesting that the computer run
it.

2. File Directories: A computer’s file-directory system keeps track of the
location of data files, and without them the computer will not function.

3. Macros: First we define a macro as a collection of instructions stored in an
executable form, usually written to automate a few steps. Macros may be
application specific, such as a word-processing macro that executes certain
steps within that program, or general purpose, such as a keyboard macro
that types in a user’s login name when a specific short sequence of keys is
pressed on the keyboard.

Today, a virus program can be written so that, for instance, it may attach
itself to a macro and is launched whenever the macro is run. When we
discuss “macro viruses” later, we will see that Microsoft Word (MS-Word)
documents are virtually always the target since they contain programs, the
macro language, that are automatically executed when one of these “data”
files is opened.

4. System Sector: First we define a sector as one of the areas (or “pie
slices”) into which the disk is segmented. This division of the disk into
pie slices is the method of organizing it for access of data to the read-
write heads of the disk drive. Moreover, the disk is further divided into
concentric circles, so that a given area can be located via the intersection
of a given sector and the concentric track passing through it. There are
further subdivisions of the tracks into what are called clusters, which are
the storage units (usually 256 or 512 byte lengths, which are minimal in
terms of allowing the unit to be addressable).

The system sector refers to special areas on the computer’s hard drive con-
taining programs that are executed when the computer is booted. These
are not files but rather small segments of the hard disk that the hard-
ware reads as a single unit. The system sector is required for the normal
functioning of the computer, even though they are invisible to normal
programs. Sometimes this is called the boot sector. (Note that to boot
a computer, also called booting up, is the action of loading an OS into
the computer’s main memory, random access memory [RAM], meaning
the memory space that is basically used to store dynamic data — that
data that change during execution of a program. On a large computer or
a mainframe, booting is sometimes called initial program load [IPL]. To
reboot is to reload or, in the case of larger machines, to re-IPL.)

How Viruses Work: When an infected program is run, the first action is
to invoke the virus program and run it, since this is the first instruction line
of the controlling program. The second instruction is for the virus program to
check to see if the program it is about to infect has already been infected or not.

© 2007 by Taylor & Francis Group, LLC

8.2. Viruses and Other Infections 275

The mechanism by which this is accomplished is a message called a v-marker
or virus marker, which the virus program places in the legitimate program.
If the virus program encounters a v-marker, it does not replicate there since it
knows that the program is already infected. Then it seeks uninfected executable
files (those without v-markers) and infects them. If a virus begins by infecting
a program, then each time that program is run, it seeks out uninfected files.
Often the virus is embedded in a game or utility.

Once a virus program determines that there are no more files to infect, it may
begin to damage the computer and its data. The virus program may corrupt
program or data files so that they work either erratically or not at all. They
might destroy all the files on the computer, alter the system files needed to
reboot, or perform any other of a number of damaging actions.

Now we look at the evolution of a given virus from its initial infection to its
end goal attacks.

Stages of a Virus

1. Infection Stage: The virus infects some area of the computer as discussed
earlier. Some viruses then remain dormant until a “trigger” sets it in
motion while others go to stage 2 immediately.

2. Replication Stage: In this stage, the virus reproduces itself onto other
programs using the initial infected program to do so. Then each new
infected program will undergo the same replication stage.

3. Activation Stage: The virus is triggered to perform its end goal. The
trigger may be any number of events from the time of day, the date, or
any other event such as the number of times the program is executed.

4. Execution Stage: The virus performs its end goal, which may range from
erasure of the computer’s hard drive to the merely annoying, including
simply slowing down the performance of the computer.

Types of Viruses

1. Boot- (System-) Sector Virus: First we define the master boot record
(MBR) also called the partition sector, as the first sector of a computer’s
hard disk, which indicates the location of the OS and the methodology for
finding it. This is necessary for the booting of the OS into the computer’s
RAM. The MBR is also called the master partition table since it contains
a table that houses data on each of the hard disk’s partitions. The MBR
also contains a program whose function is to read the boot sector record
of that partition that contains the OS to be booted into RAM (see page
274).

These kinds of viruses infect the MBR. When a computer is rebooted, the
virus spreads its infection.

© 2007 by Taylor & Francis Group, LLC

276 8. Leading-Edge Applications

2. File Virus: File-infecting viruses attach themselves to executable program
files. Once the program is loaded, the infected program is executed and
seeks out uninfected executable files.

3. Memory-Resident Virus: This kind of virus stays in memory after it
executes and after its host program is terminated, whereas a nonmemory-
resident virus activates only when an infected program executes.

4. Polymorphic Virus: This is a particularly nasty virus that mutates every
time it infects a new program. Therefore, detection of this type of infection
is difficult since it leaves no unique trail (“signature”) to follow.

5. Stealth Virus: This kind of virus is specifically designed to disguise its
existence from virus-scanning software. For instance, if a stealth virus has
infected the MBR, then its function might be to interrupt a virus-scanning
software’s request to examine the MBR and then transmitting a (false)
copy of the original uninfected MBR.

Examples

An example of a virus that is a combination of some of the above is the
following.

Multipartite Virus: These viruses infect in one format type, then trans-
form into another. For instance, one might begin as a boot-system virus and
then move to become an attack on executable files.

An example of a memory-resident virus is the following modern-day virus
that takes advantage of features found in data-processing software.

Macro Virus: This type of virus is one of the most recent and, unlike the
others, is platform independent. In other words, it will infect those using a
Macintosh computer as well as those using Microsoft Windows, for instance.
The reason is that these viruses are programs written to attach themselves to
macros used in modern-day data-processing systems, such as MS-Word, MS-
Excel, and AmiPro. These macro languages fit the three conditions that make
them ripe for macro infection, namely, they (1) assign specific macro programs
to specific files; (2) copy macro programs from one file to another; and (3) pass
control to some macro program without the user’s explicit permission, that is,
they are automatic. The aforementioned word-processing systems were designed
to be automatic, and as such, if an infected document is opened, the viral macro
will replicate itself into the computer’s startup files. From then on, the machine
is infected and the macro virus will reside on the computer until eradicated. Any
document on the machine that uses the infected application can then become
infected. If the machine is on a network, the infection will likely spread to other
machines on the network. If a disk with the infection is shared, then the virus
will spread to the recipient’s machine. Today, macros are deemed to make up
two-thirds of all computer viruses, according to experts.

© 2007 by Taylor & Francis Group, LLC

8.2. Viruses and Other Infections 277

The typical agent for spreading macro viruses is via e-mail. The most no-
torious macro virus was Melissa, launched in 1999. Melissa was distributed by
e-mail and applied to MS-Word documents. Moreover, those recipients who
opened the documents found that the first fifty people in their address books
also received the virus. This was so effective that on Friday, March 26, 1999,
Microsoft Corporation was forced to disable incoming e-mail. Melissa operated
by incorporating a message that told the recipient that an important (secret)
message was contained in the attachment. Once opened, the infected file was
read to the global macro file. Then the virus employed the visual basic lan-
guage (a graphical programming language introduced by Microsoft in 1990 and
used for developing GUI Windows applications) to read the first fifty names
in the address book and send them all the virus. Macro viruses are memory
resident since they are active not only when the infected documents are opening
or closing, but also for the entire time the system is running.

Melissa suggests that e-mail is becoming the medium of choice for attackers,
and this is indeed the case.

E-Mail Virus: Malicious software employing e-mail is becoming more com-
mon with each passing day. Melissa was just the beginning. More powerful
versions of e-mail viruses have emerged wherein the virus is spread to all the
e-mail addresses within the address book of the infected host. Thus, the rapid
deployment of e-mail viruses is now a major threat.

On Thursday, May 4, 2000, a new e-mail virus called the “I Love You” virus,
also called the love bug, spread itself around the world in a matter of hours. Its
name is derived from the fact that it contained a message to check the attached
“love letter,” which was a file in Visual Basic containing the virus. If the e-
mail was deleted without opening the attachment, then the computer was safe.
However, if opened, the computer was infected and the virus was distributed
via e-mail employing MS-Outlook’s address book. This was an advance in the
degree of malevolence over Melissa since the latter sent only to the first fifty
addresses, whereas the former sent to everyone in the address book. The love
bug was much more destructive than Melissa since it copied itself into two vital
system directories and added triggers in the Windows registry. This meant
that every time an infected computer rebooted, the love bug was executing.
It infected data files by overwriting them using Visual Basic and deleting the
original file. Typically, files associated with WWW development and multimedia
files were extinguished, such as those of type MP3 (music) and JPG (images).
An example, to illustrate the magnitude of the losses, was reported by the
Norwegian photo agency Scanpix, which lost over 6000 of its photos and was
able to recover fewer than twenty-five percent of them. The love bug affected
versions of the Windows and NT operating systems only, so Macintosh and Unix
platforms were safe. Yet this was enough to cause billions of dollars in damages
around the globe.

In October 2002, the Bugbear virus infected Windows platforms through a
hole in the security system in MS-Outlook, MS-Outlook Express, and Internet
Explorer. Once a machine was infected, the virus copied all passwords and

© 2007 by Taylor & Francis Group, LLC

278 8. Leading-Edge Applications

credit card numbers typed by a user, then it sent the information to numerous
e-mail addresses. It was estimated that in the first week it sent roughly 320,000
e-mail messages. In 2003, the virus appeared in a more virulent strain called
Bugbear.B, which took only one day to cause the damage the previous strain
had caused in three days. The reason was that a flaw in MS-Outlook allowed
the program to automatically open e-mail attachments. The perpetrator of the
Bugbear strains has not been apprehended.

Virus Detection and Prevention
The following steps may be taken to protect and defend yourself from infec-

tion by computer viruses.

1. Check before Use: Before using any floppy disk or downloaded files,
always run a virus-scanner program on them. There are numerous rep-
utable vendors who have relatively inexpensive (or in some cases free)
virus-scanning software available. Moreover, updates will be provided as
a service by the vendor. As we have seen, the race to beat the attacker is
based on knowing what is out there. You should also use the software to
do a virus scan after each reboot of your computer.

2. Create Emergency Disk: For the worst-case scenario where you get
infected and you cannot reboot your machine, the only saviour may be
an emergency disk that you have set in advance to use for that scenario.
Ensure that the disk is write protected at the time it is created.

3. Disable: Do not allow the enabling of such automatic features as the
opening of e-mail attachments, downloading of files, or the like. Disable
these features.

4. Documents (MS): Do not open any MS-Word document unless you are
certain it is not infected. Remember not to view these as “data files,”
since they may be infected with a macro virus.

5. E-Mail: Be cautious in the extreme about e-mail that you receive, even if
you know and trust the sender very well, since anyone may be an unwit-
ting victim. The above-described scenarios should be enough to convince
anyone of that. If there is an attachment, especially if it is an executable
file, you must verify that it is virus free. Delete it if there is doubt or,
if you believe it to be valid and from a valid source, contact that source
before opening it. Ask them what is in the file, whether they know if it is
virus free from having scanned it, say, and why it has been sent to you.
Then, and only then, should you attempt to open such a file.

6. Infection Detected: If your virus scanner detects an infection, locate the
virus, identify it, and use the software to remove all traces of it. The virus
must be removed from all systems in order to restore your computer to
health. Remember, it is detection, identification, and removal in the case
of a viral infection. If it is not possible to either identify or remove the

© 2007 by Taylor & Francis Group, LLC

8.2. Viruses and Other Infections 279

virus, then the infected program should be discarded and a new, clean
backup copy should be reloaded.

7. Software for Blocking: Some more sophisticated software exists for the
purpose of actually blocking behaviour that is deemed to be malicious.
Again, reputable software vendors have numerous such devices available.
For instance, there are Internet filters, which will screen out any e-mail re-
lated to pornography, violence, or other such offensive material as well as
potentially malicious e-mail. There are spam blockers to prevent all sorts
of irritating e-mail from getting through to you, not just the infected kind.
There are e-mail virus blockers, which should take care of effectively pro-
tecting your computer by identifying and blocking potentially dangerous
attachments.

Advanced Protection

There exist modern methods that excel in their ability to protect from and
eliminate attacks. We look at two of the most common and most effective.

Generic Decryption: Polymorphic viruses may require more sophisticated
software. The most modern such device is called a generic decryption engine
(GDE). Basically a GDE tricks a polymorphic virus into decrypting and reveal-
ing itself. If a scanner with GDE is installed, then it makes three assumptions:
(1) the body of the polymorphic virus has enciphering to thwart detection; (2)
the virus must decrypt before it can execute; and (3) once a polymorphic virus
does execute, it must immediately assume control of the computer to decipher
the body of the virus, after which the control of the machine is taken over by the
completely decrypted virus. The GDE loads each new program file into a self-
contained virtual computer that is generated from RAM. It is inside this virtual
computer that the program files run as though on a real computer. Therefore, a
polymorphic virus can do no damage since it is running in the virtual computer,
which is isolated from the real computer. The virtual computer allows the virus
to decrypt after which the virus body is exposed to the GDE scanner, which
can identify the strain via a signature. If there is no virus to expose, the GDE
stops execution and drops the program, proceeding to the next file. Think of
the GDE as a rat and think of the files loaded to it as injections given to the
rat to detect the presence of a virus. If there is no adverse behaviour in the rat,
there is no virus in the injected substance, whereas if there is, then the rat is
observed for symptoms that will identify the virus.

A GDE scanner has five basic components: (1) a processes emulator, (2) a
memory emulator, (3) a system emulator, (4) a virus signature scanner, and (5)
a decision mechanism. The process emulator is an imitation of a CPU, which
reads the instructions in an executable file. This includes software versions of
all registers and other CPU hardware, so the actual processor is unaffected. The
memory emulator imitates the memory of the computer, where the emulated
memory is employed instead of real memory. The system emulator actually
imitates the OS and hardware of a computer. This should also include a virtual

© 2007 by Taylor & Francis Group, LLC

280 8. Leading-Edge Applications

drive that is capable of being read, formatted, and so on. The virus signature
scanner is a module that scans the program code of the loaded file for known
virus signatures. This module interrupts the GDE process to return it to the
scanner for it to look at the code for signatures. The decision as to when to
interrupt is given by the decision-making mechanism, which may be the most
vital part of the GDE since we want to ensure speed. Thus, proper decision
making must be made so that the optimum use of the GDE is ensured. The GDE
innovation seriously reduces the time taken to analyze polymorphic viruses, from
weeks to minutes.

The second type of antivirus device is a comprehensive virus protection
mechanism developed at IBM in the late 1990’s. For more data on the orig-
inal research papers from IBM and related development, go to the following
site: http://www.research.ibm.com/antivirus/. In 1999, Symantec entered into
a licensing agreement with IBM to market the idea as antivirus software for
business and personal computing, officially released as a commercial product in
October 2000.

Digital Immune System (DIS): The idea is, as the title suggests, to
mimic the human immune system in a computer so that a virus is automatically
captured as it enters a system to be analyzed, removed, and ensure that the
system is updated with detection and protection mechanisms (if it is a new
virus). Essentially this builds on the emulation idea described above. The
central goal of the DIS is to drastically reduce the delay time between discovery
of a virus and when a remedy is transmitted to all vulnerable systems. What
we describe here is essentially the version designed by IBM and Symantec.

DIS Closed-Loop Process

We first describe this process, then illustrate the “closed-loop.”

1. Detection: A virus is detected at some source point such as a gateway,
server, or client machine.

2. Quarantine: A sample of the virus is sent to the Digital Immune System
central quarantine where it is isolated and scanned with the latest virus
definitions. If it turns out to be a known virus, then the cure can be
sent immediately back to the source of infection and no further action is
required. Otherwise, central quarantine strips all sensitive data such as
MS-Word documents (to ensure confidentiality), and the sample is sent
to Symantec Security Response. This transmission is accomplished over
HTTP on port 80, using SSL, which ensures confidentiality and authenti-
cation (see Section 7.3).

3. Automated Processing: The DIS automatically analyzes the sample and
creates a cure, which is sent back to the administrative console at the
source.

© 2007 by Taylor & Francis Group, LLC

http://www.research.ibm.com

8.2. Viruses and Other Infections 281

4. Administrative Console: The new fingerprint is distributed by the ad-
ministrative console throughout the source network to be added as an
update to the current virus definitions.

Diagram 8.1 DIS Closed-Loop Virus Methodology

New virus detected and isolated −−−−→
Quarantined

sample sent to DIS
�

Administrative console receives
and distributes new fingerprints ←−−−−

�

DIS analyzes
and creates a cure

Analysis of DIS: The DIS, arguably, represents the pinnacle of antivirus
software currently available. The DIS approach is stronger than other antivirus
techniques since it is automated and scalable and does not require human in-
tervention for decoding viruses and creating signatures. The number of false
positives is kept low and supplies end-to-end automation of submission, analy-
sis, and transmission of new fingerprints for virus definition updates. There is
relatively little maintenance needed with the DIS system, and costs are minimal
given the alternatives. If the administrative console is allowed to streamline the
control of the system at the given organizational source, then the maximum
benefit will be received, since administrators have control of the level of au-
tomation.

There are other kinds of malicious programs requiring a host program and
are not considered to be viruses due to the manner in which they operate. We
now look at their morphology.

� Logic Bombs

The logic bomb, also known as slag code, is a much older device than the
virus. Like a bomb, it requires a trigger to set it off (“explode”) until which
time it remains dormant in a host program. The results are particularly ugly,
as would be the effects of a real bomb in a populated area. It may make the
entire hard drive unreadable, or it may be more insidious and merely change a
byte here and there, avoiding detection until it does irreversible damage. The
trigger may be any of a number of vehicles from an elapsed amount of time;
a particular date and time (December 31, 1999, at 24:00 hours, for instance);
or perhaps the removal of an employee from the payroll file, indicating that he
was fired. If he were really clever, the bomb would go off a few months after
his termination. In this case, the logic bomb would trigger a piece of malicious
code to slag (destroy) essential files in the company’s system. This use of logic
bombs clearly demonstrates the need for audit trails, as well as clearly delineated
breakdown of individual duties at any organization.

© 2007 by Taylor & Francis Group, LLC

282 8. Leading-Edge Applications

A logic bomb may be considered to be a delayed-action virus in terms of
effect. They can be eliminated before they explode by using virus-scanning
software. If the scanning software is put on auto-protect mode, including e-mail
screening, then the probability of catching a logic bomb in time is increased.

� Trojan Horse

The name Trojan horse comes from the story of Troy. It is piece of malicious
code that is inserted into a seemingly benign program, but it differs from a
virus in that it does not replicate itself. For instance, you might download a
movie or some music from the Internet and find that it contained a Trojan
horse that erases your hard disk. Other popular alternatives for downloads that
contain Trojan horses are FTP archives (see page 224). Another is peer-to-
peer exchanges over an IRC channel — IRC stands for Internet Relay Chat,
which was originally designed for people to “chat” in real time. IRC users trade
movies, music, games, and software — peer-to-peer sharing. You have to be
careful since the more you download or exchange, the greater the risk of getting
a Trojan horse as part of the deal, since Trojan horses are very common among
IRC traders. Do not download from people or sites unless you are 100% certain
of them. Never use auto-download features, since you must check every file
first. Moreover, check it out before you download it since if you download an
executable file that has a Trojan horse and run it to check it out, then you are
already infected. As with the other types of infection discussed above, use a
virus scanner, but do not rely on it. The fact of the matter is that even when
up to date, it may miss something, especially if the infection is very new.

If you do get infected, then the best eradication is a backup of the entire hard
disk, and reinstall the OS and all applications from their original disks. This
might become necessary since a typical Trojan horse attack is to destroy the file
allocation table (FAT) on your hard disk. A FAT is the table that maintains a
map of the clusters on the hard disk (see page 274). Without a FAT or with a
damaged FAT, your computer will not operate properly.

An interesting example of the use of a Trojan horse comes from the OpenSSH
source (see page 271). It turns out that in 2002, only the second day after the
latest version of OpenSSH was released and ready for download on the Internet,
the developers made the somewhat startling discovery that the original package
had been exchanged for one with a Trojan horse embedded in it. The checksum
(see page 257) was found to have been altered. When installed, the Trojan horse
attempted to communicate with another Internet computer to await commands.
Fortunately, they caught it early.

Now we look at malicious code that has similarities to a virus but some
differing characteristics that make it a favourite for a network attack.

� Worms
A worm is a (malicious or nonmalicious) code that replicates itself and is self-

propagating. Thus, a worm is independent and designed to thrive in network
environments without human intervention. Unlike a virus, it needs no host
program. Rather, the computers themselves provide the hosts. The programs

© 2007 by Taylor & Francis Group, LLC

8.2. Viruses and Other Infections 283

running on individual computer hosts are called segments of the complete worm.
The OS in a given system is not needed to manage the worms since they seek
out resources for themselves, finding remote machines and spawning a remote
process on that machine. Thus, a worm program is a program that spans
machine boundaries as part of a distributed computation. Some worms have a
main segment that coordinates the activities of the other segments, and such
a worm is sometimes called an octopus. Worms that are contained within a
single computer are sometimes given the name host worms, and those that have
many segments on more than one machine are deemed to be network worms. A
host worm uses the network connections for the sole purpose of copying itself
to other machines, whereas the network worm uses the network connections for
communication between each of its segments. Those host worms that delete
themselves after launching a copy on another host, guaranteeing there is only
one version of the worm running on the network at any given time, are sometimes
called rabbits. It is the network worm that is most common and which will be
our focus.

In the 1970’s before the Internet was a fact, the first two worms were sent
through ARPANET (see page 223), the predecessor of the Internet, as programs
called Creeper and Reaper. First there was Creeper, which used idle processor
CPU time in ARPANET to replicate itself on one system and move onto the
next. Then Reaper was created to follow the path of Creeper through the
network, deleting the segments of Creeper as it went. However, these did no
damage to the computers they “infected” since they were designed to explore the
possibility of making use of idle CPU time. Such nonmalicious worms are called
existential worms, since their only function is to stay alive and propagate. In
1973, F. Shoch and J.A. Hupp of the Xerox Palo Alo Research Center developed
an existential worm program to move through an Ethernet network. Later, in
1982, these two individuals wrote a paper [87], which contained the first formal
definition of the term “worm.” Shoch lifted the term from a 1975 science fiction
novel, called Shockwave Rider, in which the author, John Brunner, conceived
of the concept of a worm that takes over a network, and as one of Shockwave
Rider ’s characters puts it: “... now it’s so goddamn comprehensive that it
cannot be killed. Not short of demolishing the net!” (see [12, p. 247]).

As Shoch and Huff found, even the creation of an existential worm opens
problems with its control. In the initial stages of development of their worms,
they once left one running on a system overnight only to return the next morning
to find it had crashed several hosts, and their attempts to reboot resulted in the
worm’s crashing the system. Therefore, they had to build a code in the worm
that would shut it down when a signal was received through the network. These
were problems when the creation of the worms was that based on benign intent.
When written as malicious code, the consequences proved to be disastrous.

There is the case of the infamous Morris worm. This was the first true
Internet worm. In 1988, a Cornell University graduate student, and son of the
chief scientist at NSA’s National Security Center, Robert Tappan Morris Jr.,
wrote a worm program (designated for UNIX systems). Supposedly his intention
was that it be an existential network worm. He got it wrong. His program had

© 2007 by Taylor & Francis Group, LLC

284 8. Leading-Edge Applications

serious shortcomings in terms of containing the worm. On November 22, 1988,
after he released the worm, it propagated itself so many times that it effectively
crashed several thousand host machines. It is estimated that as much as ten
million dollars (U.S.) was lost in terms of productivity, and this was despite
the fact that the worm left no permanent damage once eradicated. Morris was
sentenced to three years probation and ordered to pay a fine of ten thousand
dollars (U.S.).

Although there have been worms in the past century, the more recent ones
in this millennium have been the most devastating in terms of cost. In July
2001, two variants of the Code Red worm were released. It exploited a security
weakness in MS-Internet Information Server (MS-IIS). Code Red launched a
three-phase attack: scanning, flooding, and sleeping. In the scanning stage, it
sought vulnerable machines and ran malicious code on them. In the flooding
stage, false IP packets were sent to “flood” machines with useless messaging. At
the height of its activity, Code Red infected a couple thousand computers each
minute, ultimately contaminating in excess of one-third of a million machines
and costing 1.2 billion dollars (U.S.). The final sleep stage was intended to last
forever. The culprits who wrote Code Red have not yet been apprehended.

In August 2003, the Blaster worm, also called Lovesan, caused mayhem with
various Windows servers. Blaster searched for unprotected machines and sent
itself to those computers. Once it located a vulnerable machine, it sought out the
file mblast.exe, retrieved it, then scanned other systems similarly. Blaster was
written to launch a DOS attack (see page 253) on Microsoft’s updated WWW
site. Microsoft found a means of thwarting the attack on their site, but Blaster
still infected around a half million computers. Microsoft offered a quarter of a
million dollars (U.S.) for information that would lead to the arrest of Blaster’s
creators. However, to date, there have been no arrests. Microsoft has a five
million dollar reward fund for the apprehension of the various malicious code
authors not yet caught.

On Friday, April 30, 2004, a worm called Sasser began spreading over the
Internet. It exploited a vulnerability of MS-Windows Local Security Authority
Subsystem Service (LSASS). Sasser scanned for vulnerable machines, created a
remote connection with them, installed an FTP server, and downloaded itself to
the new host. From there it sought out the vulnerable LSASS components on
other machines. Sasser caused the LSASS component of Windows to crash. On
May 7, 2004, German authorities arrested Sven Jaschan, an eighteen-year-old
student who created a total of five separate versions of Sasser. Jaschan is also
responsible for twenty-eight variants of the Netsky worm. Key evidence leading
to Jaschan’s apprehension was given by a peer group familiar with his activities.
They had approached Microsoft officials in Germany asking about the reward.
Once informed that they would indeed get it, they turned him in, after which
Microsoft paid the quarter million dollar (U.S.) reward to them. This arrest
caused Microsoft officials to have confidence that their reward fund would have
a positive effect on the eventual arrest of the perpetrators of the Blaster and
Code Red worms.

In early 2006, the Kama Sutra worm came into existence. It infected files

© 2007 by Taylor & Francis Group, LLC

8.2. Viruses and Other Infections 285

within Windows OS and was ready to be unleashed on February 3, 2006, and
the third of each month thereafter. This infection promised sexy pictures with
e-mail subject lines such as “Kama Sutra pics,” thus relying on a computer
user’s desire to see nasty pictures and to get him or her to take action by double
clicking on an attachment. However, since the payload was delayed until the
third of the month, the user was unaware of the infection. The end result was
the overwriting of Window’s office documents such as Excel spread sheets and
PDFs (portable document format).

Although users of Apple computer’s MAC OS X are usually spared from
the above type of attack, a worm called OSX/Leap-A was the first such virus-
like infection to be aimed specifically at the MAC platform in early 2006. The
mechanism for spreading was via Apple’s iChat instant messaging program,
which happens to be compatible with America Online’s AIM instant messaging
program. The worm infected the so-called buddy list. However, the infection
was not automatic since the worm program would first ask the user to accept
the file. In any case, this represented an example of how malicious code was
continuing to spread to other platforms.

Antiworm Countermeasures: In the computer word, one must be aware
of both internal and external potential attackers, especially if you are an em-
ployer. Disgruntled employees can be a greater threat than any external source.
We have talked at length about measures against internal threats such as the use
of firewalls (see Section 7.4), monitoring, and access control. Relying solely on
firewalls is insufficient. Each server must be protected as a separate entity. We
have already discussed the technological devices such as blocking software, in-
cluding antivirus mechanisms, and access-control software (see page 279). There
should also be human intervention such as risk analysis and in-depth security
policies. Using the human and technological devices in concert can be the most
effective of security-management mechanisms.

© 2007 by Taylor & Francis Group, LLC

286 8. Leading-Edge Applications

8.3 Smart Cards

The term “smart card” has entered our discussions briefly thus far (see page
268, for instance). Now it is time to delve into the details. First we must learn
about certain details concerning technical aspects of computers as they relate
to smart cards.

� Processors and Microcontrollers
A microprocessor is any integrated circuit (IC) containing the CPU of a small

computer. A CPU is the Central Processing Unit, which controls the operation
of a computer, including the execution of arithmetic and logical operations as
well as other instructions. In a smart card or microcomputer, the entire CPU
is on a single chip. In general a computer processor is the logic circuitry that
responds to and deals with the instructions that run the computer. However,
in the modern day, the term “processor” has been replaced by “CPU.”

A microcontroller is a computer on a chip and is created via the integration
of the fundamental components of a microprocessor: RAM, ROM, and digital
I/O (input/output) ports into the same chip die. Other features might include:
serial I/O, a timer module; analogue to digital converters (ADC); and even
serial peripheral drivers. Examples are Motorola’s M68HC08 family of 8-bit
microcontrollers and Microchip’s PIC17 Family with 16-bit program word.

� Memory

Nonvolatile memory means any kind of solid-state memory that does not
lose its contents when the computer is turned off. In the case of a memory
card, when it is removed from the card reader, the power is cut off, yet the card
stores the data. On the other hand, volatile memory loses its contents when the
computer is turned off. Nearly all RAM is volatile except, of course, battery-
powered RAM. Included under the heading of nonvolatile memory are not only
EEPROM, but also all other forms of ROM such as programmable read-only
memory (PROM); erasable programmable read-only memory (EPROM); and
flash memory, sometimes called flash RAM. The latter type of memory can be
erased and reprogrammed. The term “flash” is derived from the fact that in
a microchip a section of memory cells is erased in one solitary act, in a flash.
Flash memory is employed in PC cards, digital cell phones, printers, and digital
cameras, for example.

SRAM is static RAM as opposed to the more common dynamic RAM or
DRAM. The term “static” is employed to differentiate it from the conventional
form of RAM in that it does not need to be refreshed as does DRAM. Therefore,
SRAM is faster and more reliable than DRAM. However, it is more expensive
in terms of financial cost, storage space, and power consumption. Thus, DRAM
is necessarily volatile memory.

What is a Smart Card? Smart cards are made of plastic and are of
credit-card size, having an embedded microprocessor chip with internal memory
or merely a memory chip with nonprogramming logic.

© 2007 by Taylor & Francis Group, LLC

8.3. Smart Cards 287

Types of Smart Cards: Classifications for smart cards are described in
the following.
1. Standard Memory Cards: These are cards that merely store data. They

do not possess data-processing capabilities. Typically, these cards have
a magnetic strip (so are often called magnetic strip cards). These cards
store private data, usually employed as credit or debit cards, which require
physical contact with a device to read the data on the magnetic strip.

2. Intelligent Memory Cards: These cards have a built-in wired logic circuit
to access the memory (usually 1 K to 16 K bits) of the card. Sometimes
these cards can be configured to restrict access via a password or system
key. These cards are often called protected memory cards.

3. Stored-Value Cards: Sometimes these are called memory cards with
register. These are cards that have security features hardwired into the
chip at the point of manufacture. Examples of such cards are prepaid
phone cards, wherein a terminal inside the pay phone will write a declining
balance into the card’s memory. The card is discarded when the balance
is zero; or if the card has a rechargeable capacity, it can be reset.

4. Processor Cards: These cards, perhaps the most deserving of the name
smart card, contain memory and a processor and have data-processing
capabilities. This is an integrated circuit (IC) card with ISO/IEC 7816
interface. (We learned about the ISO on page 241. The IEC is the In-
ternational Electrotechnical Commission, a Switzerland-based organiza-
tion that sets standards for electronic devices. A committee, JTC1, is
joint between ISO and IEC, and its mandate is information technology
standardization.) If an 8-bit microprocessor had the task of RSA crypto-
graphic calculations, for instance, it could take several minutes. Thus, a
cryptographic coprocessor is typically added to the architecture, thereby
reducing cryptographic calculations to a few hundred microseconds.

Types 1–3 are often grouped under the single heading of memory cards and
type 4 under the heading of microprocessor chip cards. Memory cards are, nat-
urally, the least expensive and most common. They contain what is called Elec-
tronically Erasable Programmable Read-Only Memory (EEPROM) nonvolatile
memory. For security, the data may be locked in by a PIN of up to eight digits
written to a special file on the card.

Chips: There are three kinds of smart card chips as follows.

1. Memory Chips: Naturally, the most basic and least expensive are those
chips that merely store data and have no processing capabilities. Once
created, memory chips cannot be reprogrammed, since they can hold only
static data such as personal information that do not require dynamic enci-
phering capacity. To change the capacity of such a memory card, it would
need to be replaced entirely.

© 2007 by Taylor & Francis Group, LLC

288 8. Leading-Edge Applications

2. Applications-Specific Integrated Circuits (ASIC): The ASIC chips
are hardwired to keep data and execute a specific processing job. Of
course, this processing capacity makes the ASIC chip stronger than the
memory chip. Yet, the ASIC chip cannot be reprogrammed, as is the case
with the memory chip. However, the ASIC chip does allow for some static
encryption, but this is suitable only for low-level security applications.

3. Microprocessor Chips: These chips are the most powerful and versatile
of the three types. They cannot only do what both the memory and ASIC
chips can do, but also they are capable of dynamic encryption, and they
can be reprogrammed or updated, unlike the previous two. Processor
cards have microprocessor chips that typically come in 8-, 16-, or 32-bit
formats. Their data storage may range from 300 to 32,000 bytes.

Microprocessor-based smart cards have the benefits of (1) a high level of
security, having the capacity to execute PKC or SKC protocols, including
DES, RSA, and ECC; (2) multiple applications on the same card; and (3)
ease of updating existing applications or the addition of new ones.

Microprocessor cards have numerous applications: the access medium for
identification, for electronic signatures, for access to restricted areas, to
protect data storage, and for e-commerce.

Card Operating Systems: The microprocessor in a smart card is con-
trolled by a Card Operating System (COS), which is a piece of firmware stored
in the ROM of the microcontroller IC embedded in the card. The COS has the
following fundamental tasks.

1. Both establish and control communication between the card and any card-
reading device.

2. File management.

3. Memory management.

4. Management of applications including loading and operating.

5. Protect data access.

6. Instruction processing and execution control.

7. Execute and manage cryptographic protocols when communicating with a
card-reading device.

Smart Cards and PKI: The structure for smart cards employing PKI is
described in RFC 2459 (see [78]). Smart cards may be embedded with functions
that generate public and private PKC keys inside the cards, meaning that the
private key is not sent to any site outside the card. In other words, the smart
card need not export the private key in order to use a given application.

© 2007 by Taylor & Francis Group, LLC

8.3. Smart Cards 289

Suppose that Alice interfaces her smart card with her computer for the pur-
pose of using some application, which requires Alice’s signature on a document
to authenticate her. In order to get the card to communicate with the applica-
tion, a hash of Alice’s document, e-mail for instance, is sent to the card. The
card signs the document with her private key (all this taking place inside the
card), and the signed document is sent to the application. Hence, her private
key is never exposed to the outside, in particular to her computer. Smart cards
may employ SSH (see page 268) to authenticate to an application remotely, for
instance.

Contact vs. Contactless: The communication between a smart card and
a card reader or detection device might be direct, namely, physical contact, or
contactless using radio frequency. Thus, smart cards are further divided into
contact and contactless (sometimes called proximity) cards. Contactless cards
are embedded with not only a chip, but also an antenna for the purpose of
sending a signal to the reading device. Typically, a few centimeters of distance
will allow the mechanism to receive the signal and authenticate the card owner
for access to that device. Contact cards are usually employed for access to
secure areas in a business enterprise, for instance, whereas contactless cards are
typically used for mass-transit access or for door locks.

Contactless cards use wireless self-powered induction technology, as defined
in the standard, ISO/IEC 14443. The latest use for such a card in mass transit
is the Oyster Card issued in London, England, in January 2004. The card is
rechargeable, secure since, if lost or stolen, it may be cancelled and reissued; and
it is valid London-wide including the “Tube,” Tramlink, DLR (Docklands Light
Railway), and National Rail services across the entire London bus network.

Contactless cards have the benefits of speed of transaction time; convenience;
low maintenance (compared with contact cards); and consumer appeal where
key fobs, rings, or other devices may be used in place of a plastic card. Many
upscale residential areas are looking at replacing locks with contactless smart
cards in North America. The fact remains that contacts are the most frequent
breakdown points in the electromagnetic system as a result of dirt, and wear
on the mechanism. Contactless cards solve these problems and improve perfor-
mance in the balance, so user acceptance will surely increase.

Last, there are cards that combine certain features, called combi-cards or
multifunction cards. This might involve a combination of password and biomet-
ric such as a fingerprint. Also, there is the possibility of combining both contact
and contactless features in one card.

Physical Properties: The actual body of the card is plastic, which may
be polyvinyl chloride (PVC) or acrylonitrile butadiene styrene (ABS). The card
itself may contain a signature strip, a printed signature, or a cardholder pho-
tograph. Of course, the plastic body will be embossed with the proprietary
graphics such as with Visa or MasterCard. The size of the card is specified by
ISO/IEC 7816-1, namely, 85.6 × 54 × 0.76 mm. This standard includes defini-
tions of resistance to static electricity, electromagnetic radiation and mechanical
stress, as well as the location of the card’s magnetic strip and embossing area.

© 2007 by Taylor & Francis Group, LLC

290 8. Leading-Edge Applications

The dimension and location of the contacts is specified in ISO/IEC 7816-2.
This includes the module, which is the smallest part of the card that is capable
of accommodating a chip and its contacts. The mechanism for securing the
module in place on the card is via encasing it in a resin amalgam, which, for
security reasons, should be designed so it cannot be removed without destroying
the circuitry (see page 293).

There are also cards, called mini-cards, which are in size between that of
a regular smart card and its module. These are often used for mass-transit
applications, where the size of the cards mimics the size of the magnetic-strip
tickets they replace.

In the following, Diagrams 8.2 and 8.3 give the placement of the electrical
contacts in a smart card chip, numbered C1–C8, and describe the function of
each.

Diagram 8.2 Smart Card Chip — Electrical Contacts

C1 C5
C2 C6
C3 C7
C4 C8

Diagram 8.3 Functions of Electrical Contacts

Position Abbreviation Function

C1 VCC Power Supply Voltage
C2 RST Reset Microprocessor
C3 CLK Clock Frequency
C4 RFU Reserved for Future Use
C5 GND Ground
C6 VPP Programming or Write Voltage
C7 I/O Serial Input/Output Line
C8 RFU Reserved for Future Use

All the data transmitted to and from a smart card are through the C7 contact
point. Once a smart card is inserted into a card reader, for instance, a client-
server relationship ensues. The physical transmission is defined in ISO/IEC
7816-3, so any reader must conform to that standard.

Card Origins: The French are responsible for the term “smart card,” in
development since the 1970’s when the French invested a large amount of money
into this R&D technology. They originally called these cards carte a memoire or
memory card in the 1970’s. The French government’s marketing arm, Intelima-
tique, coined the term smart card in 1980. In fact, Roy Bright of Intelimatique

© 2007 by Taylor & Francis Group, LLC

8.3. Smart Cards 291

(see [9]) was the one who coined the word “smart card” (which is sometimes
written as a single word smartcard). In 1970, the concept of the smart card
was filed in a patent by Kunitaka Arimura of Japan. The patent was restricted
to Japan and to the technical aspects of the smart card idea, namely, to inte-
grate data storage and arithmetic logic on a single silicon chip. Shortly after
his patent was filed, the first smart cards were issued in Japan.

The first patent for an IC card (which we consider to have the properties of
a smart card in today’s world) was filed by the French journalist Roland Moreno
in 1974 (see [65]). Moreno’s patent was the first to be broad-based not only in
France, but also in major industrial countries around the globe. By 1977, the
first commercial developers of an IC card product were three manufacturers,
Bull CP8, SGS Thompson, and Schlumberger. Also in that year, the French
banking system had a smart card payment scheme in place, and by 1978 the
first prototype card was produced. In 1979, Motorola introduced the first secure
individual chip microcontroller. It was a prototype made in Toulouse, France,
for Bull CP8, having programmable 1-K memory and microprocessor 6805.

Credit cards contain data including either signature or picture for identifi-
cation of the person authorized to use it for account access or services. The use
of credit cards, on a local scale, actually goes back to the 1920’s in the United
States, when some oil companies and hotel chains started issuing them to cus-
tomers for purchases at their enterprises. On a global scale, the first credit card
for use at a large multiplicity of businesses was Diners Club Inc., in 1950. Their
card employed PVC plastic, which replaced earlier paper-based cards. They
were the first to institute charging an annual fee billed to their cardholders. By
1958, American Express entered the stage with its card. The first bank to issue
a card was the Bank of America in 1959 with its BankAmericard distributed
initially in California only, adding other states starting in 1966. In 1976, it
was renamed Visa, and later MasterCard followed suit. In 1981, MasterCard
(formerly called Master Charge) introduced the first gold-card program, and in
1983 it was the first to employ a laser hologram as an antifraud mechanism.
Internationally, BankAmericard was known by other names before Visa came
into being. In Canada, a number of banks, in concert, issued Chargex cards.
In the U.K., the BarclayCard was issued by Barclay’s Bank. Both of the latter
used the blue-white-blue motif familiar to BankAmericard holders. The blue
and gold motif on the Visa cards was selected to represent the blue sky and
gold-coloured hills of California, where BankAmericard originated.

The 1980’s saw much field testing of smart cards. The world’s first significant
IC card test was conducted in France with their testing of serial memory phone
cards in 1982. In 1983, the first nationwide smart card scheme was put in place
by the French for their public telephone payment system (see [9]). In 1984,
the French adopted the Bull CP8 card as their standard for the first version of
their bank debit cards Carte Bleue. By 1986, the French also were the first to
introduce a smart card scheme in the form of a health card. In 1987, the ISO
introduced the first card standards in the form of ISO/IEC 7816-X. The 7816
series of standards today define everything from the physical shape of the card
to the format the commands may take when communicating with the card. This

© 2007 by Taylor & Francis Group, LLC

292 8. Leading-Edge Applications

includes not only the functionality of the card, but also the very position and
shape of the electrical connectors and the protocols defining the power voltages
to be applied to them (see Diagrams 8.2 and 8.3).

By the early 1990’s the French were involved in field testing of combi-cards.
Also in the early 1990’s, Germany was involved in memory card distribution on
a mass scale. In 1994, they started the distribution of some 80 million serial
memory chip citizen health cards. Now, every German citizen has a health
smart card. By the mid-1990’s, mobile phone use was conducted and paid via
smart cards by some three million users. By the late 1990’s, the major players in
the credit card industry were looking at standards for interoperability. In 1996,
MasterCard and Visa began developing two types: JavaCard, sponsored by Visa,
and Multi-application Operating System (MULTOS), sponsored by MasterCard.

Attacks on Smart Cards: There are numerous attacks against smart
cards that need to be reviewed so we may better understand the threats and
not fall victim to them.

Side-channel attacks are those wherein a cryptanalyst, Mallory, say, has an
additional channel of information about the system he is trying to break. Timing
analysis of message encryption falls into this category. The reason that side-
channel attacks are so effective against smart cards is that Mallory may have
full control of the card. Countermeasures for side-channel attacks come from a
combination of software implementations and actual hardware.

Countermeasures against timing attacks include the following: (1) avoiding
delays (make all operations take the same amount of time), (2) equalization of
multiplication and squaring (the time taken to execute multiplication and expo-
nentiation should be set to be very similar), (3) power consumption balancing
(operations should be made to appear constant from outside the card, which
can be accomplished with dummy gates and the like to even out the power
consumption to some constant value), (4) add random noise (enough to stop an
attack), and (5) physical shielding.

Magnetic strip cards, having no computing power at all, are subject to what
is known as a skimming attack. In this case, an illegal card reader can be used
to copy the data in the card (once it is swiped through the illegal device) for the
purpose of counterfeiting cards and incurring illegal charges. Some criminals
have even resorted to planting these devices in legal ATMs for the purpose of
gathering these data. Once the data have been captured, the card owner might
be presented with a screen that says there has been a malfunction. In some
cases, the criminals engineer the card reader so that it does not interfere with
the ATM’s function. In this case, the customer will get his or her cash, when
making a withdrawal, say, but his or her data are still captured for later use
by the criminal element. The ATMs most susceptible to this kind of attack
are not usually the ones at banks themselves but rather at convenience stores,
bars, hotel lobbies, and the like. Moreover, they are typically the kind of ATM
where the card is swiped rather than inserted into the machine directly. Also,
skimming may be accomplished by dishonest businesses when your card is taken
out of your sight for payment, say at a restaurant, and run through a skimmer.

© 2007 by Taylor & Francis Group, LLC

8.3. Smart Cards 293

To thwart skimming attacks, do not use ATMs where something appears to
be out of place. Keep all PINS safe and never give them to anyone. Do not let
strangers “assist” you at an ATM. If your card is not returned after usage in
an ATM, immediately contact the institution that issued the card. Treat your
cards as if they were cash and do not let them out of your sight.

Returning to IC cards, there are tampering attacks, which may be broken
down into four subsets: (1) microprobing, where the chip itself is accessed and
manipulated and there is direct tampering with the IC; (2) software attacks, the
exploitation of weaknesses in cryptographic protocols or their implementation
via the I/O interface; (3) eavesdropping, the monitoring of any electronic ra-
diation produced by the microprocessor’s executions; and (4) fault generation,
creating malfunctions in a microprocessor for the purpose of establishing access.

Attacks (2)–(4) are noninvasive attacks. On the other hand, microprobing
is an invasive attack that requires a significant amount of laboratory time, ex-
pensive equipment, and expertise. In order to extract the chip, the plastic card
is destroyed. Once the chip is removed, it may be mapped and analyzed, and
information is obtained. One countermeasure for such attacks (already available
with some microprocessors) is the embedding of a sensor mesh above the actual
chip, so that any tampering would trigger an erasure of nonvolatile memory.

With noninvasive attacks, smart cards are especially vulnerable since their
microprocessors are exposed without the safeguards built into larger devices,
such as electromagnetic shielding. A microprocessor is basically a collection
of a relatively small number of flipflops (registers, latches, and SRAM cells),
which establish its current state, together with a logic design that calculates
that state based on a clock cycle and other states. A register is a specialized,
high-speed storage region of the CPU. No data are capable of being processed
before being put into registers. A CPU’s power is defined in terms of the number
and capacity of registers it possesses. For example, an 8-bit CPU has registers
that maintain 8-bit words each, so each command sent to such a CPU is capable
of handling 8 bits of information. A latch is a digital logic circuit for storing
bits. The components of a latch are the data input to it, a clock input, and
its output. The term “latch” comes from the function of the clock activity; for
example, when active, the clock input triggers the data input to be “latched”
(stored) and transferred to output when the clock input becomes inactive. The
value of the clock output is then set and maintained until the clock input is
again activated. This analogue effect is one of the vulnerabilities that can be
exploited via fault-generation attacks in smart cards, namely, by causing one or
more flipflops to take on the incorrect state (see [8]).

Countermeasures to thwart noninvasive attacks include inserting a random-
number generator at the clock-cycle level and embedding a tamper sensor that
will disable the entire microprocessor upon detection of unauthorized activity.

© 2007 by Taylor & Francis Group, LLC

294 8. Leading-Edge Applications

8.4 Biometrics

� Overview

The science and technology of quantifying and analyzing biological or be-
havioural data is what we call biometrics. The characteristics to be measured
are DNA; ear geometry; eye retina (the nerve endings inside the eyeball that
capture and send light to the brain) and irises (the coloured part visible at the
front of the eye), facial geometry, fingerprints, hand geometry, and voice fre-
quency. The data to be analyzed are stored in a database for comparison with
existing records.

Typically, software is used to identify specific match points, which are then
processed into a value that may be compared with biometric data that are
scanned when the owner of a smart card, say, tries to gain access. Biometrics
may be used to provide authentication for access to a bank account, to pay for
products or services from a business, to pay for telephone charges, and so on.
Biometrics can be employed in addition to, or in place of, say, a PIN.

Sensors are used to record the biometric information. Cameras are used for
facial, eye, hand, and ear geometry; microphones for voice; chemical laboratories
for DNA; and any number of sensors for fingerprints including pressure sensitive,
thermal, optic, and capacitive devices.

� Biometrics and Smart Cards

Various government agencies use biometrics in their smart card technol-
ogy. The U.S. Department of Defense Common Access Card has a photograph
together with a fingerprint embedded in its functionality. Spain has a social se-
curity card including biometrics in its smart card application. The Netherlands
has a system called Privum for automated border crossing. Their smart card
has a photograph and iris biometrics. Brunei employs a national ID smart card
having a photograph together with fingerprint biometrics. The United King-
dom has the Asylum Seekers Card, which is a smart card with a photograph
and fingerprint biometrics. It is not long before more countries are added to the
list in an effort to secure their borders.

The bottom line for smart cards supported by biometrics is that it raises
security levels to very high standards. The reason is that such cards possess the
following.

The Three Fundamental Aspects of Authentication

1. Something the user has (the smart card, itself)

2. Something the user knows (a PIN or password)

3. Something the user is (the biometrics)

© 2007 by Taylor & Francis Group, LLC

8.4. Biometrics 295

� Accuracy and Robustness of Biometrics

Biometric Traits

Biometric traits develop in one of three ways:

1. Genotypic (through genetics)

2. Phenotypic (through early embryo development)

3. Behavioural (through training)

Robust biometrics are those that are not subject to significant changes. Cer-
tain biometric traits may vary over time due to aging, growth, injury and later
regeneration, wear and tear, and so on. The least changeable biometrics are
DNA and iris pattern followed by retina, fingerprints, and hand geometry. In
terms of accuracy (minimal error rates plus clarity and consistency), iris and
retina measurements rank ahead of DNA, although all three are difficult quan-
tifications to obtain and are costly to process. The reason that DNA trails the
other two eye biometrics is that DNA cannot distinguish between monozygotic
twins, but the eye biometrics can do so (and better than the other biometrics).
Fingerprints rank roughly fourth on the accuracy scale but are relatively easy
to obtain and inexpensive to process in comparison with the other three. An
iris match against a database can be made 300 times faster than a match to a
fingerprint in the same database. Hence, despite the cost differential, the speed
and high accuracy of eye biometrics make it vastly superior to the fingerprinting
biometric. Once costs descend, this must surely be the medium of choice, if for
no other reason than the key factor in selection of an appropriate biometric is
its accuracy. At the bottom of the list are face geometry, followed by finger
geometry and voice patterning.

� Verification vs. Identification

We discussed the use of smart cards and biometrics for verification of indi-
viduals above, where verification means the following.

Verification

The individual’s identity is entered into the system, via a smart card, say,
then a biometric feature is scanned. If that scanned trait matches the one
previously stored in the card, then verification is successful. This kind of
“verification” is also often called “authentication” of the individual.

The notion of verification must be separated from the issue of identification,
given as follows.

© 2007 by Taylor & Francis Group, LLC

296 8. Leading-Edge Applications

Identification

An individual’s recorded biometric feature is compared with all the corre-
sponding biometrics in the database. If there is a match, then the individual
is identified, and the user’s ID may be processed later for verification.

Identification is very useful in fighting crime. For instance, if an individual’s
fingerprint or DNA, say, is lifted from a crime scene, and a match is made
to it after searching a database, this provides crime fighters with evidence to
prosecute.

In order for biometrics to be effective, there must be an enrolment process,
where an individual consents to having a biometric image captured, such as
a fingerprint or eye scan, from which the characteristics are extracted. This
allows the creation of the user’s biometric template, which is stored centrally,
in a database, or locally, on a smart card, say. Think of verification as a one-
to-one comparison, which confirms that the credential belongs to the individual
who is presenting it. The authenticating device need only have access to the
individual’s enrolled biometric template, which may be stored locally or in a
database. Identification, on the other hand, is a one-to-many comparison. It
verifies that the given entity exists within a given population and is not enrolled
with another ID. Moreover, it will verify that the individual is not on a list of
prohibited entities. In this case, the database must contain a set of all entities
applying for the access, say, to enter a country, and their biometric templates.

As shown in Diagrams 8.4 and 8.5, the acceptance or rejection will be based
on some threshold value derived from the security policy of the system being
accessed.

Diagram 8.4 Verification

Biometric
Scan →

Image
Processing →

Live
Template

↑
Accept or

Reject ←
One-to-One
Comparison

↓
Smart Card
or Database →

Template
Extracted →

Stored
Template

© 2007 by Taylor & Francis Group, LLC

8.4. Biometrics 297

Diagram 8.5 Identification

Database →
Template
Extracted →

Stored
Template

↑
Accept or

Reject ←
Many-to-One
Comparison

↓

Smart Card →
Template
Extracted →

Stored
Template

Exercises

8.4. Suppose that a smart card (see Section 8.3) uses the RSA cipher with
public encryption exponent e = 3. Next assume that m is Alice’s credit
card number and she buys merchandise from three shops whose public
moduli are n1, n2, and n3, respectively. Thus, each shop computes

m3 (mod nj) for j = 1, 2, 3,

respectively. If Mallory has been observing these transactions, how can
he recover m?

8.5. Cite some problems that might occur with the use of voice as a biometric
identifier.

8.6. Compare fingerprint and iris scanning as biometric identifiers from the
perspective of which is more accurate and least open to replication.

© 2007 by Taylor & Francis Group, LLC

298 Appendix A

Appendix A: Fundamental Facts
In this appendix, we set down some fundamental facts, beginning with the

fundamental notion of a set. Proofs may be found in standard introductory
texts on the subject matter.

� Well-Definedness

A set of objects is well defined provided that it is always possible to determine
whether or not a particular element belongs to the set. The classical example of
a collection that is not well defined is described as follows. Suppose that there is
a library with many books, and each of these books may be placed into one of two
categories, those that list themselves in their own index and those that do not.
The chief librarian decides to set up a Master Directory, which will keep track
of those books that do not list themselves. Now, the question arises: Does the
Master Directory list itself? If it does not, then it should since it only lists those
that do not list themselves. If it does, then it should not for the same reason—a
paradox! This is called the Russell Paradox or Russell Antinomy. The problem
illustrated by the Russell Paradox is with self-referential collections of objects.
We see that Russell’s collection is not well defined, so it is not a set. Russell’s
example may be symbolized as S = {x : x �∈ S}. The term “unset” is often used
to describe such a situation.

� Sets

Definition A.1 Sets
A set is a well-defined collection of distinct objects. The terms set, collec-

tion, and aggregate are synonymous. The objects in the set are called elements
or members. We write a ∈ S to denote membership of an element a in a set S,
and if a is not in S, then we write a �∈ S.

This definition avoids the problems of the contradictions that arise in such
discussions as the Russell Antinomy.

Set notation is given by putting elements between two braces. For instance,
an important set is the set of natural numbers :

N = {1, 2, 3, 4, . . .}.

In general, we may specify a set by properties. For instance,

{x ∈ N : x > 3}

specifies those natural numbers that satisfy the property of being bigger than
3, which is the same as {x ∈ N : x �= 1, 2, 3}.

© 2007 by Taylor & Francis Group, LLC

Fundamental Facts 299

Definition A.2 Subsets and Equality
A set T is called a subset of a set S, denoted by T ⊆ S if every element of T

is in S. On the other hand, if there is an element t ∈ T such that t �∈ S, then we
write T �⊆ S and say that T is not a subset of S. We say that two sets S and T

are equal, denoted by T = S provided that t ∈ T if and only if t ∈ S, namely both
T ⊆ S, and S ⊆ T. If T ⊆ S, but T �= S, then we write T ⊂ S and call T a proper
subset of S. All sets contain the empty set, denoted by ∅, or {}, consisting of
no elements. The set of all subsets of a given set S is called its power set.

Definition A.3 Complement, Intersection, and Union
The intersection of two sets S and T is the set of all elements common to

both, denoted by S ∩ T, namely

S ∩ T = {a : a ∈ S and a ∈ T}.

The union of the two sets consists of all elements that are in S or in T (possibly
both), denoted by S ∪ T, namely

S ∪ T = {a : a ∈ S or a ∈ T}.

If T ⊆ S, then the complement of T in S, denoted by S � T is the set of all those
elements of S that are not in T, namely

S � T = {s : s ∈ S and s �∈ T}.

Two sets S and T are called disjoint if S ∩ T = ∅.

For instance, if S = N, and T = {1, 2, 3}, then S ∩ T = T = {1, 2, 3}, and
S ∪ T = N. Also, S � T = {x ∈ N : x > 3}.

Definition A.4 Set Partitions
Let S be a set , and let S = {S1, S2, . . .} be a set of nonempty subsets of S.

Then S is called a partition of S provided both of the following are satisfied.

(a) Sj ∩ Sk = ∅ for all j �= k.

(b) S = S1 ∪ S2 ∪ · · · ∪ Sj · · ·, namely s ∈ S if and only if s ∈ Sj for some j.

For an example of partitioning, see the notion of congruence on page 20.

Definition A.5 Binary Relations and Operations
Let s1, s2 be elements of a set S. Then we call (s1, s2) an ordered pair, where

s1 is called the first component and s2 is called the second component. If T is

© 2007 by Taylor & Francis Group, LLC

300 Appendix A

another set, then the Cartesian product of S with T, denoted by S × T, is given
by the set of ordered pairs:

S × T = {(s, t) : s ∈ S, t ∈ T}.

A relation R on S × T is a subset of S × T where (s, t) ∈ R is denoted by sRt.
A relation on S × S is called a binary relation. A relation R on (S × S) × S is
called a binary operation on S if R associates with each (s1, s2) ∈ S×S, a unique
element s3 ∈ S. In other words, if (s1, s2)Rs3 and (s1, s2)Rs4, then s3 = s4.

For example, a relation on S×T = {1, 2, 3}×{1, 2} is {(1, 1), (1, 2)}. Notice
that there does not exist a unique second element for 1 in this relation. We
cannot discuss a binary operation here since S �= T. The next section provides
us with an important notion of a binary operation.

� Functions

Definition A.6 A function f (also called a mapping or map) from a set S to
a set T is a relation on S× T, denoted by f : S → T, which assigns each s ∈ S a
unique t ∈ T, called the image of s under f , denoted by f(s) = t. The set S is
called the domain of f and T is called the range of f . If S1 ⊆ S, then the image
of S1 under f , denoted by f(S1), is the set {t ∈ T : t = f(s) for some s ∈ S1}.
If S = S1, then f(S) is called the image of f , denoted by img(S). If T1 ⊆ T, the
inverse image of T1 under f , denoted by f−1(T1), is the set {s ∈ S : f(s) ∈ T1}.

A function f : S → T is called injective (also called one-to-one) if and only
if for each s1, s2 ∈ S, f(s1) = f(s2) implies that s1 = s2. A function f is
surjective (also called onto) if f(S) = T, namely if for each t ∈ T, t = f(s) for
some s ∈ S. A function f is called bijective (or a bijection) if it is both injective
and surjective. Two sets are said to be in a one-to-one correspondence if there
exists a bijection between them.

Each of the following may be verified for a given function f : S → T.

A.1. If S1 ⊆ S, then S1 ⊆ f−1(f(S1)).

A.2. If T1 ⊆ T, then f(f−1(T1)) ⊆ T1.

A.3. The identity map, 1S : S → S, given by 1S(s) = s for all s ∈ S, is a
bijection.

A.4. f is injective if and only if there exists a function g : T → S such that
gf = 1S, and g is called a left inverse of f .

A.5. f is surjective if and only if there exists a function h : T → S such that
fh = 1T, and h is called a right inverse for f .

A.6. If f has both a left inverse g and a right inverse h, then g = h is a unique
map called the two-sided inverse of f .

© 2007 by Taylor & Francis Group, LLC

Fundamental Facts 301

A.7. f is bijective if and only if f has a two-sided inverse.

Notice that in Definition A.5 a binary operation on S is just a function on
S × S. The number of elements in a set is of central importance.

Definition A.7 Cardinality
If S and T are sets, and there exists a one-to-one mapping from S to T, then

S and T are said to have the same cardinality. A set S is finite if either it is
empty or there is an n ∈ N and a bijection f : {1, 2, . . . , n} �→ S. The number of
elements in a finite set S is sometimes called its cardinality, or order, denoted
by |S|. A set is said to be countably infinite if there is a bijection between the
set and N. If there is no such bijection and the set is infinite, then the set is
said to be uncountably infinite.

Example A.1 If n ∈ N is arbitrary and n0 ∈ N is arbitrary but fixed, then the
map f : N �→ n0N via f(n) = n0n is bijective, so the multiples of n0 ∈ N can
be identified with N. For instance, the case where n0 = 2 shows that the even
natural numbers may be identified with the natural numbers themselves.

Definition A.8 Indexing Sets and Set Operations
Let I be a set, which may be finite or infinite (possibly uncountably infinite),

and let U be a universal set, which means a set that has the property of containing
all sets under consideration. We define

∪j∈ISj = {s ∈ U : s ∈ Sj for some j ∈ I},
and

∩j∈ISj = {s ∈ U : s ∈ Sj for all j ∈ I}.
Here, I is called the indexing set, ∪j∈ISj is called a generalized set-theoretic
union, and ∩j∈ISj is called a generalized set-theoretic intersection.

Example A.2 The reader may verify both of the following properties about
generalized unions and intersections. In what follows, T, Sj ⊆ U.

(a) T ∪ (∩j∈ISj) = ∩j∈I(T ∪ Sj).

(b) T ∩ (∪j∈ISj) = ∪j∈I(T ∩ Sj).

� Arithmetic
The natural numbers {1, 2, 3, 4, . . .} are denoted by N and the integers

{. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} are denoted by Z. See [61, pp. 1–6] for a brief
history of the development of the integers.

© 2007 by Taylor & Francis Group, LLC

302 Appendix A

For this we need a larger set. The following are called the rational numbers.

Q = {a/b : a, b ∈ Z, and b �= 0}.

Rational numbers have periodic decimal expansions. In other words, they
have patterns that repeat ad infinitum. For instance, 1/2 = 0.5000 . . . and
1/3 = 0.333 However, there are numbers whose decimal expansions have no
repeated pattern, such as

√
2 = 1.41421356237 . . . ,

so it is not a quotient of integers. These numbers, having decimal expansions
that are not periodic, are called irrational numbers, denoted by I. It is possible
that a sequence of rational numbers may converge to an irrational one. For
instance, define

q0 = 2, and qj+1 = 1 +
1
qj

for j ≥ 0.

Then

lim
j �→∞

qj =
1 +

√
5

2
,

called the Golden Ratio, denoted by g which we will study in this appendix.
The reader familiar with Fibonacci Numbers (see page 8) will have recognized
that for j ≥ 0,

qj+1 = 1 +
1
qj

=
qj + 1

qj
=

Fj+3

Fj+2
,

so
lim

j �→∞
Fj+3

Fj+2
= g.

The real numbers consist of the set-theoretic union:

R = Q ∪ I.

To complete the hierarchy of numbers (at least for our purposes), the complex
numbers employ

√−1, as follows:

C = {a + b
√−1 : a, b ∈ R}.

We now provide the Fundamental Laws of Arithmetic as a fingertip reference
for the convenience of the reader.

The Laws of Arithmetic:
� The Laws of Closure. If a, b ∈ R, then a + b ∈ R and ab ∈ R.
� The Commutative Laws. If a, b ∈ R, then a + b = b + a, and ab = ba.
� The Associative Laws. If a, b, c ∈ R, then (a + b) + c = a + (b + c), and

(ab)c = a(bc).
� The Distributive Law. If a, b, c ∈ R, then a(b + c) = ab + ac.

© 2007 by Taylor & Francis Group, LLC

Fundamental Facts 303

� The Cancellation Law Let a, b, c ∈ R. If a + c = b + c, then a = b
for any c ∈ R. Also, if ac = bc, then a = b for any c ∈ R, with c �= 0.

Note that as a result of the distributive law, we may view −a for any a ∈ R

as (−1) · a, or −1 times a.
We now look at inverses under multiplication.

� The Multiplicative Inverse
If z ∈ R with z �= 0, then the multiplicative inverse of z is that number

1/z = z−1 (since z · 1
z = 1, the multiplicative identity). In fact, division may be

considered the inverse of multiplication.
Now we look at square roots and the relationship with exponentiation.
If a < 0, then

√
a �∈ R. For instance,

√−1 �∈ R and
√−5 �∈ R. Consider,√

25 = 5 ∈ R. A common error is to say that
√

25 = ±5, but this is false.
The error usually arises from the confusion of the solutions to x2 = 25 with the
solutions to

√
52 = x. Solutions to x2 = 25 are certainly x = ±5, but the only

solution to
√

52 = x is x = 5, the unique positive integer such that x2 = 25. A
valid way of avoiding confusion with

√
x2 is the following development.

We may define exponentiation by observing that for any x ∈ R, n ∈ N,

xn = x · x · · ·x,

multiplied n times. Note that by convention x0 = 1 for any nonzero real number
x (and 00 is undefined). In what follows, the notation R+ means all of the
positive real numbers. For rational exponents, we have the following.

Definition A.9 Rational Exponents
Let n ∈ N. If n is even and a ∈ R+, then n

√
a = b means that unique value

of b ∈ R+ such that bn = a. If n is even and a ∈ R with a negative, then n
√

a
is undefined. If n is odd, then n

√
a = b is that unique value of b ∈ R such that

bn = a. In each case, a is called the base for the exponent.

Based on Definition A.9, the symbol a
m
n for a ∈ R+ and m,n ∈ N is given

by
a

m
n =

(
a

1
n

)m

.

Definition A.10 Absolute Value
If x ∈ R, then

|x| =
{ x if x ≥ 0,

−x if x < 0,
called the absolute value of x.

With Definition A.10 in mind, we see that if x > 0, then
√

x2 = (x2)1/2 = (x)2·1/2 = x1 = x = |x|,

© 2007 by Taylor & Francis Group, LLC

304 Appendix A

and if x < 0, then
√

x2 =
√

(−x)2 = (−x)2·1/2 = (−x)1 = −x = |x|.

Hence, √
x2 = |x|.

Also,

a−m
n =

1
a

m
n

.

In general, we have the following laws.

Theorem A.1 Laws for Exponents
Let a, b ∈ R+, and n, m ∈ N.

(a) anbn = (ab)n.

(b) aman = am+n.

(c) (am)n = amn.

(d) (am)
1
n = n

√
am = a

m
n = (a

1
n)m.

Proof. See [61, Proposition 1.4.1, p. 46]. �

Corollary A.1 Let a, n ∈ N. Then n
√

a ∈ Q if and only if n
√

a ∈ Z.

Note that we cannot have a negative base in Theorem A.1. The reason for
this assertion is given in the following discussion. If we were to allow −5 =

√
25,

then by Theorem A.1,

−5 =
√

25 = 251/2 = (52)1/2 = 52·1/2 = 51 = 5,

which is a contradiction. From another perspective, suppose that we allowed
for negative bases in Theorem A.1. Then

5 =
√

25 =
√

(−5)2 = ((−5)2)1/2 = (−5)2·1/2 = (−5)1 = −5,

again a contradiction. Hence, only positive bases are allowed for the laws in
Theorem A.1 to hold.

Since we have the operations of addition and multiplication, it would be
useful to have a notation that would simplify calculations.

� The Sigma Notation
We can write n = 1 + 1 + · · · + 1 for the sum of n copies of 1. We use the

Greek letter upper case sigma to denote summation. For instance,
∑n

i=1 1 = n
would be a simpler way of stating the above. Also, instead of writing the sum
of the first one hundred natural numbers as 1 + 2 + · · · + 100, we may write it

© 2007 by Taylor & Francis Group, LLC

Fundamental Facts 305

as
∑100

i=1 i. In general, if we have numbers am, am+1, · · · , an (m ≤ n), we may
write their sum as

n∑
i=m

ai = am + am+1 + · · · an,

and by convention
n∑

i=m

ai = 0 if m > n.

The letter i is the index of summation (and any letter may be used here), n is
the upper limit of summation, m is the lower limit of summation, and ai is a
summand. In the previous example,

∑n
i=1 1, there is no i in the summand since

we are adding the same number n times. The upper limit of summation tells
us how many times that is (when i = 1). Similarly, we can write,

∑4
j=1 3 =

3 + 3 + 3 + 3 = 12. This is the simplest application of the sigma notation.
Another example is

∑10
i=1 i = 55.

Theorem A.2 Properties of the Summation (Sigma) Notation
Let h, k,m, n ∈ Z with m ≤ n and h ≤ k. If R is a ring, then:

(a) If ai, c ∈ R, then
∑n

i=m cai = c
∑n

i=m ai.

(b) If ai, bi ∈ R, then
∑n

i=m(ai + bi) =
∑n

i=m ai +
∑n

i=m bi.

(c) If ai, bj ∈ R, then

n∑
i=m

k∑
j=h

aibj =

(
n∑

i=m

ai

)
 k∑

j=h

bj

 =

k∑
j=h

n∑
i=m

aibj =

 k∑

j=h

bj

(

n∑
i=m

ai

)
.

A close cousin of the summation symbol is the product symbol defined as
follows.

� The Product Symbol

The multiplicative analogue of the summation notation is the product symbol
denoted by Π, upper case Greek pi. Given am, am+1, . . . , an ∈ R, where R is a
given ring and m ≤ n, their product is denoted by:

n∏
i=m

ai = amam+1 · · · an,

and by convention
∏n

i=m ai = 1 if m > n.
The letter i is the product index, m is the lower product limit n is the upper

product limit, and ai is a multiplicand or factor.

© 2007 by Taylor & Francis Group, LLC

306 Appendix A

For example, if x ∈ R+, then

n∏
j=0

xj = x
∑ n

j=0 j = xn(n+1)/2,

(see Theorem 1.4 on page 10).
Above, we defined the product notation. For instance,

∏7

i=1 i = 1 · 2 · 3 · 4 ·
5 · 6 · 7 = 5040. This is an illustration of the following concept.

Definition A.11 Factorial Notation!
If n ∈ N, then n! (read “enn factorial”) is the product of the first n natural

numbers. In other words,

n! =
n∏

i=1

i.

We agree, by convention, that 0! = 1. In other words, multiplication of no
factors yields the identity.

The factorial notation gives us the number of distinct ways of arranging n
objects. For instance, if you have ten distinct books on your bookshelf, then
you can arrange them in 10!=3,628,800 distinct ways.

� The Pigeonhole Principle

Certain counting arguments rely upon a simple idea as follows. If n sets
contain n + 1 distinct elements in total, then at least one set must contain two
or more elements. This is the Pigeonhole Principle, from the application of
n + 1 pigeons flying into n holes. This principle is equivalent to the Dirichlet
Box Principle, which says if more than m ∈ N objects are placed in m boxes,
then at least one of the boxes contains at least two elements.

Now that we have the factorial notation under our belts, we may introduce
another symbol, based on it, which is valuable in number theory.

Definition A.12 Binomial Coefficients
If k, n ∈ Z with 0 ≤ k ≤ n, then the symbol

(
n
k

)
(read “n choose k”) is given

by (
n

k

)
=

n!
k!(n − k)!

,

the binomial coefficient.

The binomial coefficient is used in the theory of probability as the number of
different combinations of n objects taken k at a time. For instance, the number
of ways of choosing two objects from a set of five objects, without regard for
order, is

(
5
2

)
= 5!/(2!3!) = 10 distinct ways.

© 2007 by Taylor & Francis Group, LLC

Fundamental Facts 307

Proposition A.1 Properties of the Binomial Coefficient
If n, k ∈ Z and 0 ≤ k ≤ n, then

(a)
(

n
n−k

)
=

(
n
k

)
. (Symmetry Property)

(b)
(
n+1
k+1

)
=

(
n

k+1

)
+

(
n
k

)
. (Pascal’s Identity)

(c)
∑n

i=0(−1)i
(
n
i

)
= 0. (Null Summation Property)

(d)
∑n

i=0

(
n
i

)
= 2n. (Full Summation Property)

Proof. See [61, Proposition 1.2.1, pp. 18–19]. �

An important fundamental result involving binomial coefficients that we will
need in the text is the following.

Theorem A.3 The Binomial Theorem
Let x, y ∈ R, and n ∈ N. Then

(x + y)n =
n∑

i=0

(
n

i

)
xn−iyi.

Proof. See [61, Theorem 1.2.3, p. 19]. �

Note that the full and null summation properties in Proposition A.1 are
just special cases of the binomial theorem (with x = y = 1 and x = 1 = −y,
respectively.)

In the above, we have used the symbols > (greater than) and < (less than).
We now formalize this notion of ordering as follows.

Definition A.13 Ordering
If a, b ∈ R, then we write a < b if a− b is negative and say that a is strictly

less than b. Equivalently, b > a means that b is strictly bigger than a. (Thus,
to say that b − a is positive is equivalent to saying that b − a > 0.) We also
write a ≤ b to mean that a − b is not positive, namely a − b = 0 or a − b < 0.
Equivalently, b ≥ a means that b − a is nonnegative, namely b − a = 0 or
b − a > 0.

Now we state the principle governing order.

� The Law of Order If a, b ∈ R, then exactly one of the following must
hold: a < b, a = b, or a > b.

A basic rule, which follows from the Law of Order, is the following.

� The Transitive Law Let a, b, c ∈ R. If a < b and b < c, then a < c.

What now follows easily from this is the connection between order and the
operations of addition and multiplication, namely if a < b, then a + c < b + c
for any c ∈ R, and ac < bc for any c ∈ R+. However, if c < 0, then ac > bc.

© 2007 by Taylor & Francis Group, LLC

308 App endix A

In the text, we will be in need of some elementary facts concerning matrix
theory. We now list these facts, without proof, for the convenience of the reader.
The proofs, background, and details may be found in any text on elementary
linear algebra.

� Basic Matrix Theory

If m,n ∈ N, then an m × n matrix (read “m by n matrix”) is a rectangular
array of entries with m rows and n columns. We will assume that the entries
come from a commutative ring with identity R (see page 23). If A is such a
matrix, and ai,j denotes the entry in the ith row and jth column, then

A = (ai,j) =

a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
...

...
am,1 am,2 · · · am,n

 .

Two m × n matrices A = (ai,j), and B = (bi,j) are equal if and only if
ai,j = bi,j for all i and j. The matrix (aj,i) is called the transpose of A, denoted
by

At = (aj,i).

Addition of two m × n matrices A and B is done in the natural way.

A + B = (ai,j) + (bi,j) = (ai,j + bi,j),

and if r ∈ R, then rA = r(ai,j) = (rai,j), called scalar multiplication, which is
used most often in practice for R = R.

Under the above definition of addition and scalar multiplication, the set of
all m× n matrices with entries from R, a commutative ring with identity, form
a set, denoted by Mm×n(R). When m = n, this set is in fact a ring given by
the following.

If A = (ai,j) is an m× n matrix and B = (bj,k) is an n× r matrix, then the
product of A and B is defined as the m × r matrix:

AB = (ai,j)(bj,k) = (ci,k),

where

ci,k =
n∑

�=1

ai,�b�,k.

Multiplication, if defined, is associative, and distributive over addition. If m =
n, then Mn×n(R) is a ring, with identity given by the n × n matrix:

In =

1R 0 · · · 0
0 1R · · · 0
...

...
...

...
0 0 · · · 1R

 ,

© 2007 by Taylor & Francis Group, LLC

Fundamental Facts 309

called the n × n identity matrix, where 1R is the identity of R.
Another important aspect of matrices that we will need throughout the

text is motivated by the following. We maintain the assumption that R is a
commutative ring with identity. Let (a, b), (c, d) ∈ M1×2(R). If we set up these
row vectors into a single 2 × 2 matrix

A =
(

a b
c d

)
,

then ad− bc is called the determinant of A, denoted by det(A). More generally,
we may define the determinant of any n×n matrix in Mn×n(R) for any n ∈ N.
The determinant of any r ∈ M1×1(R) is just det(r) = r. Thus, we have the
definitions for n = 1, 2, and we may now give the general definition inductively.
The definition of the determinant of a 3 × 3 matrix

A =

 a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

is defined in terms of the above definition of the determinant of a 2× 2 matrix,
namely det(A) is given by

a1,1 det
(

a2,2 a2,3

a3,2 a3,3

)
− a1,2 det

(
a2,1 a2,3

a3,1 a3,3

)
+ a1,3 det

(
a2,1 a2,2

a3,1 a3,2

)
.

Therefore, we may inductively define the determinant of any n×n matrix in
this fashion. Assume that we have defined the determinant of an n× n matrix.
Then we define the determinant of an (n + 1) × (n + 1) matrix A = (ai,j) as
follows. First, we let Ai,j denote the n× n matrix obtained from A by deleting
the ith row and jth column. Then we define the minor of Ai,j at position (i, j)
to be det(Ai,j). The cofactor of Ai,j is defined to be

cof(Ai,j) = (−1)i+j det(Ai,j).

We may now define the determinant of A by

det(A) = ai,1cof(Ai,1) + ai,2cof(Ai,2) + · · · + ai,n+1cof(Ai,n+1). (A.1)

This is called the expansion of a determinant by cofactors along the ith row of
A. Similarly, we may expand along a column of A.

det(A) = a1,jcof(A1,j) + a2,jcof(A2,j) + · · · + an+1,jcof(An+1,j),

called the cofactor expansion along the jth column of A. Both expansions can
be shown to be identical. Hence, a determinant may be viewed as a function
that assigns a real number to an n × n matrix, and the above gives a method
for finding that number. Other useful properties of determinants that we will
have occasion to use in the text are given in the following.

© 2007 by Taylor & Francis Group, LLC

310 Appendix A

Theorem A.4 Properties of Determinants
Let R be a commutative ring with identity and let A = (ai,j), B = (bi,j) ∈

Mn×n(R). Then each of the following hold.

(a) det(A) = det(ai,j) = det(aj,i) = det(At).

(b) det(AB) = det(A) det(B).

(c) If matrix A is achieved from matrix B by interchanging two rows (or two
columns), then det(A) = −det(B).

(d) If Sn is the symmetric group on n symbols, then

det(A) =
∑

σ∈Sn

(sgn(σ))a1,σ(1)a2,σ(2) · · · an,σ(n),

where sgn(σ), is 1 or −1 according as σ is even or odd.

If A ∈ Mn×n(R), then A is said to be invertible, or nonsingular if there is a
unique matrix denoted by

A−1 ∈ Mn×n(R)

such that
AA−1 = In = A−1A.

Here are some properties of invertible matrices.

Theorem A.5 Properties of Invertible Matrices
Let R be a commutative ring with identity, n ∈ N, and A invertible in

Mn×n(R). Then each of the following holds.

(a) (A−1)−1 = A.

(b) (At)−1 = (A−1)t, where “t” denotes the transpose.

(c) (AB)−1 = B−1A−1

In order to provide a formula for the inverse of a given matrix, we need the
following concept.

Definition A.14 Adjoint
Let R be a commutative ring with identity. If A = (ai,j) ∈ Mn×n(R), then

the matrix
Aa = (bi,j)

given by

bi,j = (−1)i+j det(Aj,i) = cof(Aj,i) =
[
(−1)i+j det(Ai,j)

]t

is called the adjoint of A.

© 2007 by Taylor & Francis Group, LLC

Fundamental Facts 311

Some properties of adjoints related to inverses, including a formula for the
inverse, are as follows. In what follows, a unit or invertible element u in a
commutative ring with identity R means an element for which there exists a
multiplicative inverse. In other words, an element u ∈ R is a unit if there exists
an element u−1 ∈ R such that uu−1 = 1R.

Theorem A.6 Properties of Adjoints
If R is a commutative ring with identity and A ∈ Mn×n(R), then each of

the following holds.

(a) AAa = det(A)In = AaA.

(b) A is invertible in Mn×n(R) if and only if det(A) is a unit in R, in which
case A−1 = Aa/det(A).

Example A.3 If n = 2, then the inverse of a nonsingular matrix

A =
(

a b
c d

)
is given by

A−1 =

(
d

det(A)
−b

det(A)
−c

det(A)
a

det(A)

)
.

� Polynomials and Polynomial Rings

If R is a ring, then a polynomial f(x) in an indeterminant x with coefficients
in R is an infinite formal sum

f(x) =
∞∑

j=0

ajx
j = a0 + a1x + · · · + anxn + · · · ,

where the coefficients aj are in R for j ≥ 0 and aj = 0 for all but a finite
number of those values of j. The set of all such polynomials is denoted by R[x].
If an �= 0, and aj = 0 for j > n, then an is called the leading coefficient of f(x).
If the leading coefficient an = 1R, in the case where R is a commutative ring
with identity 1R, then f(x) is said to be monic.

We may add two polynomials from R[x], f(x) =
∑∞

j=0 ajx
j and g(x) =∑∞

j=0 bjx
j , by

f(x) + g(x) =
∞∑

j=0

(aj + bj)xj ∈ R[x],

and multiply them by

f(x)g(x) =
∞∑

j=0

cjx
j ,

© 2007 by Taylor & Francis Group, LLC

312 App endix A

where

cj =
j∑

i=0

aibj−i.

Also, f(x) = g(x) if and only if aj = bj for all j = 0, 1, Under the above
operations R[x] is a ring, called the polynomial ring over R in the indeterminant
x. Furthermore, if R is commutative, then so is R[x], and if R has identity 1R,
then 1R is the identity for R[x]. Notice that with these conventions, we may
write f(x) =

∑n
j=0 ajx

j , for some n ∈ N, where an is the leading coefficient
since we have tacitly agreed to “ignore” zero terms.

If α ∈ R, we write f(α) to represent the element
∑n

j=0 ajα
j ∈ R, called the

substitution of α for x. When f(α) = 0, then α is called a root of f(x). The
substitution gives rise to a mapping f : R �→ R given by f : α �→ f(α), which is
determined by f(x). Thus, f is called a polynomial function over R.

� Characteristic of a Ring

The characteristic of a ring R is the smallest n ∈ N (if there is one) such that
n · r = 0 for all r ∈ R. If there is no such n, then R is said to have characteristic
0. Any field containing Q has characteristic zero, while any field containing the
finite field Fp for a prime p has characteristic p (see the discussion following
Definition A.17 below).

Definition A.15 Degrees of Polynomials

If f(x) ∈ R[x], with f(x) =
∑d

j=0 ajx
j, and ad �= 0, then d ≥ 0 is called

the degree of f(x) over R, denoted by degR(f). If no such d exists, we write
degR(f) = −∞, in which case f(x) is the zero polynomial in R[x] (for instance,
see Example A.5 below). If F is a field of characteristic zero, then

degQ(f) = degF (f)

for any f(x) ∈ Q[x]. If F has characteristic p, and f(x) ∈ Fp[x], then

degFp
(f) = degF (f).

In either case, we write deg(f) for degF (f), without loss of generality, and call
this the degree of f(x).

With respect to roots of polynomials, the following is important.

Definition A.16 Discriminant of Polynomials
Let f(x) = a

∏n

j=1(x−αj) ∈ F [x], deg(f) = n > 1, a ∈ F a field in C, where
αj ∈ C are all the roots of f(x) = 0 for j = 1, 2, . . . , n. Then the discriminant
of f is given by

disc(f) = a2n−2
∏

1≤i<j≤n

(αj − αi)2.

© 2007 by Taylor & Francis Group, LLC

Fundamental Facts 313

From Definition A.16, we see that f has a multiple root in C (namely for
some i �= j we have αi = αj , also called a repeated root) if and only if disc(f) = 0.

Example A.4 If f(x) = ax2 + bx + c where a, b, c ∈ Z, then disc(f) = b2 − 4ac
and if f(x) = x3 − c, then disc(f) = −27c2.

Definition A.17 Division of Polynomials
We say that a polynomial g(x) ∈ R[x] divides f(x) ∈ R[x], if there exists

an h(x) ∈ R[x] such that f(x) = g(x)h(x). We also say that g(x) is a factor of
f(x).

Definition A.18 Irreducible Polynomials over Rings
A polynomial f(x) ∈ R[x] is called irreducible (over R) if f(x) is not a unit

in R and any factorization f(x) = g(x)h(x), with g(x), h(x) ∈ R[x] satisfies the
property that one of g(x) or h(x) is in R, called a constant polynomial. In other
words, f(x) cannot be the product of two nonconstant polynomials. If f(x) is
not irreducible, then it is said to be reducible.

Note that it is possible that a reducible polynomial f(x) could be a product
of two polynomials of the same degree as that of f . For instance, f(x) =
(1 − x) = (2x + 1)(3x + 1) in R = Z/6Z.

In general, it is important to make the distinction between degrees of a
polynomial over various rings, since the base ring under consideration may alter
the makeup of the polynomial.

For the following example, recall that a finite field is a field with a finite
number of elements n ∈ N, denoted by Fn. In general, if K is a finite field, then
K = Fpm for some prime p and m ∈ N, also called Galois fields. The field Fp is
called the prime subfield of K. In general, a prime subfield is a field having no
proper subfields, so Q is the prime subfield of any field of characteristic 0 and
Z/pZ = Fp is the prime field of any field K = Fpm . In the following result, the
term cyclic in reference to a multiplicative abelian group G means that a group
generated by some g ∈ G coincides with G. Note that any group of prime order
is cyclic and the product of two cyclic groups of relatively prime order is also a
cyclic group. Also, if S is a nonempty subset of a group G, then the intersection
of all subgroups of G containing S is called the subgroup generated by S..

Theorem A.7 Multiplicative Subgroups of Fields
If F is any field and F ∗ is a finite subgroup of the multiplicative subgroup of

nonzero elements of F , then F ∗ is cyclic. In particular, if F = Fpn is a finite
field, then F ∗ is a finite cyclic group.

© 2007 by Taylor & Francis Group, LLC

314 App endix A

Example A.5 The polynomial f(x) = 2x2 + 2x + 2 is of degree two over Q.
However, over F2, degF2

(f) = −∞, since f is the zero polynomial in F2[x].

Some facts concerning irreducible polynomials will be needed in the text as
follows.

Theorem A.8 Irreducible Polynomials Over Finite Fields
The product of all monic irreducible polynomials over a finite field Fq whose

degrees divide a given n ∈ N is equal to xq
n − x.

Based upon Theorem A.8, the following may be used as an algorithm for
testing polynomials for irreducibility over prime fields and thereby generate
irreducible polynomials.

Corollary A.2 The following are equivalent.

(a) f is irreducible over Fp, where p is prime, and degFp
(f) = n.

(b) gcd(f(x), xpi − x) = 1 for all natural numbers i ≤ n/2�.
The following is also a general result concerning irreducible polynomials over

any field.

Theorem A.9 Irreducible Polynomials Over Arbitrary Fields
Let F be a field and f(x) ∈ F [x]. Denote by (f(x)) the principal ideal in

F [x] generated by f(x) (see Definition A.22 on page 317). Then the following
are equivalent.

(a) f is irreducible over F .

(b) F [x]/(f(x)) is a field.

Another useful result is the following.

Theorem A.10 Polynomials, Traces, and Norms
Suppose that f(x) ∈ R[x] is a monic, irreducible polynomial (over R where

R is an integral domain), deg(f) = d ∈ N, and αj for j = 1, 2, . . . , d are all of
the roots of f(x) in C. Then

f(x) = xd − Txd−1 + · · · ± N,

where

T =
d∑

j=1

αj and N =
d∏

j=1

αj ,

where T is called the trace and N is called the norm (of any of the roots of
f(x)).

© 2007 by Taylor & Francis Group, LLC

Fundamental Facts 315

Now that we have the notion of irreducibility for polynomials, we may state
a unique factorization result for polynomials over fields.

Theorem A.11 Unique Factorization for Polynomials
If F is a field, then every nonconstant polynomial f(x) ∈ F [x] can be factored

in F [x] into a product of irreducible polynomials p(x), each of which is unique
up to order and units (nonzero constant polynomials) in F .

The Euclidean Algorithm applies to polynomials in a way that allows us
to talk about common divisors of polynomials in a fashion similar to that for
integers.

Definition A.19 The GCD of Polynomials
If fi(x) ∈ F [x] for i = 1, 2, where F is a field, then the greatest common

divisor of f1(x) andf2(x) is the unique monic polynomial g(x) ∈ F [x] satisfying
both:

(a) For i = 1, 2, g(x)|fi(x).

(b) If there is a g1(x) ∈ F [x] such that g1(x)|fi(x) for i = 1, 2, then g1(x)|g(x).

If g(x) = 1, we say that f1(x) and f2(x) are relatively prime, or coprime
denoted by

gcd(f1(x), f2(x)) = 1.

There is also a Euclidean result for polynomials over a field.

Theorem A.12 Euclidean Algorithm for Polynomials
If f(x), g(x) ∈ F [x], where F is a field, and g(x) �= 0, there exist unique

q(x), r(x) ∈ F [x] such that

f(x) = q(x)g(x) + r(x),

where deg(r) < deg(g). (Note that if r(x) = 0, the zero polynomial, then
deg(r) = −∞.)

Finally, if f(x) and g(x) are relatively prime, there exist s(x), t(x) ∈ F [x]
such that

1 = s(x)f(x) + t(x)g(x).

Theorem A.13 Lagrange’s Theorem
Suppose that p is a prime and f(x) ∈ Z[x] is polynomial of degree d ≥ 1

modulo p. Then
f(x) ≡ 0 (mod p)

has at most d incongruent solutions.

© 2007 by Taylor & Francis Group, LLC

316 App endix A

Proof. See [61, Theorem 2.51, p. 104]. �

We will need the following important polynomial in the main text.

Definition A.20 Cyclotomic Polynomials
If n ∈ N, then the nth cyclotomic polynomial is given by

Φn(x) =
∏

gcd(n,j)=1

1≤j<n

(x − ζj
n).

Also, the degree of Φn(x) is φ(n), the Euler Totient (see Definition 1.12).

Note that despite the form of the cyclotomic polynomial given in Definition
A.20, it can be shown that Φn(x) ∈ Z[x]. The reader may think of the term
cyclotomic as “circle dividing,” since the nth roots of unity divide the unit circle
into n equal arcs. Also, the ζj

n are sometimes called De Moivre Numbers (see
[92, p. 388]).

Biography 8.1 Abraham De Moivre (1667–1754) was a French-born
Huguenot who left for England when Louis XIV revoked the Edict of Nantes
in 1685. He was one of the pioneers of the theory of probability in the early
eighteenth century. He became acquainted with Newton and Halley when he
went to England. However, as a Frenchman, he was unable to secure a uni-
versity position there and remained mostly self-supporting through fees for
tutorial services. Yet he produced a considerable amount of research, per-
haps the most famous of which is his Doctrine of Chances first published in
1718. This and subsequent editions had more than fifty problems on proba-
bility. Perhaps the most famous theorem with De Moivre’s name attached
to it is the one that says: For a, b coordinates in the complex plane, r
the radius and φ the angle that the radius vector makes with the real axis,
(a + bi)n = rn(cos(nφ) + i sin(nφ)).

The following section is of importance for us in the main text as a tool for
the description of numerous cryptographic devices (see page 23).

� Action on Rings

Definition A.21 Morphisms of Rings
If R and S are two rings and f : R → S is a function such that f(ab) =

f(a)f(b), and f(a + b) = f(a) + f(b) for all a, b ∈ R, then f is called a ring
homomorphism. If, in addition, f : R → S is an injection as a map of sets, then
f is called a ring monomorphism. If a ring homomorphism f is a surjection as

© 2007 by Taylor & Francis Group, LLC

Fundamental Facts 317

a map of sets, then f is called a ring epimorphism. If a ring homomorphism f is
a bijection as a map of sets, then f is called a ring isomorphism, and R is said
to be isomorphic to S, denoted by R ∼= S. Lastly, ker(f) = {s ∈ S : f(s) = 0}
is called the kernel of f . Also, f is injective if and only if ker(f) = {0}.

There is a fundamental result that we will need in the text. In order to
describe it, we need the following notion.

Definition A.22 Ideal, Cosets, and Quotient Rings
An ideal I in a commutative ring R with identity is a subring of R satisfying

the additional property that rI ⊆ I for all r ∈ R. If I is an ideal in R then a
coset of I in R is a set of the form r + I = {r + α : α ∈ I} where r ∈ R. The
set

R/I = {r + I : r ∈ R}
becomes a ring under multiplication and addition of cosets given by

(r + I)(s + I) = rs + I, and (r + I) + (s + I) = (r + s) + I,

for any r, s ∈ R (and this can be shown to be independent of the representatives
r and s). R/I is called the quotient ring of R by I, or the factor ring of R by
I, or the residue class ring modulo I. The cosets are called the residue classes
modulo I. A mapping

f : R �→ R/I,

which takes elements of R to their coset representatives in R/I, is called the
natural map of R to R/I, and it is easily seen to be an epimorphism. The
cardinality of R/I is denoted by |R : I|.

Example A.6 Consider the ring of integers modulo n ∈ N, Z/nZ introduced
in Definition 1.10. Then nZ is an ideal in Z, and the quotient ring is the residue
class ring modulo n.

Remark A.1 Since rings are also groups, then the above concept of cosets and
quotients specializes to groups. In particular, we have the following. Note that
an index of a subgroup H in a group G can be defined similarly to the above
situation for rings as follows. The index of H in G, denoted by |G : H|, is the
cardinality of the set of distinct right (respectively left) cosets of H in G. Our
principal interest is when this cardinality is finite (so this allows us to access
the definition of cardinality given earlier). Then Lagrange’s Theorem for groups
says that

|G| = |G : H| · |H|,
so if G is a finite group, then |H| ∣∣ |G|. In particular, a finite abelian group G
has subgroups of all orders dividing |G|.

© 2007 by Taylor & Francis Group, LLC

318 Appendix A

Now we are in a position to state the important result for rings. The
reader unfamiliar with the notation “img” of a function should consult Defi-
nition A.6 on page 300 for the description.

Theorem A.14 Fundamental Isomorphism Theorem for Rings
If R and S are commutative rings with identity, and

φ : R → S

is a homomorphism of rings, then

R

ker(φ)
∼= img(φ).

Example A.7 If Fq is a finite field where q = pn (p prime) and f(x) ∈ Fp[x] is
an irreducible polynomial of degree n (see page 311), then

Fq
∼= Fp[x]

(f(x))
.

The situation in Example A.7 is related to the following definition and the-
orem.

Definition A.23 Maximal and Proper Ideals
Let R be a commutative ring with identity. An ideal I �= R is called maximal

if whenever I ⊆ J , where J is an ideal in R, then I = J or I = R. (An ideal
I �= R is called a proper ideal.)

Theorem A.15 Rings Modulo Maximal Ideals
If R is a commutative ring with identity, then M is a maximal ideal in R if

and only if R/M is a field.

Example A.8 If F is a field and r ∈ F is a fixed nonzero element, then

I = {f(x) ∈ F [x] : f(r) = 0}

is a maximal ideal and
F ∼= F [x]/I.

© 2007 by Taylor & Francis Group, LLC

Fundamental Facts 319

Another aspect of rings that we will need in the text is the following. If
S = {Rj : j = 1, 2, . . . , n} is a set of rings, then let R be the set of n-tuples
(r1, r2, . . . , rn) with rj ∈ Rj for j = 1, 2, . . . n, with the zero element of R being
the n-tuple, (0, 0, . . . , 0). Define addition in R by

(r1, r2, . . . , rn) + (r′1, r
′
2, . . . , r

′
n) = (r1 + r′1, r2 + r′2, . . . , rn + r′n),

for all rj , r
′
j ∈ Rj with j = 1, 2, . . . , n, and multiplication by

(r1, r2, . . . , rn)(r′1, r
′
2, . . . , r

′
n) = (r1r

′
1, r2r

′
2, . . . , rnr′n).

This defines a structure on R called the direct sum of the rings Rj , j =
1, 2, . . . , n, denoted by

⊕n
j=1Rj = R1 ⊕ · · · ⊕ Rn, (A.2)

which is easily seen to be a ring. Similarly, when the Rj are groups, then this
is a direct sum of groups, which is again a group.

In the text, we will have occasion to refer to such items as vector spaces, so
we remind the reader of the definition. The reader is referred to pages 22–25,
where we discussed the axioms for algebraic objects such as groups, rings, and
fields. In particular, for the sake of completeness, note that any set satisfying
all of the axioms of Theorem 1.10 on page 22, except (g), is called a division
ring.

� Vector Spaces

A vector space consists of an additive abelian group V and a field F together
with an operation called scalar multiplication of each element of V by each
element of F on the left, such that for each r, s ∈ F and each α, β ∈ V the
following conditions are satisfied:

A.1. rα ∈ V .

A.2. r(sα) = (rs)α.

A.3. (r + s)α = (rα) + (sα).

A.4. r(α + β) = (rα) + (rβ).

A.5. 1F α = α.

The set of elements of V are called vectors and the elements of F are called
scalars. The generally accepted abuse of language is to say that V is a vector
space over F . If V1 is a subset of a vector space V that is a vector space in its
own right, then V1 is called a subspace of V .

Example A.9 For a given prime p, m,n ∈ N, the finite field Fpn is an n-
dimensional vector space over Fpm with pmn elements.

© 2007 by Taylor & Francis Group, LLC

320 Appendix A

Definition A.24 Bases, Dependence, and Finite Generation
If S is a subset of a vector space V , then the intersection of all subspaces of

V containing S is called the subspace generated by S, or spanned by S. If there
is a finite set S, and S generates V , then V is said to be finitely generated. If
S = ∅, then S generates the zero vector space. If S = {m}, a singleton set, then
the subspace generated by S is said to be the cyclic subspace generated by m.

A subset S of a vector space V is said to be linearly independent provided
that for distinct s1, s2, . . . , sn ∈ S, and rj ∈ V for j = 1, 2, . . . , n,

n∑
j=1

rjsj = 0 implies that rj = 0 for j = 1, 2, . . . , n.

If S is not linearly independent, then it is called linearly dependent. A linearly
independent subset of a vector space that spans V is called a basis for V .

In the text, we will have need of the following notion, especially as it pertains
to the infinite binary case.

� Sequences

Definition A.25 A sequence is a function whose domain is N, with images
denoted by an, called the nth term of the sequence. The entire sequence is
denoted by {an}∞n=1, or simply {an}, called an infinite sequence or simply a
sequence. If {an} is a sequence, and L ∈ R such that

lim
n→∞ an = L,

then the sequence is said to converge (namely when the limit exists) whereas
sequences that have no such limit are said to diverge. If the terms of the sequence
are nondecreasing, an ≤ an+1 for all n ∈ N, or nonincreasing, an ≥ an+1 for all
n ∈ N, then {an} is said to be monotonic. A sequence {an} is called bounded
above if there exists an M ∈ R such that an ≤ M for all n ∈ N. The value M
is called an upper bound for the sequence. A sequence {an} is called bounded
below if there is a B ∈ R such that B ≤ an for all n ∈ N, and B is called a
lower bound for the sequence. A sequence {an} is called bounded if it bounded
above and bounded below.

Some fundamental facts concerning sequences are contained in the following.

Theorem A.16 Properties of Sequences Let {an} and {bn} be sequences.
Then

(a) If {an} is bounded and monotonic, then it converges.

© 2007 by Taylor & Francis Group, LLC

Fundamental Facts 321

(b) If limn→∞ an = limn→∞ bn = L ∈ R, and {cn} is a sequence such that
there exists a natural number N with an ≤ cn ≤ bn for all n > N , then
limn→∞ cn = L.

(c) If limn→∞ |an| = 0, then limn→∞ an = 0.

Note that part (c) of Theorem A.16 is a corollary to part (b).

� Continued Fractions

Proofs for the results in this section can be found in [61, pp. 221–272].

Definition A.26 If qj ∈ R where j ∈ Z is nonnegative and qj ∈ R+ for j > 0,
then an expression of the form

α = q0 +
1

q1 +
1

q2+
. . .

+
1

qk +
1

qk+1

. . .

is called a continued fraction. If qk ∈ Z for all k ≥ 0, then it is called a
simple continued fraction, denoted by 〈q0; q1, . . . , qk, qk+1, . . .〉. If there exists a
nonnegative integer n such that qk = 0 for all k ≥ n, then the continued fraction
is called finite. If no such n exists, then it is called infinite.

Note that the classical definition of a simple continued fraction is a continued
fraction that arises from the reciprocals as in the Euclidean Algorithm, so the
“numerators” are all 1 and the denominators all integers. This is to distinguish
from more general continued fractions in which the numerators and denomi-
nators can be functions of a complex variable, for instance. Simple continued
fractions are also called regular continued fractions in the literature.

Definition A.27 Convergents
Let n ∈ N and let α have continued fraction expansion 〈q0; q1, . . . , qn, . . .〉

for qj ∈ R+ when j > 0. Then

Ck = 〈q0; q1, . . . , qk〉

is the kth convergent of α for any nonnegative integer k.

© 2007 by Taylor & Francis Group, LLC

322 Appendix A

Theorem A.17 Finite Simple Continued Fractions are Rational
Let α ∈ R. Then α ∈ Q if and only if α can be written as a finite simple

continued fraction.

Theorem A.18 Representation of Convergents
Let α = 〈q0; q1, . . . , qn, . . .〉 for n ∈ N be a continued fraction expansion.

Define two sequences for k ∈ Z nonnegative:

A−2 = 0, A−1 = 1, Ak = qkAk−1 + Ak−2,

and
B−2 = 1, B−1 = 0, Bk = qkBk−1 + Bk−2.

Then
Ck = Ak/Bk =

qkAk−1 + Ak−2

qkBk−1 + Bk−2

is the kth convergent of α for any nonnegative integer k ≤ n.

Theorem A.19 Irrationals Are Infinite Simple Continued Fractions
Let α ∈ R. Then α is irrational if and only if α has a unique infinite

simple continued fraction expansion α = α0 = 〈q0; q1, . . .〉 = limk→∞ Ck, where
qk−1 = αk−1� with αk = 1/(αk−1 − qk−1) and Ck = Ak/Bk for k ∈ N.

Note that in what follows, a surd is the square root of an integer that is not
a perfect square. The term surd is actually an archaic term for square root. The
term quadratic surd also refers to the objects introduced in Definition A.30 on
the next page.

Theorem A.20 Convergents of Surds

Suppose that D > 0 is not a perfect square, n ∈ Z, and |n| <
√

D. If (x, y) is
a positive solution of x2 − Dy2 = n, namely x, y ∈ N, then x/y is a convergent
in the simple continued fraction expansion of

√
D.

Definition A.28 Periodic Continued Fractions
An infinite simple continued fraction α = 〈q0; q1, q2, . . .〉 is called periodic

if there exists an integer k ≥ 0 and � ∈ N such that qn = qn+� for all integers
n ≥ k. We use the notation

α = 〈q0; q1, . . . , qk−1, qk, qk+1, . . . , q�+k−1〉,
as a convenient abbreviation. The smallest such natural number � = �(α) is
called the period length of α, and q0, q1, . . . , qk−1 is called the pre-period of α.
If k is the least nonnegative integer such that qn = qn+� for all n ≥ k, then
qk, qk+1, . . . , qk+�−1 is called the fundamental period of α. If k = 0 is the least
such value, then α is said to be purely periodic, namely α = 〈q0; q1, . . . , q�−1〉.

© 2007 by Taylor & Francis Group, LLC

Fundamental Facts 323

In order to introduce the next concept, we need the following notion.

Definition A.29 Discriminants
Let D0 �= 1 be a square-free integer, and set

∆0 =

{
D0 if D0 ≡ 1 (mod 4),
4D0 otherwise .

Then ∆0 is called a fundamental discriminant with associated fundamental rad-
icand D0. Let f∆ ∈ N, and set ∆ = f2

∆∆0. Then

∆ =

{
D if D ≡ 1 (mod 4) and f∆ is odd,
4D otherwise.

is a discriminant with conductor f∆, and associated radicand

D =

{
f2
∆D0 if D0 �≡ 1 (mod 4) or f∆ is odd ,

(f∆/2)2D0 otherwise ,

having underlying fundamental discriminant ∆0 with associated fundamental
radicand D0. (We use the letter f above for conductor since the German word
for it is Führer. The origins of the mathematical term conductor are rooted in
the German language.)

Definition A.30 Quadratic Irrationals
Suppose that ∆ is a discriminant with underlying radicand D > 1. A

quadratic irrational, with underlying discriminant ∆, is a number of the form

α =
P +

√
D

Q
, (P,Q ∈ Z)

where Q �= 0 and P 2 ≡ D (mod Q).

Theorem A.21 Lagrange: Quadratic Irrationals Are Periodic
Let α ∈ R. Then α has a periodic infinite simple continued fraction expan-

sion if and only if α is a quadratic irrational.

Theorem A.22 Pure Periodicity Equals Reduction
Let α = 〈q0; q1, . . .〉 be an infinite simple continued fraction, with �(α) = � ∈

N. Then α is purely periodic if and only if α > 1 and −1 < α′ < 0, where α′ is
the algebraic conjugate of α. Any quadratic irrational which satisfies these two
conditions is called reduced.

© 2007 by Taylor & Francis Group, LLC

324 Appendix A

Corollary A.3 If D > 1 is not a perfect square, then
√

D = 〈q0; q1, . . . , q�−1, 2q0〉,
where qj = q�−j for j = 1, 2, . . . , � − 1 and q0 = √D�.

Of crucial importance in the text involving the continued factoring algorithm
in Section 6.2 is the following material.

Theorem A.23 Continued Fractions and Recursion
Let D be a positive integer that is not a perfect square, and let

α0 = (P 0 +
√

D)/Q0

be a quadratic irrational. Recursively define the following for k ≥ 0:

αk = (P k +
√

D)/Qk, (A.3)

qk = αk�, (A.4)

P k+1 = qkQk − P k, (A.5)

and
Qk+1 = (D − P 2

k+1)/Qk. (A.6)

Then P k, Qk ∈ Z and Qk �= 0 for k ≥ 0, and αk = 〈qk; qk+1, . . .〉.

Theorem A.24 Continued Fractions and Quadratic Irrationals

Let α = (P +
√

D)/Q be a quadratic irrational and set

Gk−1 = Q0Ak−1 − P0Bk−1 (k ≥ −1),

where Ak−1, Bk−1 are given in Theorem A.18 on page 322. Then

G2
k−1 − B2

k−1D = (−1)kQkQ0 (k ≥ 1). (A.7)

Corollary A.4 If α =
√

D, then Equation (A.7) becomes

A2
k−1 − B2

k−1D = (−1)kQk. (A.8)

Theorem A.25 Reduction and Periodicity
Let α be a reduced quadratic irrational with �(α) = �. Then both of the

following hold.

(a) P 0 = P k� and Q0 = Qk� for all k ≥ 0.

(b) If β =
√

D and �(β) = �, then P1 = Pk� for all k ≥ 1 and Q0 = Qk� = 1
for all k ≥ 0.

© 2007 by Taylor & Francis Group, LLC

Computer Arithmetic 325

Appendix B: Computer Arithmetic
The advent of modern-day electronic computers has radically altered the

nature of cryptography. Therefore, it is imperative that we learn to speak and
manipulate the vernacular of computers. That is the purpose of this appendix.

We are familiar with the Hindu-Arabic numeral system, which is a base
10 (decimal) system. For example, 5146 = 5 · 103 + 1 · 102 + 4 · 101 + 6 · 100.
Other civilizations from antiquity used different bases. For instance, the ancient
Babylonians used base 60 (sexagesimal) and the ancient Mayans used base 20.
Modern-day computers use base 2. The reason for the latter has to do with
how computers store data internally. In other words, computers, at their very
essence, really only understand two possibilities such as “electrical charge or no
electrical charge” or “magnetized clockwise or magnetized counterclockwise.”
Thus, the language that we need to learn begins with an understanding of
how digits are represented in a computer. To begin to touch base with this
understanding, we need the following elementary result.

Theorem B.1 Base Representations of Integers

If b > 1 is an integer, then every n ∈ N has a unique representation as

n =
tn∑

j=0

ajb
j ,

where tn is the smallest nonnegative integer such that aj = 0 for all j > n.

Proof. See [61, Theorem 1.5.1, p. 52]. �

If n ∈ N, then by Theorem B.1, there is a unique representation:

(n)10 = (atnatn−1 . . . a1a0)b,

for the base b (or radix b) representation of the base 10 integer n, where j = tn
is the largest nonnegative integer such that aj �= 0. The value tn + 1 is called
the base-b length of n, and the aj are called the base (radix) b digits of n. For
instance, if b = 2, then the base 2 length is called the bitlength of n.

Important applications of Theorem B.1 are those representations for n ∈ N

of the form

n =
tn∑

j=0

aj2j ,

where 0 ≤ aj ≤ 1 (tn ≥ 0). The aj are called bits, which is a contraction of
binary digits, and (atn

atn−1 . . . a0) is called a bitstring of length tn +1. In other
words, n has bitlength tn +1. For instance, 1057, a base 10 integer, has a binary
representation:

1 · 210 + 0 · 29 + 0 · 28 + 0 · 27 + 0 · 26 + 1 · 25 + 0 · 24 + 0 · 23 + 0 · 22 + 0 · 21 + 20

or simply, (1057)10 = (10000100001)2.

© 2007 by Taylor & Francis Group, LLC

326 App endix B

Biography B.1 Thomas Har-
riot (1560–1621) was an as-
tronomer and mathematician.
He gained fame as the leading
scientist surrounding Sir Walter
Raleigh, who sent him as a scien-
tific advisor on an expedition in
1585 to Roanoke Island, off the
coast of what is now called North
Carolina. In Harriot’s work Ar-
tis Analyticae Praxis ad Aequa-
tiones Algebraicas Resolvendas,
or The Analytical Arts Applied
to Solving Algebraic Equations,
he advanced the theory of equa-
tions. He also introduced the
greater than (>) and the less than
(<) signs. Among his (unfor-
tunately) unpublished discover-
ies were the following: sunspots,
and the moons of Jupiter (in-
dependently of his contemporary
Galileo), and the law of re-
fraction (bending of light) be-
fore Willebrord van Roijen Snell
(1591–1626), who published the
discovery, which is basic to mod-
ern geometrical optics. He died
on July 2, 1621.

A byte, for future reference, is an 8-bit
binary integer. The first recorded (but un-
published) appearance of the binary nota-
tion occurred in 1605 in a manuscript by
Thomas Harriot. The first published appear-
ance of the binary system was in the 1670
manuscript, Mathesis Biceps I, by a Cister-
cian bishop, Juan de Caramuel Lobkowitz,
but his publication contained no discussion
or examples of binary arithmetic. The first
to contain such a discussion was a paper by
Leibniz (see Biography B.3 on page 328),
Mémoires de l’Académie Royal des Sciences,
which appeared in 1703. Leibniz attributed
mystical import to the fact that all num-
bers could be expressed in terms of zeros and
ones. The binary system remained some-
what of a curiosity thereafter until the ad-
vent, in the 1930’s, of electromechanical and
electromagnetic circuitry. By the mid 1940’s,
there was support by major figures in the
scientific community, such as von Neumann
(see Biography B.2 on page 327), and since
then binary computers have proliferated.

Computers have an upper bound on the
size of integers that can be used for its arith-
metic operations. This upper bound is called
the word size, which can be measured in bi-
nary as 2e on an e-bit binary computer, or as
10e on an e-digit decimal computer, for in-
stance. These considerations are important
when talking about large-scale arithmetic in connection with implementation
of cryptosystems (about which we will learn later), for example. Word length
is defined as the logarithm (taken to the appropriate base) of the word size.
When we need to do computer arithmetic with integers bigger than the word
size, then we must devote more than one word to each integer. One of the pri-
mary functions of this section is to describe how the basic arithmetic operations
are formally performed.

Base names other than binary include b = 3 or ternary, b = 4 or quater-
nary, b = 5 or quinary, and so on. In base b = 8 we have what we call octal
representation. For instance, the decimal integer 100 has octal representation
100 = 1 ·82 +4 ·81 +4 ·80, so (100)10 = (144)8. Base 16, or hexadecimal (a term
that has both Greek and Latin roots) representation uses the numbers 0 through
9 as well as the letters A, B, C, D, E, and F to represent the numbers 10, 11, 12,
13, 14, and 15, respectively. For instance, the decimal integer 195951310 has the
base 16 representation 11 ·166+10 ·165+13 ·164+15 ·163+10 ·162+12 ·161+14,

© 2007 by Taylor & Francis Group, LLC

Computer Arithmetic 327

which translates into (195951310)10 = (BADFACE)16.

Biography B.2 John von Neumann (1903–1957) was born on December 3,
1903, in Budapest, Hungary, as Margiattai Neumann János. After receiving
his Ph.D. in mathematics from the University of Budapest, his academic po-
sitions included: lecturer at the University of Berlin 1926–1929; lecturer at
the University of Hamburg 1929–1930; visiting lecturer at Princeton University
1930; and ultimately a permanent member, along with Einstein, at the Institute
for Advanced Study at Princeton in 1933. By the late 1930’s he had published
ground-breaking work on rings of operators, now called Neumann Algebras.
During World War II, he was a consultant for the armed forces, where his ac-
complishments included the drawing up of a report on computer capabilities. In
1946, he published a paper coauthored with A.W. Burks and H.H. Goldstine that
detailed virtually the entire field of “automatic computation,” including designs
for a stored-program computer. This paper strongly influenced the later design
of digital computers. In 1955, von Neumann had been appointed to the Atomic
Energy Commission, and in 1956 he received the Enrico Fermi award. Among
his varied interests and contributions were: computer design, game theory (in
which he set the mathematical cornerstone with the minimax theorem published
in 1928), group theory, logic and foundations, meteorology, probability theory,
and quantum physics. He died on February 8, 1957, in Washington, D.C.

We have not yet addressed the issue of negative number representation.
There are numerous ways to do this, among which is the ones’ complement,
which is a term used to describe the following. If n ∈ Z and (|n|)10 =
(atnatn−1 . . . a0)2, then for any integer m > tn + 1, the ones’ complement m-bit
representation of n is given by:

(

m−tn−1copies︷ ︸︸ ︷
00 . . . 0 atn

atn−1 . . . a0)2 if n > 0,
(11 . . . 1︸ ︷︷ ︸

m−tn−1copies

1 − atn1 − atn−1 . . . 1 − a0)2 if n < 0.

The n ∈ Z which can be represented as m-bit ones’ complement binary
integers are those in the range −2m−1 − 1 ≤ n ≤ 2m−1 − 1. The basic idea is
to convert n to a binary digit and pack m − tn − 1 zeros to the left. Then if
n > 0, this is the ones’ complement, whereas if n < 0, then replace all zeros by
ones and all ones by zeros. This is illustrated as follows.

Example B.1 To represent (26)10 and (−26)10 as m = 7-bit ones’ comple-
ment integers, we calculate that (26)10 = (11010)2, so (0011010)2 is the 7-bit
ones’ complement representation of the decimal digit 26, whereas for −26 it is
(1100101)2.

Notice that in the ones’ complement system, +0 is represented by (00)2, as
an m = 2-bit binary integer, and −0 is represented by (11)2. Since −0 and +0
are the same, but represented differently, some care in practice is required.

© 2007 by Taylor & Francis Group, LLC

328 Appendix B

A method of representing negative numbers that does not have this disad-
vantage is called the ten’s complement notation, which is described as follows.
Assuming that we are working with n−bit numbers, then we always work with
10n. For instance, if n = 10, then a negative number such as −3495657980 is
represented as 6504342020 (= 1010 − 3495657980). Hence, any number with
a leading digit bigger than 4 is assumed to be negative, so no explicit sign is
attached. This system clearly has limitations on size, but avoids the problem of
the representation of +0 and −0.

Now that we know how to represent numbers to various bases in numerous
ways, it is time to look at the arithmetic involved in using these bases. We
begin with the most basic of arithmetic operations — addition.

Biography B.3 Gottfried Wilhelm von Leibniz (1646–1716) was born on July
1, 1646, in Leipzig, Saxony (now Germany). By the age of twelve, he had taught
himself Latin and Greek in order to be able to read the books of his father, who
was a philosophy professor at Leipzig. Leibniz studied law at Leipzig from
1661 to 1666 and ultimately received a doctorate in law from the University of
Altdorf in 1667. He pursued a career in law at the courts of Mainz from 1667 to
1672. Then he went to Paris from 1672 to 1676, during which time he studied
mathematics and physics under Christian Huygens (1629–1695). In 1676, he
left for Hannover, where he remained for the balance of his life. Leibniz began
looking for a uniform and useful notation for the calculus in 1673. By November
1676, he discovered the now famous dxn = nxn−1dx for nonzero n ∈ Q. In
1684, he published the details of the differential calculus, the year before Newton
published his famed Principia. Leibniz’s formal approach was to have a vital
impact upon the development of the calculus. The bitter dispute between Newton
and Leibniz concerning priority over the discovery of the calculus is detailed in
[61, pp. 234–235]. In 1700, Leibniz founded the Berlin Academy and was
its first president. Then he became increasingly reclusive until his death in
Hannover on November 14, 1716.

� Addition Using Arbitrary Bases
Let b, m, n ∈ N and b > 1. By Theorem B.1, we have the unique base b

representations

m =
t∑

j=0

ajb
j and n =

t∑
j=0

cjb
j , (B.1)

where t is the largest integer such that aj + cj �= 0. Therefore, by Theorem A.2
on page 305,

m + n =
t∑

j=0

(aj + cj)bj .

Also, by the Division Algorithm, Theorem 1.1, a0+c0 = q0b+r0, where q0, r0 ∈ Z

with 0 ≤ r0 < b. Given that 0 ≤ a0, c0 ≤ b − 1, then 0 ≤ a0 + c0 ≤ 2b − 2, so

© 2007 by Taylor & Francis Group, LLC

Computer Arithmetic 329

q0 ∈ {0, 1}. In particular, if q0 = 1, then we call q0 a carry to the next position.
Continuing in this fashion, we get,

a1 + c1 + q0 = q1b + r1 with 0 ≤ r1 ≤ b − 1

for some q1 ∈ Z. Since 0 ≤ a1 + b1 + q0 ≤ 2b − 1, then q1 ∈ {0, 1}. Again if
q1 = 1, then it is called a carry to the next position. By induction, there exist
rj , qj ∈ Z for each natural number j such that

aj + cj + qj−1 = qjb + rj with 0 ≤ rj ≤ b − 1,

where qj ∈ {0, 1}. Since t is the largest integer such that aj + cj �= 0, then
if qt = 1, we set rt+1 = qt and write the base b representation of m + n as
(rt+1rt . . . r0)b, whereas if qt = 0, then we write it as (rtrt−1 . . . r0)b.

Example B.2 Suppose that we wish to calculate the addition of the two binary
numbers (10000011)2 and (11010101)2. The following table illustrates the above
process. The left-pointing arrows over a given column indicate that there is a
carry from that position to the next. The binary addition is on the left and the
decimal addition is on the right for easy reference.

j 8 ←−7 6 5 4 3 ←−2 ←−1 ←−0 binary/decimal 2 1 0
aj 1 0 0 0 0 0 1 1 ←→ 1 3 1
cj 1 1 0 1 0 1 0 1 ←→ 2 1 3
rj 1 0 1 0 1 1 0 0 0 ←→ 3 4 4

Thus, the addition of the two binary numbers, each of bitlength 8, is a
binary number (101011000)2 of bitlength 9, whereas the corresponding decimal
numbers of bitlength 3 each sum to a decimal number (344)10 of bitlength 3.
Notice that, in the binary addition, q0 = q1 = q2 = q7 = 1, which accounts for
the carries from each of those positions. On the other hand q0 = q1 = q2 = 0 in
the decimal addition, which accounts for the lack of carries in that summation.

We now look at the complementary notion of subtraction of integers to
various bases. Of course, properly viewed, subtraction is not new since it is
merely the addition of a number to a negative number.

� Subtraction Using Arbitrary Bases
Consider the representations given in (B.1) under the assumption that m >

n. Then

m − n =
t∑

j=0

(aj − cj)bj ,

where t is the largest integer such that aj − cj �= 0. We use the Division
Algorithm to get

a0 − c0 = q0b + r0 where q0, r0 ∈ Z with 0 ≤ r0 < b.

© 2007 by Taylor & Francis Group, LLC

330 Appendix B

Since 0 ≤ a0, c0 < b, then −b < a0 − c0 < b. Hence, −1 ≤ q0 ≤ 0. If q0 = −1,
then we must borrow from the next position, so q0 is called a borrow in this
case. Continuing in this fashion,

a1 − c1 + q0 = q1b + r1 where q0, r0 ∈ Z with 0 ≤ r1 < b.

Since −b ≤ a1 − c1 + q0 < b, then q1 ∈ {−1, 0}. Using induction, we see that
for any nonnegative integer j, we get

aj − cj + qj−1 = qjb + rj where qj , rj ∈ Z with 0 ≤ rj < b,

and qj ∈ {−1, 0}, with q−1 = 0. Hence,

t∑
j=0

rjb
j =

t∑
j=0

(aj − cj + qj−1 − qjb)bj =
t∑

j=0

(aj − cj)bj ,

since
t∑

j=0

(qj−1 − qjb)bj = 0.

Since j = t is the largest integer such that aj − cj �= 0, the base b representation
of m − n is

(rtrt−1 . . . r0)b.

Example B.3 Suppose that we wish to calculate the result of subtracting
(100131)4 from (303020)4. Consider the following tabular illustration, where
the left-pointing arrow designates a borrow from the next position.

j 5 4 3 ←−2 ←−1 ←−0
aj 3 0 3 0 2 0
cj 1 0 0 1 3 1
rj 2 0 2 2 2 3

Hence,
(303020)4 − (100131)4 = (202223)4.

The actual development in the table that corresponds to the preceding notation
is given as follows.

a0 − c0 = 0 − 1 = −1 · 4 + 3 = q0b + r0,

a1 − c1 + q0 = 2 − 3 − 1 = −1 · 4 + 2 = q1 · b + r1,

a2 − c2 + q1 = 0 − 1 − 1 = −1 · 4 + 2 = q2 · b + r2,

a3 − c3 + q2 = 3 − 0 − 1 = 0 · 4 + 2 = q3 · b + r3,

a4 − c4 + q3 = 0 − 0 + 0 = 0 · 4 + 0 = q4 · b + r4,

and
a5 − c5 + q4 = 3 − 1 + 0 = 0 · 4 + 2 = q5b + r5 = qtb + rt.

© 2007 by Taylor & Francis Group, LLC

Computer Arithmetic 331

Example B.4 The following illustrates the subtraction of the octal integer
(67677)8 from (77501)8, where the left-pointing arrow denotes a borrow from
the next position.

j 4 ←−3 ←−2 ←−1 ←−0
aj 7 7 5 0 1
cj 6 7 6 7 7
rj 0 7 6 0 2

Thus,
(77501)8 − (67677)8 = (7602)8.

The next step in the learning of computer arithmetic is multiplication, which
is, properly viewed, a sequence of additions.

� Multiplication Using Arbitrary Bases
Consider the representations given in (B.1). We now determine the value of

mn =

 t∑

j=0

ajb
j

 t∑

j=0

cjb
j

 ,

where t is the largest integer such that ajcj �= 0. We may simplify our task by
observing that

mn =
t∑

j=0

(mcj)bj .

In other words, our task is simplified to the task of understanding how to find
mcj in base b for each j, then determining how to find (mcj)bj , and finally
adding up the terms. For simplicity of explanation, we let cj = c for now.

By the Division Algorithm, ca0 = q0b + s0 for some integers s0, q0 with
0 ≤ s0 ≤ b − 1. Also, since 0 ≤ ca0 ≤ (b − 1)2, then 0 ≤ q0 ≤ b − 2. Continuing
in this fashion, we get

a1c + q0 = q1b + s1 where s1, q1 ∈ Z with 0 ≤ s1, q1 ≤ b − 1.

By induction we get

ajc + qj−1 = qjb + sj where sj , qj ∈ Z with 0 ≤ sj , qj ≤ b − 1

for j = 0, 1, . . . , t − 1 with q−1 = 0, and st = qt−1, where j = t is the largest
integer such that mc �= 0. Thus, if qt = 0, then mc is

(at . . . a0)b(c)b = (st . . . s0)b,

and if qt = 1, then mc is

(at+1at . . . a0)b(c)b = (st+1st . . . s0)b.

© 2007 by Taylor & Francis Group, LLC

332 Appendix B

Now we can achieve (mci)bi by what is a shift (to the left). For instance,
(1301)4 multiplied by 43 is just a shift three places to the left of the digits of
(1301)4 and a fill-up of the original three places with zeros. In other words, 43

times (1301)4 is (1301000)4. Now we just add up the results of our efforts, and
we have the base b representation of mn. (Note that for s, t ∈ N an s-bit integer
multiplied by a t-bit integer yields an (s + t)-bit integer.)

Example B.5 We wish to multiply the two ternary digits (222)3 and (121)3.
The following diagram illustrates the process.

2 2 2
1 2 1
2 2 2

1 2 2 1
2 2 2

1 2 0 1 0 2

In terms of the notation preceding this example, we have the following. Let

m = (222)3 = (a2a1a0)3

and
n = (121)3 = (c2c1c0)3.

For c = c0 = 1, we clearly have

(a2a1a0)3c0 = (222)3 = (s2s1s0)3.

For c = c1 = 2,
ca0 = 4 = 1 · 3 + 1 = q0b + s0,

ca1 + q0 = 5 = 1 · 3 + 2 = q1b + s1,

ca2 + q1 = 5 = 1 · 3 + 2 = q2b + s2,

and s3 = 1. Therefore,

(a2a1a0)3c1 = (1221)3 = (s3s2s1s0)3.

For c = c2 = 1, we have

(a2a1a0)3c2 = (222)3 = (s2s1s0)3.

Now we perform shifting on each mcj . We have

(222)3 · 30 = (222)3,

(1221)3 · 31 = (12210)3,

and
(222)3 · 32 = (22200)3.

When we add up these amounts, we get

(222)3 + (12210)3 + (22200)3 = (120102)3,

which is what the above diagram told us.

© 2007 by Taylor & Francis Group, LLC

Computer Arithmetic 333

Now we turn our attention to division in various bases. As we will see, the
division process amounts to a sequence of subtractions.

� Division Using Arbitrary Bases
Suppose that m,n ∈ N, with m ≤ n, then by the Division Algorithm,

n = mq + r for some q ∈ N, r ∈ Z with 0 ≤ r ≤ m − 1.

First we determine the base b representation of q as follows. Suppose that

q = (dtdt−1 . . . d0)b, t ≥ 0.

Set

si = m

t−i∑
j=0

djb
j + r ≥ 0

for any nonnegative integer i ≤ t. Since dj ≤ b − 1 for all nonnegative integers
j ≤ t, we have

si ≤ m

t−i∑
j=0

(b − 1)bj + r = m

 t−i∑

j=0

bj+1 −
t−i∑
j=0

bj

 + r = m(bt−i+1 − 1) + r.

Since r < m, it follows that si < mbt−i+1. Also, since

si = si−1 − mdt−i+1b
t−i+1,

for 1 ≤ i ≤ t + 1 where st+1 = r, we have

si−1

mbt−i+1
= dt−i+1 +

si

mbt−i+1
≥ dt−i+1 =

si−1 − si

mbt−i+1
>

si−1

mbt−i+1
− 1.

In other words,
dt−i+1 =

⌊ si−1

mbt−i+1

⌋
,

for 1 ≤ i ≤ t + 1.
The above is essentially an algorithm for finding each digit in the base b

representation of q; namely, we subtract mbt−i+1 from si−1 enough times until
the result is negative. Then dt−i+1 is one less than the number of subtractions.
We also observe that, since

dt = s0/(mbt)� = n/(mbt)�,

then this is our starting point.

Example B.6 Suppose we want to divide n = (101)2 by m = (11)2. Set

(101)2 = (11)2(d2d1d0)2 + r = mq + r.

© 2007 by Taylor & Francis Group, LLC

334 Appendix B

Then t = 2, b = 2 and q = (d2d1d0). Since

mbt = (11)2 · 22 = (1100)2,

then subtracting this from s0 = (101)2 = n yields a negative number, so d2 =
dt = 0. Since

mbt−1 = (11)2 · 2 = (110)2,

then subtracting this from

s1 = s0 − mdtb
t = (101)2 − (11)2 · 0 · 22 = (101)2

yields a negative number, so d1 = dt−1 = 0. Since mbt−2 = (11)2, and the
subtraction of this from s2 = (101)2 yields (10)2, whereas subtracting (11)2
from (10)2 yields a negative number, then d0 = dt−2 = 1. We have shown that
q = (1)2. To get r, we look at

r = st+1 = s3 = s2 − mdt−2b
t−2 = (101)2 − (11)2 · 1 · 1 = (10)2.

Hence,
n = (101)2 = (11)2(1)2 + (10)2 = mq + r.

© 2007 by Taylor & Francis Group, LLC

The Rijndael S-Box 335

Appendix C: The Rijndael S-Box
The means by which Rijndael’s invertible S-Box, explicitly given below, was

constructed consists of composing two functions. For each i, j with 1 ≤ i ≤ 32,
1 ≤ j ≤ 8, the following is executed. The first is to take the multiplicative
inverse

∑7
k=0 bk2j of each nonzero 8i + j − 9 in F28 , with 0 getting mapped to

0 (see pages 311–314 in Appendix A). Thus, ai,j = 8i + j − 9 gets mapped to∑7
k=0 bk2j (where we have suppressed any reference to the i, j in the coefficients

bk for convenience of presentation in what follows). Then the following Affine
function is applied:

1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1

b7
b6
b5
b4
b3
b2
b1
b0

+

0
1
1
0
0
0
1
1

=

s7

s6

s5

s4

s3

s2

s1

s0

.

Thus, s7s6s5s4s3s2s1s0 is the binary equivalent of the decimal digit appearing
the the S-Box at position (i, j).

To illustrate how this S-Box was constructed, we first observe that the col-
umn matrix, added on the left of the equality, is binary for the decimal digit
99 (or equivalently, the hexadecimal digit 63). So, for instance, a0,0 = 0 gets
mapped to 0, so each bk = 0 for 1 ≤ k ≤ 7. Adding the zero transformation
to the column matrix yields 99, which is the first entry in the S-Box. A less
trivial illustration is the entry a11,3 = 82 in the position matrix. It has repre-
sentation as the binary polynomial x6 + x4 + x in F28 ∼= F2[x]/(m(x)), where
m(x) = x8 + x4 + x3 + x + 1 is the irreducible Rijndael polynomial (see Exam-
ple A.7 on page 318 in Appendix A). The multiplicative inverse of 82 in F28 is
given by x2 + 1, so (b7, b6, b5, b4, b3, b2, b1, b0) = (0, 0, 0, 0, 0, 1, 0, 1). Thus:

1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1

0
0
0
0
0
1
0
1

+

0
1
1
0
0
0
1
1

=

0
0
0
0
0
0
0
0

,

and 0 is the decimal entry in position (11, 3) of the S-Box:

© 2007 by Taylor & Francis Group, LLC

336 Appendix C

99 124 119 123 242 107 111 197
48 1 103 43 254 215 171 118
202 130 201 125 250 89 71 240
173 212 162 175 156 164 114 192
183 253 147 38 54 63 247 204
52 165 229 241 113 216 49 21
4 199 35 195 24 150 5 154
7 18 128 226 235 39 178 117
9 131 44 26 27 110 90 160
82 59 214 179 41 227 47 132
83 209 0 237 32 252 177 91
106 203 190 57 74 76 88 207
208 239 170 251 67 77 51 133
69 249 2 127 80 60 59 168
81 163 64 143 146 157 56 245
188 182 218 33 16 255 243 210
205 12 19 236 95 151 68 23
196 167 126 61 100 93 25 115
96 129 79 220 34 42 144 136
70 238 184 20 222 94 11 219
224 50 58 10 73 6 36 92
194 211 172 98 145 149 228 121
231 200 55 109 141 213 78 169
108 86 244 234 101 122 174 8
186 120 37 46 28 166 180 198
232 221 116 31 75 189 139 138
112 62 181 102 72 3 246 14
97 53 87 185 134 193 29 158
225 248 152 17 105 217 142 148
155 30 135 233 206 85 40 223
140 161 137 13 191 230 66 104
65 153 45 15 176 84 187 22

© 2007 by Taylor & Francis Group, LLC

Knapsack Ciphers 337

Appendix D: Knapsack Ciphers

In this appendix, we study the class of problems named in the appendix
header and some public-key cryptosystems based upon them. This class of
problems is a generalization of the following notion.

Definition D.1 The Subset Sum Problem
Given m,n ∈ N and a set S = {bj : bj ∈ N, for j = 1, 2, . . . , n}, called a

knapsack set, determine whether or not there exists a subset S0 of S such that
the sum of the elements in S0 equals m. In other words, given S and m ∈ N,
determine whether or not there exist aj ∈ {0, 1}, for j = 1, 2, . . . , n, such that

n∑
j=1

ajbj = m. (D.1)

It is known that the Subset Sum Problem is NP-complete (see page 73).
The Subset Sum Problem is often mistakenly identified as the following more
general problem.

Definition D.2 The Knapsack Problem
Given natural numbers m1,m2 and sets {bj : bj ∈ N, for j = 1, 2, . . . , n}

and {cj : cj ∈ N, for j = 1, 2, . . . , n}, determine whether or not there exists a
set S0 ⊆ {1, 2, . . . , n} such that∑

j∈S0

bj ≤ m1 and
∑
j∈S0

cj ≥ m2.

(The Subset Sum Problem is the special case where bj = cj for j = 1, 2, . . . , n
and m1 = m2 = m.)

The knapsack problem derives its name from the special case of the Subset
Sum Problem, which may be restated in nonmathematical terms as follows.
Given a collection of items, each of different sizes, is it possible to put some
of the items into a knapsack (of a given size) so that the knapsack is full?
Computationally, this is equivalent to actually determining the ajs in Equation
(D.1), given that such ajs in fact exist. This computational version of the Subset
Sum Problem is NP-hard (which means that the existence of a polynomial time
algorithm for its solution would imply that P = NP).

Knapsack public-key cryptography is based on the Subset Sum Problem.
The basic idea is to choose a case of the Subset Sum Problem that can be easily
solved, then cryptographically disguise it to be an instance of the Subset Sum
Problem that is hard to solve. In 1978, the first practical incarnation of such a
cryptosystem was introduced by Merkle and Hellman in [59]. We present it for

© 2007 by Taylor & Francis Group, LLC

338 Appendix D

its historical implications in that we may see how the knapsack cryptosystems
evolved.

The Merkle-Hellman Cipher is based upon the following easily solved in-
stance of the Subset Sum Problem.

Definition D.3 Superincreasing Sequences
A superincreasing sequence is a sequence (b1, b2, . . . , bn) with bj ∈ N for

j = 1, 2, . . . , n satisfying the property that

bi >
i−1∑
j=1

bj ,

for each i ∈ {2, 3, . . . , n}.

Solving the Subset Sum Problem for superincreasing sequences is shown to
be easy as follows. To find a subset S0 of

S = {b1, b2, . . . , bn}

which sums to a given d ∈ N (assuming that such an S0 exists) one first sets
xn = 1 if bn ≤ d, and xn = 0 otherwise. Then one merely looks at each
successive bn−i for i = 1, 2, . . . , n − 1 and one puts xn−i = 1 if

bn−i ≤ d −
n∑

j=n−i+1

bj

and put xn−i = 0 otherwise. Then

d =
n∑

j=1

xjbj . (D.2)

� The Merkle-Hellman Knapsack Cryptosystem

(I) Merkle-Hellman Key Generation
Given fixed n ∈ N, entity Bob performs the following steps.

(1) Let (b1, b2, . . . , bn) be a superincreasing sequence and s ∈ N such that
s >

∑n
j=1 bj .

(2) Randomly choose r ∈ N such that r ≤ s − 1 and gcd(r, s) = 1.

(3) Let σ ∈ Sn, the symmetric group on n letters.

(4) Compute kj ≡ rbσ(j) (mod s) for j = 1, 2, . . . , n.

(5) Bob’s public key is (k1, . . . , kn) and the private key is (σ, r, s, (b1, . . . , bn)).

© 2007 by Taylor & Francis Group, LLC

Knapsack Ciphers 339

(II) Merkle-Hellman Knapsack Public-Key Cipher
Alice performs the following steps.
enciphering stage:

(1) Obtain Bob’s public key (k1, k2, . . . , kn).

(2) Let m = m1m2 . . .mn be the representation of the message m as a bitstring
of length n.

(3) Compute c =
∑n

j=1 kjmj and send c to Bob.

Once Bob receives c, then the following is performed.
deciphering stage:

(1) Compute d ≡ r−1c (mod s).

(2) By solving the superincreasing Subset Sum Problem as described prior to
Equation (D.2), obtain xj ∈ {0, 1} such that

d =
n∑

j=1

xjbj .

(3) Recover m = xσ(1)xσ(2) . . . xσ(n).

To see why step (3) of the deciphering stage works, we observe that

d ≡ r−1c = r−1
n∑

j=1

kjmj =
n∑

j=1

(r−1kj)mj ≡
n∑

j=1

bσ(j)mj (mod s).

Since s > d ≥ 0, then

d =
n∑

j=1

bσ(j)mj =
n∑

j=1

bjxj =
n∑

j=1

bσ(j)xσ(j),

so xσ(j) = mj for each j = 1, 2, . . . , n.

Example D.1 Let n = 7, and assume that entity Bob selects superincreasing
sequence (b1, b2, b3, b4, b5, b6, b7) = (1, 2, 4, 8, 16, 32, 70), s = 200, r = 27, and

σ : (1, 2, 3, 4, 5, 6, 7) �→ (7, 4, 5, 6, 3, 2, 1).

Then Bob computes kj ≡ 27bσ(j) (mod 200) for 1 ≤ j ≤ 7 to get:
(k1, k2, k3, k4, k5, k6, k7) = (90, 16, 32, 64, 108, 54, 27), which is Bob’s public key,
and the private key is (σ, 27, 200, (1, 2, 4, 8, 16, 32, 70)). Suppose that the mes-
sage to be sent is m = 1010011. Using Bob’s public key, Alice computes

c =
n∑

j=1

kjmj = 1 · 90 + 0 · 16 + 1 · 32 + 0 · 64 + 0 · 108 + 1 · 54 + 1 · 27 = 203,

© 2007 by Taylor & Francis Group, LLC

340 Appendix D

which gets sent to Bob, who then computes

d ≡ r−1c = 27−1 · 203 ≡ 163 · 203 ≡ 89 (mod 200).

Then Bob solves the superincreasing Subset Sum Problem as follows. Since
bn = b7 = 70 < d = 89, then x7 = 1. Since bn−1 = b6 = 32 > 89 − 70 = d − bn,
then x6 = 0; bn−2 = b5 = 16 < 89 − 70 = 19 implies x5 = 1; bn−3 = b4 = 8 >
89 − 70 − 16 implies x4 = 0; bn−4 = b3 = 4 > 89 − 70 − 16 implies x3 = 0;
bn−5 = b2 = 2 < 89− 70− 16 implies x2 = 1; and bn−6 = b1 = 1 implies x1 = 1.
Thus,

d = 89 = 70 + 16 + 2 + 1 =
n∑

j=1

xjbj .

Therefore, since mj = xσ(j), then m1 = xσ(1) = x7 = 1; m2 = xσ(2) = x4 = 0;
m3 = xσ(3) = x5 = 1; m4 = xσ(4) = x6 = 0; m5 = xσ(5) = x3 = 0; m6 = xσ(6) =
x2 = 1; m7 = xσ(7) = x1 = 1, and m is recovered.

In 1982, unfortunately for this historically important and elegant cipher, a
polynomial-time algorithm for breaking it was produced by Shamir (see [84]–
[85]). Also, in 1982 (see [16]–[17]) a new knapsack cryptosystem was proposed.
Until recently, the following was the only known secure knapsack cipher. How-
ever, it was broken by S. Vaudenay in 2001 (see [90]).

� The Chor-Rivest Knapsack Cryptosystem

(I) Chor-Rivest Key Generation
Entity Bob performs the following steps.

(1) Choose a finite field Fq of characteristic p, where q = pn, p > n, and pn−1
has only small prime factors.

(2) Choose a random monic irreducible polynomial r(x) with deg(r) = n
over Fp. (A method for generating irreducible polynomials is given, for
instance, in Corollary A.2 on page 314.) We may view the elements of
Fq as those from (Z/pZ)[x]/(r(x)) (see Example A.7 on page 318 and the
material preceding it).

(3) Let �(x) ∈ (Z/pZ)[x]/(r(x)) ∼= Fq be randomly chosen as a generator of
F∗

q (see page 313).

(4) For each α ∈ Z/pZ, find the discrete logarithm, aα = log�(x)(x + α) using
the Pohlig-Hellman Algorithm in Appendix E.

(5) Choose a random permutation σ on {0, 1, . . . , p − 1}.
(6) Randomly choose d ∈ Z such that 0 ≤ d ≤ pn − 2.

(7) For any nonnegative integer j ≤ p−1 compute cj ≡ (aσ(j)+d) (mod pn−1).

(8) Bob has public key ((c0, c1, . . . , cp−1), p, n) and private key (r(x), �(x), σ, d).

© 2007 by Taylor & Francis Group, LLC

Knapsack Ciphers 341

(II) Chor-Rivest Knapsack Public-Key Cipher

Alice performs the following steps.
enciphering stage:

(1) Obtain Bob’s public key as given above.

(2) Let
(

p
n

)
be the binomial coefficient (see Definition A.12 on page 306) and

represent the message m as a bitstring of length log2

(
p
n

)�.
(3) Replace m by the binary p-tuple V = (V0, V1, . . . , Vp−1) having exactly n

values of i such that Vi = 1 for 0 ≤ i ≤ p − 1 determined as follows. For
i = 1, . . . , p, execute:

Step i. If m ≥ (
p−i
n

)
, then execute the following steps.

(a) Set Vi−1 = 1.

(b) Reset m = m − (
p−i
n

)
.

(c) Reset n = n − 1.

(d) If i < p, then go to step i + 1. If i = p, terminate with output V .

If m <
(
p−i
n

)
, then execute the following steps.

(a) Set Vi−1 = 0.

(b) If i < p, then go to step i + 1. If i = p, terminate with output V .

(Note that if any value
(
m
n

)
with 0 ≤ m < n is encountered, then this

value is considered to be 0.)

(4) Compute c ≡ ∑p−1
j=0 Vjcj (mod pn − 1), and send c to Bob.

Once Bob receives c, then the following is performed.
deciphering stage:
Bob performs the following steps.

(1) Compute z ≡ (c − nd) (mod pn − 1).

(2) Compute h(z) ≡ �(x)z (mod r(x)).

(3) Compute k(x) = h(x)+r(x), where degZ/pZ(k) = n (see Definition A.15 on
page 312).

(4) Factor k(x) into linear factors over Z/pZ:

k(x) =
n∏

j=1

(x + rj) (rj ∈ Z/pZ),

which may be accomplished by computing k(x) for all x ∈ Fp.

© 2007 by Taylor & Francis Group, LLC

342 Appendix D

(5) Since Vσ−1(rj) = 1 for j = 1, 2, . . . , n, we recover m as:

m =
n∑

j=1

Vσ−1(rj)

(
p − 1 − σ−1(rj)

n −∑σ−1(rj)−1
i=0 Vi

)
,

where we set
∑σ−1(rj)−1

i=0 Vi = 0 if σ−1(rj) = 0.

An easy exercise shows that the deciphering stage must indeed recover m.
In the following illustration, we keep the parameters small for simplicity.

Example D.2 Suppose that entity Bob chooses p = 5, n = 3, and randomly
selects r(x) = x3 + x + 1, which is irreducible over F5, and randomly chooses
�(x) = 2x2 + 2 which generates F53 (see Theorem A.7 on page 313). To see the
latter, note that

�(x)(5
3−1)/2 = �(x)124/2 = �(x)62 ≡ −1 (mod 5)

in
F53 ∼= (Z/5Z)[x]/(r(x)).

Then Bob computes discrete logs as follows using the Pohlig-Hellman Algorithm.
a0 = log�(x)(x) = 30, a1 = log�(x)(x + 1) = 28, a2 = log�(x)(x + 2) = 106,
a3 = log�(x)(x + 3) = 50, and a4 = log�(x)(x + 4) = 23. Then Bob randomly
selects σ : {0, 1, 2, 3, 4} �→ {4, 0, 2, 1, 3}, and d = 29, after which Bob computes

c0 ≡ aσ(0) + d ≡ a4 + 29 ≡ 23 + 29 ≡ 52 (mod 124),

c1 ≡ aσ(1) + d ≡ a0 + 29 ≡ 30 + 29 ≡ 59 (mod 124),

c2 ≡ aσ(2) + d ≡ a2 + 29 ≡ 106 + 29 ≡ 11 (mod 124),

c3 ≡ aσ(3) + d ≡ a1 + 29 ≡ 28 + 29 ≡ 57 (mod 124),

and
c4 ≡ aσ(4) + d ≡ a3 + 29 ≡ 50 + 29 ≡ 79 (mod 124),

so Bob’s public key is ((c0, c1, c2, c3, c4), p, n) = ((52, 59, 11, 57, 79), 5, 3)
and Bob’s private key is (r(x), �(x), σ, d) = (x3 + x + 1, 2x2 +

2,

(
0 1 2 3 4
4 0 2 1 3

)
, 29). Now Alice gets Bob’s public key and represents

the message m = 5 as a bitstring m = 101 of length log2

(
5
3

)� = 3. Alice then
replaces bitstring m with 5-tuple V determined as follows. For i = 1, V0 = 1
since m = 5 >

(
p−i
n

)
=

(
4
3

)
= 4. For i = 2, V1 = 0 since m = 5 − (

4
3

)
=

1 <
(
p−i
n

)
=

(
3
2

)
= 3. For i = 3, V2 = 1 since m = 1 =

(
p−i
n

)
=

(
2
2

)
= 1.

For i = 4, V3 = 0 since m = 0 <
(
p−i
n

)
=

(
1
1

)
= 1. For i = 5, V4 = 1 since

m = 0 =
(
p−i
n

)
=

(
0
1

)
. Thus, V = (1, 0, 1, 0, 1) and Alice computes

c ≡
4∑

j=0

Vjcj = c0 + c2 + c4 = 52 + 11 + 79 ≡ 18 (mod 124),

© 2007 by Taylor & Francis Group, LLC

Knapsack Ciphers 343

which Alice sends to Bob, who computes z ≡ (c − nd) = 18 − 3 · 29 ≡ 55
(mod 124), h(z) = �(x)z = (2x2 + 2)55 ≡ 4x2 + 3 (mod x3 + x + 1), and
k(x) = h(x) + r(x) = x3 + 4x2 + x + 4, which factors over F5 as k(x) =
(x+2)(x+3)(x+4), so r1 = 2, r2 = 3, and r3 = 4. Since σ−1(r1) = σ−1(2) = 2,
σ−1(r2) = σ−1(3) = 4, and σ−1(r3) = σ−1(4) = 0, Bob can recover m as follows.

m =
n∑

j=1

Vσ−1(rj)

(
p − 1 − σ−1(rj)

n −∑σ−1(rj)−1
i=0 Vi

)
=

V2

(
2
2

)
+ V4

(
0
1

)
+ V0

(
4
3

)
= 1 + 0 + 4 = 5 = 101.

When the Chor-Rivest Algorithm is properly set up, it was thought to be
secure against known attacks. However, as we noted earlier, it has been cryptan-
alyzed. The major problem with the Chor-Rivest cryptosystem is the huge size
of the public key. For instance, in practice the recommended values for p and
n are p = 197 and n = 24, and in this case, the public key has approximately
36000 bits. In 1991, Hendrik Lenstra introduced a modified version of the al-
gorithm in [54], which does not require step (4) in the key generation. In other
words, computation of discrete logs is avoided. However, Lenstra’s Algorithm,
called the powerline system, is not a knapsack cryptosystem.

© 2007 by Taylor & Francis Group, LLC

344 App endix E

App endix E: Silver-Pohlig-Hellman Algorithm

� Silver-Pohlig-Hellman Algorithm for Computing Discrete Logs

Let α be a generator of F∗
p and let β ∈ F∗

p, and assume that we have a
factorization

p − 1 =
r∏

j=1

p
aj

j aj ∈ N,

where the pj are distinct primes. The technique for computing e = logα β is
to compute e modulo p

aj

j for j = 1, 2, . . . , r, then apply the Chinese Remainder
Theorem (see Theorem 1.12 on page 26). Since we operate on each prime power
p

aj

j , we replace pj with q for simplicity in what follows, and simply refer to qa

with the understanding that we are operating on each of the r prime powers
in this fashion. To compute e modulo qa we need to determine e in its base q
representation:

e =
a−1∑
i=0

biq
i where 0 ≤ bi ≤ q − 1 for 0 ≤ i ≤ a − 1.

To find these bi, we proceed as follows. First, set β0 = β = αe, and observe that

(p − 1)
a−1∑
k=i

bkqk−i−1 ≡ (p − 1)bi/q (mod p − 1). (E.1)

1. Calculate b0. By (E.1),

β
(p−1)/q
0 ≡ α(p−1)b0/q (mod p), (E.2)

using Fermat’s Little Theorem (see Theorem 1.16 on page 36). Thus, we
compute α(p−1)k/q (mod p) until (E.2) occurs, in which case k is b0.

2. Calculate bi for i = 1, 2, . . . , a − 1. First, recursively define

βi = βα
−

i−1∑

k=0
bkqk

.

By (E.1),

β
(p−1)/qi+1

i ≡ α(p−1)
∑ a−1

k=i bkqk−i−1 ≡ α(p−1)bi/q (mod p), (E.3)

so we compute α(p−1)k/q modulo p for nonzero k ≤ a−1 until the left and
right sides of (E.3) are congruent modulo p, in which case k is bi.

A small example is in order. This is, of course, not realistic in terms of the
degree of difficulty, but for pedagogical purposes it will suffice, and we will do
this often for the same reasons throughout.

© 2007 by Taylor & Francis Group, LLC

Silver-Pohlig-Hellman Algorithm 345

Example E.1 Let p = 37. Then α = 2 generates F∗
37. Given β0 = β = 19, we

want to compute e = log2(19) in F∗
37. We have p − 1 = 36 = 22 · 32 = pa1

1 pa2
2 .

All congruences in the balance of this example are assumed to be modulo 37.
For p1 = 2:

k 0 1

α(p−1)k/p1 1 218 ≡ 36

i 0 1

βi 19 19 · 2−1 ≡ 28

β
(p−1)/pi+1

1
i 1918 ≡ 36 289 ≡ 36

bi 1 1

Thus, the base 2 representation of log2(19) modulo 4 is
a−1∑
i=0

bip
i
1 = 1 · 20 + 1 · 21 ≡ 3 (mod 4). (E.4)

For p2 = 3:

k 0 1 2

α(p−1)k/p2 1 212 ≡ 26 224 ≡ 10

i 0 1

βi 19 19 · 2−2 ≡ 14

β
(p−1)/pi+1

2
i 1912 ≡ 10 149 ≡ 10

bi 2 2

Thus, the base 3 representation of log2(19) modulo 9 is
a2−1∑
i=0

bip
i
2 = 2 · 30 + 2 · 31 ≡ 8 (mod 9). (E.5)

Solving (E.4)–(E.5) by the Chinese Remainder Theorem, we get that e =
log2(19) = 35 in F∗

37.

If n = p − 1, then given a factorization of n, the running time of the Silver-
Pohlig-Hellman discrete log algorithm is

O

 r∑

j=1

aj

(
lnn +

√
pj

)
group multiplications. This implies that the Pohlig-Hellman algorithm is ef-
ficient only if the prime divisors of p − 1 are small. This is the reason why
we talked about a proper choice of p on page 165 for the intractability of the
discrete log problem.

© 2007 by Taylor & Francis Group, LLC

346 Appendix F

Appendix F: SHA-1
On page 229, we discussed the use of the following algorithm taken from

[64].

� SHA-1

Modern cryptography requires custom-built hash functions to meet current
standards for security. In 1995, the Secure Hash Algorithm (SHA-1) was de-
veloped for the NSA and standardized by NIST (see [29]). SHA-1 employs a
160-bit hash function. In 2002, NIST updated SHA-1 (see [30]) in what they
called the Secure Hash Standard (SHS) containing specifications for 256-, 384-,
and 512-bit message digests, called (respectively) SHA-256, SHA-384, and SHA-
512. Naturally, these upgraded hash standards are much slower than SHA-1,
yet the increased security level makes them excellent choices for modern cryp-
tosystems. In terms of speed combined with modern-day security requirements
the SHA-256 is perhaps the best choice, since the security level is 2128, based
on the above-established fact that the birthday attack on a message digest of
size 256 bits produces an effort of about 2128 iterations of workload. Similarly,
the SHA-1 scheme requires on 280 iterations, and some cryptographers feel that
this is insufficient for modern standards. Yet, from our perspective, it embodies
the fundamentals of the SHA algorithms and so deserves to be studied in detail,
since it provides a simple method for describing the underlying mechanisms.

� SHA-1

Background Assumptions

The algorithm inputs messages of maximum bitlength 264 and outputs 160-
bit message digests. The input is divided into blocks of 512 bits.

� Algorithm Steps

1. Padding: The input message, denoted by m, is padded so that its bitlength
� ≡ 448 (mod 512). If � is already 448 modulo 512, before padding, then
we still pad, in this case with 512 bits. The padded message is denoted
by M .

2. Appending: A block of 64 bits is appended to M .

3. Buffering: A 160-bit buffer is employed to hold the intermediate and
final outputs of the algorithm. We represent the buffer having five 32-
bit registers, labelled ABCDE. (The buffer is initialized with specific
hexadecimal values that we will not cite here for the sake of simplicity.)
We will denote the five initialization values by

(H1H2H3H4H5) → (ABCDE).

© 2007 by Taylor & Francis Group, LLC

SHA-1 347

4. Processing: A module consisting of four rounds of twenty steps each
employs three different primitive logic functions. We will, for the sake of
simplicity, not describe their individual specific functions, rather we will
call them f1, f2, and f3. Each of these function inputs three 32-bit data
strings or words and outputs 32-bit words. The notation is as follows.

We will assume that there is only one 512-bit block. The procedure can be
iterated to accommodate as many such blocks as necessary. M is divided
into sixteen 32-bit words, denoted by mj for j = 0, 1, . . . , 15. Then each
mj is put into temporary storage mj → Xj . Then we expand the sixteen
32-bit words into eighty 32-bit words as follows.

First, we need some notation. Let ⊕ be addition modulo 2, and let LSk

be a circular shift left of k places (for instance, see page 137, where we
used a slightly different notation for the k = 2 case in our description of
S-DES). For j = 16, 17, . . . , 79, assign the following storage:

LS1(Xj−16 ⊕ Xj−14 ⊕ Xj−8 ⊕ Xj−3) → Xj .

5. Rounds: We need to employ four constants ci for i = 1, 2, 3, 4. (These have
a certain hexadecimal representation that we need not cite here, again
for the sake of simplicity.) Then each round operates on (the already-
initialized) buffer’s so-called chaining variables ABCDE, of 160 bits seg-
mented into five 32-bit words, by updating the contents of the buffer in
each step as follows (where + denotes is addition modulo 232):

Round 1 : For j = 0, 1, . . . , 19, set,

(LS5A+ f1(B,C,D)+E +Xj + c1, A,LS30(B), C,D) → (A,B,C, D, E).

Round 2 : For j = 20, 1, . . . , 39, set,

(LS5A+ f2(B,C,D)+E +Xj + c2, A,LS30(B), C,D) → (A,B,C, D, E).

Round 3 : For j = 40, 1, . . . , 59, set,

(LS5A+ f3(B,C,D)+E +Xj + c3, A,LS30(B), C,D) → (A,B,C, D, E).

Round 4 : For j = 60, 1, . . . , 79, set,

(LS5A+ f2(B,C,D)+E +Xj + c4, A,LS30(B), C,D) → (A,B,C, D, E).

6. After completion of the fourth round (or 80th step), we assign

(H1 + A,H2 + B,H3 + C,H4 + D,H5 + E) → (A,B,C, D, E).

which is the output message digest of 160 bits.

© 2007 by Taylor & Francis Group, LLC

348 Appendix F

One could simplify the rounds as a single set of iterations as follows.
For each i = 1, 2, 3, 4, set the following storage for each of the values:

j = 20(i − 1), 20(i − 1) + 1, . . . , 20(i − 1) + 19,

(LS5A + fi(B,C,D) + E + Xj + ci, A,LS30(B), C,D)
−−−−→ (A,B,C, D, E),

(E.6)

where
f4 = f2.

Diagram F.1 illustrates a single step in a single round, which is actually one
iteration of (E.6). Diagram F.2 on the facing page gives the complete processing
of a 512-bit block (assuming step 4 above is completed).

Diagram F.1 SHA-1 Single Step

+ ←−−−− +

↙ ↑ ↑ ↖
↓ LS5 fi ↑

Xj → + ↑ ↗ ↑ ↖ ↑
$ A B C D E

ci → +
$ ↓

LS30

$ $$ $ $ $ $
A B C D E

Step j in Round i

© 2007 by Taylor & Francis Group, LLC

SHA-1 349

Diagram F.2 SHA-1 Processing of 512-Bit Block

H1 H2 H3 H4 H5$
Xj: 0 ≤ j ≤ 19 → Round 1: Steps j = 0, 1, . . . , 19 for i = 1$

A B C D E$
Xj: 20 ≤ j ≤ 39 → Round 2: Steps j = 20, 21, . . . , 39 for i = 2$

A B C D E$
Xj: 40 ≤ j ≤ 59 → Round 3: Steps j = 40, 41, . . . , 59 for i = 3$

A B C D E$
Xj: 60 ≤ j ≤ 79 → Round 4: Steps j = 60, 61, . . . , 79 for i = 4$

A B C D E$
+%

$
+%

$
+%

$
+%

$
+%

H1 H2 H3 H4 H5$
160-bit Message Digest

© 2007 by Taylor & Francis Group, LLC

350 Appendix G

Appendix G: Radix-64 Encoding

On page 232, we described the use of radix-64 encoding techniques. To
describe it we need to understand that this type of encoding is noncryptographic
in the following sense. If S is a message source, then we may define an injective
function f : S �→ B, where B is the set of all bitstrings of finite length. This is
called an encoding of messages from S.

We need to understand the meaning of a cyclic redundancy check (CRC)
as well. The mechanism for computing a CRC is a shift register, which we
discussed on page 115, together with addition modulo 2. First, all values in
the shift registers are initialized to 0. Then the bits of the message are shifted
one at a time until the entire message has been processed into the shift register
unit. The receiver uses exactly the same shift register unit to calculate the CRC
for the message and to verify its agreement with the CRC transmitted by the
sender.

Radix-64 is a data encoding scheme consisting of base-64 encoded data with a
24-bit CRC appended to it, as specified in RFC2440 (see [77]). This is necessary
to accommodate restrictions in many email systems that only permit the use
of blocks consisting of ASCII text. In essence, the radix-64 conversion, also
called ASCII armor, may be viewed as a wrapper put on the binary message
for transmission over nonbinary email channels.

Radix-64 Conversion
Table G.1

6-bit Input 0 1 2 3 4 5 6 7 8 9 10
Encoding A B C D E F G H I J K
6-bit Input 11 12 13 14 15 16 17 18 19 20 21
Encoding L M N O P Q R S T U V
6-bit Input 22 23 24 25 26 27 28 29 30 31 32
Encoding W X Y Z a b c d e f g
6-bit Input 33 34 35 36 37 38 39 40 41 42 43
Encoding h i j k l m n o p q r
6-bit Input 44 45 46 47 48 49 50 51 52 53 54
Encoding s t u v w x y z 0 1 2
6-bit Input 55 56 57 58 59 60 61 62 63 PAD
Encoding 3 4 5 6 7 8 9 + / =

Table G.1 presents the character set of sixty-five printable characters, one of
which, the = sign, is used for padding. However, in order for radix-64 encoded
data to travel through mail-handling systems, there are no control characters
for such systems to detect when scanned, which results in a text file that is
secure against alterations made by e-mail systems. Since one character is used

© 2007 by Taylor & Francis Group, LLC

Radix-64 Encoding 351

for padding, there are 26 = 64 characters to be employed for representation, so
that each character may be used to represent 6 bits of input data. In fact, this
is from where “radix-64” is derived since a 6-bit number has 64 combinations.
We represent the 6-bit input data in their decimal value form for convenience in
the table, while the character encodings are represented by upper- and lower-
case English alphabet letters, together with the integers 0 through 9, and the
symbols +, /, and lastly = for padding.

The radix-64 encoding is a mapping denoted by f64 acting on 6-bit inputs
that are grouped into blocks that are mapped to 32-bit blocks. Each of the
four 6-bit input values is mapped to an 8-bit character. In essence, this means
that three bytes are mapped to four printable characters. This is illustrated in
Diagram G.1.

Diagram G.1 Radix-64 Encoding Illustration

Binary input →
24−bit︷ ︸︸ ︷

6-bit 6-bit 6-bit 6-bit

f64

$ f64

$ f64

$ f64

$
Encoding ← 8-bit 8-bit 8-bit 8-bit︸ ︷︷ ︸

32−bit

Example G.1 For instance, suppose that the text for encoding consists of the
three bytes 01010000, 00100001, and 10000000, which are put into four 6-bit in-
put values: 010100, 000010, 000110, and 000000, whose decimal representations
are: 20, 2, 5, and 0. Looking at Table G.1, we get the radix-64 encodings as:
UCFA.

The radix-64 conversion also appends a CRC for the purpose of detecting
transmission errors. Essentially this is a checksum, meaning a value computed
to check the validity of a data transmission, usually by detecting transmission
errors. In the case of the armor checksum, a 24-bit CRC is converted to four
bytes of radix-64 encoding that is prepended by an = sign to the four-byte code.
For the actual mechanism by which this is done, the reader may consult [77].

© 2007 by Taylor & Francis Group, LLC

352 App endix H

App endix H: Quantum Cryptography

Quantum cryptography is based on the following principle, which we must
understand before proceeding

� Heisenberg’s Uncertainty Principle

Heisenberg (see Biography H.2 on page 355) proposed a new mathematical
foundation for mechanics where physical objects are represented by matrices
involving only observable, namely measurable objects. In 1927, he published
his uncertainty (or indeterminacy) principle, which says that it is logically im-
possible to measure simultaneously every facet of a given object with perfect
precision. Then Bohr and Heisenberg developed a philosophy of complemen-
tarity to account for these new relative physical variables — being dependent
upon an appropriate measuring process. At its core, complementarity says that
a person doing the measuring interacts with the observed object, resulting in
its being a function of measurement, so the object is not revealed as itself.

Heisenberg translated his uncertainty principle into a simple statement:
“Even in principle, we cannot know the present in all detail. For that rea-
son, everything observed is a selection from a plenitude of possibilities and a
limitation on what is possible in the future.” In particular, this can be illustrated
simply by the inescapable fact that one cannot measure both the velocity and
the position of a particle at the same time. The very act of measuring one
alters or influences the other, whether the other is measured or not. The reason
is that if we want to measure the position of a particle, it is necessary to use
light with very short wavelength, because in order to provide data on position
we need wavelengths comparable with the object from which we seek to gather
data. This is where the problem arises since short wavelength light transmits
a big velocity boost to the electron when it bounces off it to provide position
data. On the other hand, if we want to measure velocity, then we use very
long wavelengths, which alters its position. This is the built-in fundamental
uncertainty formulated by Heisenberg’s Indeterminacy Principle. It is precisely
this uncertainty that can be utilized to generate a secret key for a quantum
cryptosystem. Now we describe how to do this.

� Photons and a Quantum Experiment

We begin by looking at basic properties of light. The particles that constitute
light are called photons. These photons make up light waves, which are examples
of electromagnetic waves, meaning that they have an electric field that travels
perpendicular to their associated magnetic field. Photons travelling through
space vibrate (or oscillate) as they move. This vibration can be horizontal,
denoted by →; vertical, denoted by ↑; 45◦, denoted by ↗; or 135◦, denoted
by ↖. The angle of the vibration is known as the polarization of the photon.
This is a simple type of polarization, called linear, meaning that as the photon
propagates, the electric field stays in the same plane. This linearity assumption

© 2007 by Taylor & Francis Group, LLC

Quantum Cryptography 353

simplifies the situation by allowing only four possible polarizations, rather than
the infinitely many possibilities (namely all angles in between).

Now we need to understand a little bit about polarization of light. We are
going to look at the effects of a Polaroid filter on a light source (see Biogra-
phy H.1 on the following page). We will assume that the axis of the filter is
oriented in one of the aforementioned four ways. Quantum theory dictates that
if α is the angle that the plane of the electric field of the photon makes with the
axis of a Polaroid filter, then there is a probability of cos2 α that the photon will
emerge with its polarization reset to that of the filter’s axis, and a probability
of 1−cos2 α that it will be absorbed (to be re-emitted later as heat). For exam-
ple, if the polarizer axis is vertical, then light emitted with random polarization
means that if α is only slightly off vertical the photon has a high probability
of passing through. If it is 45◦, then it has a 50% chance of getting through,
and this decreases to zero at the horizontally polarized photons. Hence, roughly
50% of the randomly emitted photons get through, and as they pass through
the vertical filter they all emerge as ↑ polarizations. Call that polarization filter
V, and the situation is illustrated in Diagram H.1.

Diagram H.1 Polarization with Filter V

Light Source: L
S−−−−→

↑
V

↑ polarized−−−−−−−−−−→ 50% of S

Now suppose that we use a polarizer axis that is horizontal, denoted by H.
Then no light gets past filter H after having passed through filter V because
all of the photons are polarized ↑, whose angle with H is α = 90◦, and the
probability of getting through is cos2 90◦ = 0. This process is illustrated in
Diagram H.2.

Diagram H.2 Polarization with Filters V and H

L
S−−−−→

↑
V

↑ polarized−−−−−−−−−−→
→
H → 0% of S

Suppose we now place a filter with polarizer axis 45◦, denoted by F between
V and H. Then the 50% of those photons that get through V now have a 50%
chance of getting through F, and each of those will be polarized as ↗, so now
25% of the original photons got through. Now we approach H and each of the ↗
has a 50% chance of getting through H. Hence, once through all three filters,
12.5% of the original photons are emitted. Surprisingly, having put another
filter between two that allowed no photons through now allows 12.5% through.

© 2007 by Taylor & Francis Group, LLC

354 Appendix H

Diagram H.3 Polarization with Filters V, F, and H

L
S−−−−→

↑
V

1
2S−−−−→
↑

↗
F

1
4S−−−−→
↗

→
H

1
8S−−−−→
→

This is the basic principle upon which Polaroid sunglasses work. One can
demonstrate this principle using a pair of Polaroid sunglasses by taking one lens
out and placing it in front of the fixed lens. There will be an orientation that is
exactly the same for both lenses, so that the fixed lens has no effect on the loose
lens. If the loose lens is now rotated ninety degrees, the effect will be complete
blackness. This is because the polarization of the lenses are now perpendicular,
so that photons that get through the one lens are blocked by the other. By
rotating the loose lens forty-five degrees, one now gets an intermediate stage
between complete blackness and no effect. This is because half of the photons
that pass through the one lens succeed in getting through the other. Placing
a third lens in front of the loose lens with axis perpendicular to the fixed lens,
we get about half the light from the first two being filtered through, which is
Diagram H.3 in action.

Biography H.1 Edwin Herbert Land (1909–1991) patented a cellophane-like
polarizing filter, the first to polarize light, a process that reduces light glare. In
1932, Land co-founded the Land-Wheelwright Laboratories in Boston. By 1937,
Land founded the Polaroid Corporation and began to use his filters in Polaroid
sunglasses and a variety of other applications. However, Land is best known for
his invention and marketing of instant photography, called Polaroid photogra-
phy. In 1947 he presented the Polaroid Land Camera, which took one minute to
produce a finished photograph. After his retirement from Polaroid in 1980, he
worked with the nonprofit Rowland Institute of Science supported by the Row-
land Foundation that he founded in 1960. Land stands second only to Thomas
Edison in the number of patents issued to him, more than 500. He received
a number of awards for his contributions to knowledge about polarized light,
photography, and colour perception. Land died in Cambridge, Massachusetts,
on March 1, 1991.

� Quantum Key Generation

Now we turn back to cryptography and show how the above notion of po-
larization and its effects can be employed to generate cryptograms.

Our goal is for Alice and Bob to communicate in binary using the polarization
effects from our earlier discussion. First, we set up two binary schemes based
on those polarizations.

Rectilinear Scheme: This scheme will be denoted by +, wherein a 1 is
represented by ↑ and a 0 is represented by →.

© 2007 by Taylor & Francis Group, LLC

Quantum Cryptography 355

Diagonal Scheme: This scheme will be denoted by ×, which uses ↗ for 1
and ↖ for 0.

To send a message Alice can randomly switch between these two schemes.
For example, she might send a photon string consisting of

→→↑→↗↖↑
using the combination of methods: + + + + ×× + so the message is:

0 0 1 0 1 0 1.

Biography H.2 Werner Karl Heisenberg (1901–1976) was born on December
5, 1901, in Würzburg, Germany. He began studying physics at the University of
Munich, obtaining his doctorate in 1923 on turbulence in fluid streams. In the
fall of 1924, after a brief stint studying under Max Born at Göttingen, Heisen-
berg went to study at the Universitits Institut for Teoretisk Fysik in Copenhagen
under Bohr, whose work on the atom had inspired him. By mid-1925, he had
solved a major physical problem that laid the bedrock for the development of
quantum mechanics — the science that explains the discrete energy states and
other forms of quantized energy, such as in the light of atomic spectra and
in the phenomenon of stability exhibited by macroscopic bits of matter. (By
“quantization” it is meant that observable quantities do not vary continuously
but rather are formed into discrete nuggets called quanta, which in the context
of energy means a discrete quantity of energy proportional in magnitude to the
frequency of radiation it represents. This is the feature of quantum mechanics
that makes computation, classical or quantum, possible.) From 1927 to 1941,
Heisenberg was professor at the University of Leipzig, then for the next four
years he was director of the Kaiser Wilhelm Institute for Physics in Berlin. In
1932, he was awarded the Nobel Prize for Physics. During World War II, he
worked on the development of a nuclear reactor with Otto Hahn, one of the dis-
coverers of nuclear fission. After the war, he organized and became director of
the Max Planck Institute for Physics and Astrophysics at Göttingen. In 1958,
he and the institute moved to Munich, where he died in 1976.

� Quantum Key-Generation Protocol

In the following, when we say that Alice and Bob “openly” communicate,
we mean that they converse over an unsecured telephone line.

1. Alice openly communicates to Bob a string of n ∈ N photons with random
polarizations in the two schemes, + and ×, with the particular polarized
photons denoted by p1, p2, . . . , pn. Each polarized photon pj is associated
with one of the schemes + or ×, so we denote sj to denote that scheme
under which pj is polarized, for j = 1, 2, . . . , n. For instance, if p1 =→,
then s1 = +.

2. Bob has a polarization detector with two settings.

© 2007 by Taylor & Francis Group, LLC

356 Appendix H

(a) A + detector that can measure the polarizations ↑ and → with perfect
accuracy but misinterprets ↗ or ↖ as one of ↑ or →.

(b) A × detector that can measure ↗ and ↖ with perfect accuracy but
misinterprets ↑ and → as one of the ×-polarized ones.

Both settings cannot be used at the same time due to the uncertainty
principle (we cannot simultaneously measure both + and × polarizations).

Bob sets the polarization detector at random settings. Sometimes the
correct detector (corresponding to Alice’s choice) is picked for the in-
coming photon, and sometimes not. We denote his received photons
as q1, q2, . . . , qn and his corresponding randomly selected schemes as
t1, t2, . . . , tn.

3. Alice openly communicates to Bob the sj for each j = 1, 2, . . . , n, but not
pj . If sj = tj , then qj is selected. Otherwise, qj is discarded. We will
label the selected ones as q1, q2, . . . , qm, without loss of generality, for the
sake of convenience.

4. Alice openly communicates to Bob her choice of randomly selected � < m of
the pj . They compare her � of the pj with Bob’s corresponding qj . If any
of these do not match, Alice and Bob know there must be an eavesdropper
(see analysis below) and they abort the run. Otherwise, they go to step
5.

5. Alice and Bob discard the � randomly tested pj = qj , and maintain the
remaining m − � of them as the secret key.

Analysis: The bitstring corresponding to their agreed-upon secret key is
truly random since Alice’s initial photon burst was random and Bob’s choice
of polarization methods was random. Hence, this agreed-upon bitstring can be
used for a one-time pad.

To see why the above key-generation scheme is the equivalent of a one-time
pad, suppose that Mallory has also attempted to measure the initial photon
burst from Alice. Then Bob and Mallory are in exactly the same situation since
both of them will choose the wrong detector roughly half of the time (but not the
same half). The uncertainty principle guarantees that Mallory has no means of
duplicating Alice’s original settings, so even if Mallory is eavesdropping on the
telephone conversation, thereby gaining knowledge of the correct polarization
settings, this does not help because Mallory will have measured about half of
these incorrectly. Hence, this one-time pad is absolutely unbreakable, since
Mallory cannot intercept Alice’s message without making errors.

Mallory’s presence is detected by the very act of measuring. If Alice sends
a ↗, for instance, and Mallory uses the + detector, then the incoming ↗ will
emerge as one of ↑ or →, since this is the only way that photon can get through
Mallory’s detector. If Bob measured the transformed photon with the × detector
and ↖ emerges, then a correct setting of the detector will result in an incorrect

© 2007 by Taylor & Francis Group, LLC

Quantum Cryptography 357

reading. In this case Mallory has altered the resulting qj . Of course, it might
also occur that Bob’s reading results in the correct ↗ emerging. Therefore,
Mallory has a one in four chance of being detected for each photon checked.
Since � of the qj are checked in step 4, then the probability of detecting Mallory
is 1− (3/4)�. Hence, for arbitrarily large � (and sufficiently large corresponding
n), we can make this as close to 1 as we desire.

The above analysis shows that quantum cryptography allows key distribution
between two entities (who share no prior keying material) that is provably secure
against enemies with unlimited computing power, provided that the entities have
access to a conventional channel, aside from the quantum channel.

© 2007 by Taylor & Francis Group, LLC

358 Solutions to Odd-Numbered Exercises 1.1–1.19

Solutions to Odd-Numbered Exercises

Section 1.1

1.1 Since ab = 1, either both a and b are positive or both are negative. In the former
case, 1 = ab ≥ a ≥ 1, so a = 1 and similarly b = 1. If both are negative, then
1 = (−a)(−b) ≥ −a ≥ 1, so −a = 1, and similarly −b = 1, as required.

1.3 Since a|b and b|a, there are integers x and y such that b = ax and a = by.
Therefore, b = ax = (by)x = b(xy). Since b �= 0, we may use the cancellation
law (see page 303) to get xy = 1. By Exercise 1.1, x = ±1, so a = ±b.

1.5 If 2m + 1 ∈ Z, m ∈ N, then (2m + 1)2 = 4m2 + 4m + 1=4m(4m+1)+1. Since one
of m or m + 1 is even, then (2m + 1)2 = 8n + 1, where n = m(m + 1)/2 ∈ Z.

1.7 Since a|b implies am = b for some m ∈ Z, then cam = cb. Therefore, ca|cb.
Conversely, if ca|cb, then can = cb for some n ∈ Z. Since c �= 0, then an = b by
the Cancellation law, which implies a|b.

1.9 x = 5, y = −1.

1.11 (a) 1155 (b) 16156 (c) 40953 (d) 10010.

1.13 (a) If �x� = x = �x� + 1, then x �∈ Z. Conversely, if x �∈ Z, then

−1 < x − �x� − 1 ≤ �x� − �x� − 1 ≤ x − �x� < 1.

Since the only integer between −1 and 1 is 0, then �x� − �x� − 1 = 0, namely
�x� = �x� + 1.

(b) By Definition 1.3 on page 2, x − 1/2 < �x + 1/2� < x + 1/2, so the result
follows.

1.15 By Definition 1.3, �x� ≤ x < �x� + 1. Therefore, x − 1 < �x� ≤ x.

1.17 Let n = �x� and m = �y�, then x = n + z and y = m + w where 0 ≤ z, w < 1.
Thus,

�x� + �y� = n + m ≤ �n + z + m + w� = �x + y�,
and by Exercise 1.16, this equals

n + m + �z + w� ≤ n + m + 1 = �x� + �y� + 1.

1.19 By Exercise 1.15,

x

n
− 1 <

x − 1

n
≤

⌊ �x�
n

⌋
≤ �x�

n
≤ x

n
,

and
x

n
− 1 ≤

⌊ x

n

⌋
≤ x

n
,

so by the definition of the floor function,

⌊ x

n

⌋
=

⌊ �x�
n

⌋
.

© 2007 by Taylor & Francis Group, LLC

Solutions to Odd-Numbered Exercises 1.21–1.41 359

1.21 If c is divisible by every common divisor of a and b, then in particular g|c. Hence,
c = gcd(a, b) by the definition of the gcd.

1.23 Let g1 and g2 be two greatest common divisors. Given that g1|a and g1|b, then
g1|g2, since g2 is a greatest common divisor. Similarly, g2|g1. By Exercise 1.3,
g1 = g2.

1.25 If gcd(a, b) = a, then clearly a|b. Conversely if a|b, then a|g = gcd(a, b). How-
ever, g|b, so a|b by Exercise 1.4 (b).

1.27 Since
g = gcd(a, b) = gcd(c(a/c), c(b/c)),

then by Exercise 1.24, g = c gcd(a/c, b/c) from which we get the desired result,
g/c = gcd(a/c, b/c).

1.29 The first equality is clear. For the last one, let d = gcd(a, b+am). Then d|a and
d|(b + am). Therefore, d|b, which implies that d|g. Since there exist x, y ∈ Z

such that,
d = ax + y(b + am) = a(x + ym) + yb,

then g|d. By Exercise 1.3, d = g.

1.31 If � = b, then a|� = b. Conversely, if a|b, then an = b for some n ∈ Z and
lcm(a, an) = an = b.

1.33 Since �
∣∣∣ ab, then � ≤ ab.

1.35 Since b|�, then � = bn for some n ∈ Z. Also, since a|�, and g = 1, then a|n by
Exercise 1.26. Therefore, by Exercise 1.33, ab ≥ � = ab(n/a) = bn ≥ ba. In
other words, n = a, from which we get that � = ab.

Section 1.2

1.37 Let Rn be the number of pairs of rabbits at month n. Let Mn denote the number
of pairs of mature rabbits, and In the number of immature rabbits. Then

Rn = Mn + In.

For any n ≥ 3, Mn = Rn−1, and In = Mn−1, since every newborn pair at time
n is the product of a mature pair at time n − 1. Thus,

Rn = Rn−1 + Mn−1.

Moreover, Mn−1 = Rn−2. Thus, we have

Rn = Rn−1 + Rn−2.

1.39 g2 = ((1 +
√

5)/2)2 = (6 + 2
√

5)/4 = (3 +
√

5)/2 = (1 +
√

5)/2 + 1 = g + 1.

1.41 For all n ∈ N, when n is divided by 4, the remainder will be 0, 1, 2, or 3. In other
words, n = 4m, n = 4m + 1, n = 4m + 2, or n = 4m + 3 for some m ∈ N. So, if
the number n is odd, then the remainder must be either 1 or 3. Thus, if p is an
odd prime, then it is of the form 4n+1 or 4n+3, and 4n+3 = 4n+4−1 = 4m−1
where m = n + 1.

© 2007 by Taylor & Francis Group, LLC

360 Solutions to Odd-Numbered Exercises 1.43–1.63

1.43 (a) Let
∏r

i=1 pti
i = c. By Exercise 1.22 on page 5, it suffices to show that any

common divisor of a and b must divide c. If d|a and d|b, then d =
∏r

i=1 pai
i ,

where ai ≤ mi, and ai ≤ ni. Hence, ai ≤ min{mi, ni} = ti, so d|c. Hence,
c = gcd(a, b).

(b) If a|b, then gcd(a, b) = a, which means that mi = ti ≤ ni for all i. Con-
versely, if mi ≤ ni for all i, then by part (a), gcd(a, b) =

∏r
i=1 pmi

i = a. There-
fore, a|b.

1.45 By Exercise 1.44, if g = gcd(a, b) > 1, then there must be a prime dividing g
and so dividing both a and b, a contradiction that secures the result.

1.47 By Exercise 1.46, σ(2k) = 2k+1 − 1 = 2 · 2k − 1.

1.49 (a) σ(69) = 96, (b) σ(96) = 252, (c) σ(100) = 217, (d) σ(64) = 127, (e)
σ(2k) = 2k+1 − 1, (f) σ(10000) = 24211.

1.51 We use induction. If n = 1, then

1√
5

[
gn − g′n]

=
1√
5

[
1 +

√
5

2
− 1 −√

5

2

]
=

√
5√
5

= 1 = Fn.

Assume that Fn = 1√
5
[gn − g′n]. By the induction hypothesis, we have

Fn+1 = Fn + Fn−1 =
1√
5

[
gn − g′n]

+
1√
5

[
gn−1 − g′n−1

]
,

and by factoring out appropriate powers, this is equal to

1√
5

[
gn−1(1 + g) − g′n−1

(1 + g′)
]
.

By Exercise 1.39, 1 + g = g2. It may be similarly verified that 1 + g′ = g′2.
Hence,

Fn+1 =
1√
5
[gn+1 − g′n+1

].

1.53 If
n = pq = x2 − y2 = (x − y)(x + y),

then either x − y = q and x + y = p or x − y = 1 and x + y = pq. In the
former case, x = (p + q)/2, y = (p− q)/2, and in the latter case, x = (pq +1)/2,
y = (pq − 1)/2.

Section 1.3

1.55 Since a is even, then a = 2n for some n so a2 = (2n)2 = 4n2 ≡ 0 (mod 4).

1.57 x = 1380.

1.59 x = 43.

1.61 x = 62817.

1.63 A counterexample for (a) is obtained by letting a = 4 and n = 9. In that case,
a ≡ 1 (mod 3), but a2 �≡ 1 (mod 9). A proof of (b) is obtained by merely noting
if a2 ≡ 1 (mod n), then any prime p|n must satisfy p|a2 − 1 = (a − 1)(a + 1),
so p|(a − 1) or p|(a + 1), namely a ≡ ±1 (mod p). A counterexample for (c) is
given by the one for (a).

© 2007 by Taylor & Francis Group, LLC

Solutions to Odd-Numbered Exercises 1.65–1.79 361

1.65 Let y ∈ Z such that x0 ≡ y (mod n/g). Then there exists a z ∈ Z such that
x0 = y + zn/g, so ax0 = ay + azn/g. However, ax0 ≡ b (mod n), so there exists
a w ∈ Z such that ax0 = b + wn. Hence, ay + azn/g = b + wn, so

ay = b + n(w − z(a/g)) ≡ b (mod n).

Conversely, if ay ≡ b (mod n), then ay ≡ ax0 (mod n), so there exists a t ∈ Z

such that ay = ax0 + nt. Thus,

y = x0 + nt/a = x0 + (n/g)(tg/a) ≡ x0 (mod n/g).

1.67 (a) n = 1, 23, (b) n = 1, 2, 3, (c) n = 1, 2, 4, 8, (d) n = 1, 2, 4.

1.69 There exists a k ∈ Z such that a = b + nk/m. From the Division Algorithm
(Theorem 1.1 on page 2), we may write k as k = qm − j with 1 ≤ j ≤ m.
Therefore,

a = b +
n

m
(qm − j) = b − j

n

m
+ nq

= b + n − n − j
n

m
+ nq = b +

n

m
(m − j) + n(q − 1).

Hence, a ≡ b + n
m

(m − j) (mod n).

1.71 (a) It suffices to show that no two elements of the set {ar1+b, ar2+b, . . . , arn+b}
are congruent modulo n. If ari + b ≡ arj + b (mod n), then ari ≡ arj (mod n).
Since gcd(a, n) = 1, and a(ri − rj) = nt for some t ∈ Z, then ri − rj = n(t/a).
Therefore, one gets ri ≡ rj (mod n), forcing i = j since ri and rj are in a
complete residue system modulo n.

(b) Again, it suffices to prove that no two elements of the given set are congruent
modulo n. Assume, to the contrary, that for some natural numbers i, j, k, � ≤ n,
we have mri + nsj ≡ mrk + ns� (mod n). Then mri ≡ mrk (mod n). Since
gcd(m, n) = 1, then as in part (a), ri ≡ rj (mod n), forcing i = j, as in part (a).

1.73 By the Chinese Remainder Theorem, we can solve z ≡ yj (mod xj) for j = 1, 2
and the result follows.

1.75 Suppose that a ≡ b (mod ni) where i = 1, 2, . . . , k. Then for all such i, ni divides

(a−b). Let ni =
∏t

j=1 p
a
(i)
j

j , for 1 ≤ i ≤ k, where the a
(i)
j are nonnegative, t ∈ N

and the pj are distinct primes. Let

Tj = max
1≤i≤k

{a(i)
1 , a

(i)
2 , . . . , a

(i)
t }.

Then

t∏
j=1

p
Tj

j = lcm(n1, . . . , nk)
∣∣∣ (a − b).

Conversely, if a ≡ b (mod �), then by part (d) of Proposition 1.4 on page 19, a ≡ b
(mod ni) for each i = 1, 2, . . . , k.

1.77 (a) x = 2, (b) x = 8, (c) x = 8, (d) x = 40, (e) x = 40, (f) x = 41.

1.79 If a is its own multiplicative inverse modulo p, then a2 ≡ 1 (mod p). Therefore,
p|(a2 − 1) = (a − 1)(a + 1). By Exercise 1.38 on page 15, either p|(a − 1) or
p|(a + 1), which yields the result, a ≡ ±1 (mod p).

Conversely, if a ≡ ±1 (mod p), then a2 ≡ 1 (mod p), so a is its own inverse
modulo p.

© 2007 by Taylor & Francis Group, LLC

362 Solutions to Odd-Numbered Exercises 1.81–1.89

1.81 Since a−1b−1ab = (a−1a)(b−1b), then a−1b−1ab ≡ 1 (mod n).

1.83 Since 61 = 1 + 22 + 23 + 24 + 25, then k = 5, dj = 1 for j = 0, 2, 3, 4, 5 and
d1 = 0. Also, since d0 = 1, we set c0 = 3, x0 = 3, and j = 1. The following are
the jth steps for j = 1, 2, 3, 4, 5.

(1) x1 ≡ x2
0 ≡ 9 (mod 101). Since d1 = 0, c1 = c0 = 3.

(2) x2 ≡ 92 ≡ 81 (mod 101). Since d2 = 1, then

c2 ≡ 3 · 81 = 41 ≡ 41 (mod 101).

(3) x3 ≡ 812 ≡ 97 (mod 101). Since d3 = 1,

c3 ≡ 97 · 41 ≡ 38 (mod 101).

(4) x4 ≡ 972 ≡ 16 (mod 101). Since d4 = 1, then

c4 ≡ 16 ≡ 38 ≡ 2 (mod 101).

(5) x5 ≡ 162 ≡ 54 (mod 101). Since d5 = dk = 1, then

c5 ≡ 54 · 2 ≡ 7 (mod 101).

Hence,
361 ≡ 7 (mod 101).

Section 1.4

1.85 Let n ≡ 3 (mod 4), and suppose that x2 ≡ −1 (mod n), for some integer x. If
all primes dividing n are of the form p ≡ 1 (mod 4), then it follows that n ≡ 1
(mod 4). Hence, there is a prime p|n such that p ≡ 3 (mod 4). Therefore, x2 ≡ −1
(mod p). By Fermat’s Little Theorem, xp−1 ≡ 1 (mod p). However,

xp−1 = (x2)(p−1)/2 ≡ (−1)(p−1)/2 ≡ −1 (mod p)

since (p − 1)/2 is odd. Therefore, we have that −1 ≡ 1 (mod p), forcing p = 2,
a contradiction.

1.87 Since the exercise calls for any n ∈ N, then to prove it for n = 1 is sufficient,

and by Fermat’s Little Theorem, q
∣∣∣ (bq−1 − 1).

1.89 We use induction. If n = 1, then

gn+2 = g3 = gn+1 + gn = a + b = aF1 + bF2 = aFn + bFn+1.

This is the induction step. Assume the induction hypothesis, namely: gm+1 =
aFm−1 + bFm for all m ≤ n. Consider

gn+2 = gn+1 + gn = aFn−1 + bFn + aFn−2 + bFn−1,

by the induction hypothesis. The latter equals

a(Fn−1 + Fn−2) + b(Fn + Fn−1) = aFn + bFn+1.

© 2007 by Taylor & Francis Group, LLC

Solutions to Odd-Numbered Exercises 1.91–1.95 363

1.91 (a) Since p|(an+1), then there exists an � ∈ N such that an = p�−1. Also, by the
Division Algorithm, there exist q, r ∈ N such that p = 2nq + r with 1 ≤ r < 2n.
If r = 1, then we have the first conclusion of part (a), so we assume that r > 1
and deduce the second conclusion. By Fermat’s Little Theorem, p|(ap−1 − 1),
so

p
∣∣∣ (a2nq+r−1 − 1) = (an)2qar−1 − 1 = (p� − 1)2qar−1 − 1,

and by the Binomial Theorem this equals (pt + 1)ar−1 − 1 for some t ∈ Z. We
have shown that

p
∣∣∣ (ar−1 − 1),

so we may let ar−1 = 1 + pz for some z ∈ N. Set g = gcd(r − 1, n). Then
r − 1 = gw and n = gk with gcd(w, k) = 1, by Exercise 1.28 on page 5. Also,
by Theorem 1.7 on page 12, there exist u, v ∈ Z such that uk − vw = 1. Thus,
by the Binomial Theorem,

anu = (p� − 1)u = (−1)u + pm,

for some m ∈ Z. Hence,

p
∣∣∣ (anu − (−1)u) = agku − (−1)u = ag(1+vw) − (−1)u = agvwag − (−1)u =

(agw)vag − (−1)u = (ar−1)vag − (−1)u = (1 + pz)vag − (−1)u,

and by the Binomial Theorem, this equals (1 + py)ag − (−1)u for some y ∈ Z.
We have shown that

p
∣∣∣ (ag − (−1)u).

Since (ag − (−1)u)|(agk − (−1)uk), and p|(an + 1) = agk + 1, then uk must be
odd, so both u and k are odd. Therefore, in total, we have shown that

p
∣∣∣ (ag + 1) = an/k + 1

for an odd divisor k of n.

(b) This is done in the same fashion as in the proof of part (a) and is simpler
since we do not have to be concerned about parity issues. Since p|(an − 1),
then an = p� + 1. By the Division Algorithm, there exist q, r ∈ Z such that
p = nq + r with 1 ≤ r < n. If r = 1, then we are done, so we assume that
r > 1. Since p|(ap−1 − 1), then as in the proof of part (a), p|(ar−1 − 1). Also, if
g = gcd(n, r−1), then as in the proof of part (a), p|(ag −1). Since g is a divisor
of n, we are done.

1.93 By Fermat’s LittleTheorem,

p−1∑
j=1

jp−1 ≡
p−1∑
j=1

1 ≡ p − 1 ≡ −1 (mod p).

1.95 For each natural number j ≤ (p − 1)/2, we have p − j ≡ −j (mod p). Thus,

[(
p − 1

2

)
!

]2

≡ (−1)(p−1)/2(p − 1)! ≡ 1 (mod p),

© 2007 by Taylor & Francis Group, LLC

364 Solutions to Odd-Numbered Exercises 1.95–1.105

using Wilson’s Theorem and the fact that p ≡ 3 (mod 4). Hence, by Exercise
1.79 on page 33, (

p − 1

2

)
! ≡ ±1 (mod p).

1.97 By Euler’s Theorem 1.18 on page 40, mφ(n) ≡ 1 (mod n), so

m · mφ(n)−1 ≡ 1 (mod n).

In other words, mφ(n)−1 is a multiplicative inverse of m modulo n.

1.99 This follows from a recursive use of Claim 1.1 in the proof of Theorem 1.17.

1.101 A simple solution is n = −4 since −4 = 5(−1) + 1 is a division of five heaps
with the monkey getting one coconut and the sailor getting −1 coconuts. Thus,
since during the process we have to divide by 5 six times, the smallest positive
solution is n = −4 + 56 = 15, 621.

1.103 For composite n, gcd(b, n) = 1 implies that gcd(b, pj) = 1 for all j ≤ r.
Therefore, bpj−1 ≡ 1 (mod pj), by Fermat’s Little Theorem. By hypothesis,
n − 1 = mj(pj − 1) for some mj ∈ Z. Since

bn−1 = bmj(pj−1) = (bpj−1)mj ,

then bn−1 ≡ 1 (mod pj). Thus,

bn−1 ≡ 1 (mod

r∏
j=1

pj),

namely bn−1 ≡ 1 (mod n).

Conversely, assume that an−1 ≡ 1 (mod n) for each a with gcd(a, n) = 1. In
particular, if a is a primitive root modulo p, for any prime divisor p of n, then

(p − 1)
∣∣∣ (n − 1), by Proposition 1.5 on page 44.

1.105 Let a ∈ N be arbitrary. Suppose that there exists a b ∈ N with bb ≡ a (mod n).
If p2|n for some prime p, then for a = p, bb ≡ p (mod p2). However, p2|bb since
b > 1 from the last congruence, so

p ≡ bb ≡ 0 (mod p2),

a contradiction. Hence, n is square-free, so gcd(n, φ(n)) = 1, since any prime
dividing n cannot divide φ(n) given that φ(n) =

∏t
j=1(pj − 1) where n =∏t

j=1 pj .

Conversely, assume that gcd(n, φ(n)) = 1. Thus, there exist r, s ∈ Z such that
1 = rn + sφ(n). Therefore, for any a ∈ Z,

a − 1 = (a − 1)rn + (a − 1)sφ(n) = xn + yφ(n),

where x = (a − 1)r, and y = (a − 1)s. Let b = a − xn, and g = gcd(n, a). Then

bb−1 ≡ (a − xn)a−xn−1 ≡ (a − xn)yφ(n) ≡ 1 (mod n/g),

by Euler’s Theorem 1.18 on page 40. Hence,

bb ≡ b ≡ a (mod n/g).

Since bb ≡ a ≡ 0 (mod g), then

bb ≡ a (mod n).

© 2007 by Taylor & Francis Group, LLC

Solutions to Odd-Numbered Exercises 1.107–1.117 365

Section 1.5

1.107 If gp−1 �≡ 1 (mod p2), then g is a primitive root modulo p2 since

p|ordp2(gp−1)|φ(p2) = (p − 1)p.

Therefore, by induction on a, we may conclude that

pa−1|ordpa(gp−1)|φ(pa),

for any a ≥ 2. In other words, g is a primitive root modulo pa. Now assume
that gp−1 ≡ 1 (mod p2). Thus, by the Binomial Theorem,

(g + p)p−1 =

p−1∑
j=0

gjpp−1−j

(
p − 1

j

)
,

from which we get,

(g + p)p−1 ≡ gp−1 + p(p − 1)gp−2 ≡ 1 − pgp−2 (mod p2).

Therefore, (g + p)p−1 �≡ 1 (mod p2), so g + p is a primitive root modulo p2, and
as above, an induction on a shows that g + p is a primitive root modulo pa for
any a ≥ 2.

1.109 If ar ≡ 1 (mod m) for some r ≤ φ(m), then arφ(n) ≡ 1 (mod m), so

arφ(n) = 1 + ms

for some s ∈ N. Also, 1 ≡ (ar)φ(n) (mod n), so there is a t ∈ N such that

1 + nt = arφ(n) = 1 + ms.

Since gcd(m, n) = 1, then m
∣∣∣ t and n

∣∣∣ s. Thus, arφ(n) ≡ 1 (mod mn), so

r = φ(m) since a is a primitive root modulo mn. This shows that a is a
primitive root modulo m. Reversing the roles of m and n shows that a is also a
primitive root modulo n.

1.111 If m is not a primitive root modulo p, then since ordp(m)
∣∣∣ (p − 1), there is a

prime divisor q of (p− 1)/ordp(m). Thus, (p− 1)/q is a multiple of ordp(m), so
m(p−1)/q ≡ 1 (mod p).

1.113 Since gcd(−1, m) = 1, then 1 ≡ (−1)n ≡ −1 (mod m), so m|2. If m|2, the
result is clear.

1.115 (a) 2, 3 are all the incongruent primitive roots modulo 5, (b) 2, 6, 7, 8 are all the
incongruent primitve roots modulo 11, (c) 3, 7 are all the incongruent primitive
roots modulo 10, (d) 2, 3, 10, 13, 14, 15 are all the incongruent primitive roots
modulo 19.

Section 1.6

1.117 (a) 11 (b) 7 (c) 16 (d) 17 (e) 15 (f) 10.

© 2007 by Taylor & Francis Group, LLC

366 Solutions to Odd-Numbered Exercises 1.119–1.127

1.119 Let indp
a(c) = x, indp

a(b) = y, and indp
b(c) = z.

Since
bzy ≡ (bz)y ≡ cy ≡ (ax)y ≡ (ay)x ≡ bx (mod p),

then by Fermat’s Little Theorem, zy ≡ x (mod p − 1), as required.

1.121 For any primitive root a modulo pc, congruence (1.3) yields,

e · indpc

a (x) ≡ indpc

a (b) (mod φ(pc)).

The result now follows via Exercise 1.64 on page 32.

1.123 We compute the following where sj means the least nonnegative residue of sj

modulo M13 = 8191: s2 = 14, s3 = 194, s4 = 4870, s5 = 3953, s6 = 5970,
s7 = 1857, s8 = 36, s9 = 1294, s10 = 3470, s11 = 128, s12 = 0. Thus, M13 is
prime by the Lucas-Lehmer test.

Section 1.7

1.125 If 1 ≤ i, j ≤ (p−1)/2, then it is easy to show that unless i = j, i2 �≡ j2 (mod p).
Thus, there are (p−1)/2 quadratic residues, namely 12, 22, . . . , [(p−1)/2]2. Since
these are all the squares, then the remainder are nonresidues. This establishes
the first Lengendre identity.

For the second Legendre identity, consider the sum over j modulo p so the sum
goes over a complete residue system with j as index of summation if and only
if it goes over a complete residue system modulo j + a as index of summation.
Hence,

p−1∑
j=0

(
(j − a)(j − b)

p

)
=

∑
j �≡0 (mod p)

(
j(j + a − b)

p

)
.

If a ≡ b (mod p), then the sum becomes

p−1∑
j=1

(
j2

p

)
= p − 1.

If a �≡ b (mod p), then we may consider the sum over all j �≡ 0 (mod p). In this
case, there is a multiplicative inverse j−1 of j modulo p. Also, as the sum goes
over a reduced residue system modulo p with j as index of summation, then so
does the sum with j−1 as index of summation. Thus,

∑
j �≡0 (mod p)

(
j(j + a − b)

p

)
=

∑
k �≡−1 (mod p)

(
1 + k

p

)
=

p−2∑
k=0

(
1 + k

p

)
−

(
1

p

)
,

where the summand on the right is 0 by the first Legendre identity, and −(1
p
) =

−1 as required.

1.127 If n = b2, then (m
b2

) = (m
b
)2 = 1 for all m < n such that gcd(m, n) = 1.

Conversely, if (m
n

) = 1 for all natural numbers m < n relatively prime to n, and

n is not a perfect square, then n = b2t where t > 1 is squarefree. Let p
∣∣∣ t be a

prime and let pc||n where c ≥ 1 is odd since t is squarefree. Let r be a quadratic
nonresidue modulo p. By the Chinese Remainder Theorem, there is a solution
x = a to the system of congruences,

© 2007 by Taylor & Francis Group, LLC

Solutions to Odd-Numbered Exercises 1.127–2.5 367

x ≡ r (mod p) and x ≡ 1 (mod n/pc).

Therefore,

(a

n

)
=

(
a

pc

) (
a

n/pc

)
=

(
a

pc

)
=

(
a

p

)
=

(
r

p

)
= −1,

a contradiction, so t = 1.

1.129 Since
(

4
p

)
= 1, then

(
a

p

)(
f(x)

p

)
=

(
4a2x2 + 4abx + 4ac

p

)
=

(
(2ax + b)2 − ∆

p

)
.

As x ranges over 0, 1, . . . , p − 1, so does 2ax + b modulo p. Thus,

p−1∑
x=0

(
a

p

)(
f(x)

p

)
=

p−1∑
j=0

(
j2 − ∆

p

)
.

However, ∆ ≡ 0 (mod p), so

p−1∑
x=0

(
a

p

)(
f(x)

p

)
=

p−1∑
j=1

(
j2

p

)
= p − 1.

Therefore, multiplying the above through by
(

a
p

)
, we get

p−1∑
x=0

(
f(x)

p

)
= (p − 1)

(
a

p

)
.

Section 1.8

1.131 For all n ∈ N, n! < nn. Therefore, n! = O(nn).

1.133 f(b, n) = bn.

1.135 This follows from the fact that ln(n)/n → 0 as n → ∞.

1.137 This follows from the fact that f << g implies that ln(f) << ln(g).

1.139 If each integer less than n has at most t bits, then n! has at most n(t + 1)
bits, and n(t + 1) = O(nt). Thus, in the n − 2 = O(n) multiplications involved
in computing n!, we multiply an integer with at most t bits by an integer with
O(nt) bits. This requires O(nt2) bit operations. We do this O(n) times, so the
total number of bit operations required is O(nt2)O(n) = O(n2t2). However, we
know that t = O(log n) (see page 68). Hence, O(n2t2) = O(n2 log2(n)).

1.141 This is an application of Theorem 1.25 on page 70.

Section 2.1

2.1 The die is cast.

2.3 To labor is to pray.

2.5 Force without mind falls by its own weight.

© 2007 by Taylor & Francis Group, LLC

368 Solutions to Odd-Numbered Exercises 2.7–2.23

2.7 Time is money.

Section 2.2

2.9 All Quiet on the Western Front.

2.11 Every sin is the result of a collaboration.

2.13 Love is a kind of warfare.

2.15 Stake life upon truth.

2.17 (01100001000110100000100010010000010100011010000100).

2.19 The decimal equivalents of the bitstrings of length five are
12, 4, 13, 0, 17, 4, 2, 17, 20, 4, 11, 1, 20, 19, 12, 0, 13, 8, 18, 10, 8, 13, 3, which convert
via Table 2.2 to:

Men are cruel, but Man is kind.

2.21 Since the ciphertext has forty-eight letters, we know that the column under Y
will have six letters and there will be seven in each of the others. Thus, the
placement is as follows.

V I C T O R Y

6 2 1 5 3 4 7

D A A V V G D

A V F F F D A

F A X F D A F

F A X D F V F

X X F V V G F

G A G F G F F

F G F G X A

Taking these off by rows, we get:

DAAVVGDAVFFFDAFAXFDAFFAXDF

VFXXFVVGFGAGFGFFFGFGXA.

Using Table 2.4, we decipher to get:

Always act as if you were seen.

2.23 Since there are thirty-six letters in the ciphertext, the column under V has six
letters and all others have five letters. This results in the following.

V I C T O R Y

6 2 1 5 3 4 7

V F X X F V F

X D A G X F G

V G X X X A X

V D A A V A X

A V F G D A X

A

Taking these off by rows, we get:

VFXXFVFXDAGXFGVGXXXAXVDAAVAXAVFGDAXA.

Using Table 2.4, we decipher to get:

You have won, Galilean.

© 2007 by Taylor & Francis Group, LLC

Solutions to Odd-Numbered Exercises 2.25–2.41 369

2.25 Common Sense is not so common. (There are two uses of a z between the two
occurences of mm in common that are removed.)

2.27 Love is blind. (A z at the end was removed since it was added as filler.)

2.29 But I’m not so think as you drunk I am.

2.33 Passion, I see, is catching.

Section 2.3

2.35 The numerical equivalents are

21, 14, 7, 23, 19, 12, 3, 19, 0, 5, 9, 11, 21, 9, 24, 1, 23, 25, 11, 23.

Thus, we calculate as follows, where all congruences are assumed modulo 26.
m1 = c1 − k1 = 21 − 2 = 19, m2 = c2 − k2 = 14 − 7 = 7, m3 = c3 − k3 =
7 − 3 = 4, m4 = c4 − m1 = 23 − 19 = 4, m5 = c5 − m2 = 19 − 7 = 12,
m6 = c6 − m3 = 19 − 4 = 15, m7 = c7 − m4 = 12 − 4 = 8, m8 = c8 − m5 =
3 − 12 ≡ 17, m9 = c9 − m6 = 19 − 15 = 4, m10 = c10 − m7 = 0 − 8 ≡ 18,
m11 = c11 −m8 = 5− 17 ≡ 14, m12 = c12 −m9 = 9− 4 = 5, m13 = c13 −m10 =
11 − 18 ≡ 19, m14 = c14 − m11 = 21 − 14 = 7, m15 = c15 − m12 = 9 − 5 = 4,
m16 = c16−m13 = 24−19 = 5, m17 = c17−m14 = 1−7 ≡ 20, m18 = c18−m15 =
23 − 4 = 19, m19 = c19 − m16 = 25 − 5 = 20, m20 = c20 − m17 = 11 − 20 ≡ 17,
m21 = c21 − m18 = 23 − 19 = 4.

Then via Table 2.2, we get the letter equivalents:

The empires of the future.

2.37 The answer is λ(n), the Carmichael Function, defined as follows. If n =
2a ∏k

j=1 p
aj

j is the canonical prime factorization of n ∈ N, namely 2 < p1 <
p2 < · · · < pk, then

λ(n) =

{ φ(n) if n = 2a, and 1 ≤ a ≤ 2,
2a−2 = φ(n)/2 if n = 2a, a > 2,
lcm(λ(2a), φ(pa1

1), . . . , φ(p
ak
k)) if k ≥ 1.

(See [61] for more information on this function. The Carmichael Function was
first discussed by Cauchy [15] in 1841.)

Section 2.4

2.39 If s−1 = (k�−1k�−2 . . . k1k0), then s0 = (
∑�−1

j=0 cjkj , k�−1 . . . k2k1). Thus, using
the matrix C defined on page 118, we get that Cs−1 = s0. Since det(C) = c0 =
1, then C is nonsingular. Since sj = Cj+1s−1 for j = 1, 2, . . . , P − 1 where P is
the period length of the LFSR, then

det(Cj+1) = (det(C))j+1 = 1,

so Cj+1 is nonsingular. Also, s−1 is not the zero state. Hence, the LFSR has
no zero state.

2.41 If c0 = 0, then the LFSR with the intiial state s−1 = (00 . . . 01) generates only
zero states since s0 = (

∑�−1
j=0 cjkj , 0 . . . 00), where

∑�−1
j=0 cjkj = c0 = 0. Hence,

there cannot exist a P ∈ N such that s−1 = sp−1.

© 2007 by Taylor & Francis Group, LLC

370 Solutions to Odd-Numbered Exercises 2.43–4.5

2.43 If there is a recurrence relation of length less than n, then one row of M is a
linear combination of the other rows. Therefore, det(M) ≡ 0 (mod 2).

2.45 Given sj for j = −1, 0, . . . , P − 1 is the binary representation of an n ∈ N

where n ≤ 2� − 1, we need only count the number of odd and the number of
even numbers. If the right-most entry of sj is 0, then n is even and if a 1
occurs there, then n is odd. Hence, there are 2�−1 odd numbers, and 2�−1 even
numbers, but we exclude the zero binary digit from the even ones, and the result
follows.

Section 2.5

2.47 cj ⊕ Ek(cj−1) = mj ⊕ kj ⊕ kj = mj .

Section 3.1

3.1 vanity.

3.3 grants.

3.5 IP(m) = (00110101).

3.7 S0(1110) = (11) and S1(1110) = (10).

3.9 EP(x)⊕SK = c(EP(x))⊕c((SK)) since complementation cancels out ⊕ addition.
Also, c(EP(x)) = EP(c(x)). Thus, fSK(c(t)) = fSK(c), so

c(Ek(m)) = Ec(k)(c(m)).

Section 4.2

4.1 Let m, m′ be generators of F ∗
p , and let β ∈ F

∗
p. Set x = logm(β), y = logm′(β),

and z = logm(m′). Then

mx = β = (m′)y = (mz)y = mxy,

so x ≡ zy (mod p − 1). Hence,

logm′(β) = y ≡ xzs−1 ≡ (logm(β))(logm(m′))−1 (mod p − 1).

Hence, any algorithm that computes logs to be m can be used to compute logs
to any other base m′ that is a generator of F

∗
p.

4.3 The plaintext numerical values are given by

m = (5, 11, 0, 18, 7, 8, 13, 19, 7, 4, 15, 0, 13),

which translates via Table 2.2 using the deciphering key d = 111 to

flash in the pan.

4.5 The plaintext numerical values are given by

m = (19, 7, 8, 13, 10, 0, 1, 14, 20, 19, 8, 19),

which translates via Table 2.2 using the deciphering key d = 47 to

think about it.

© 2007 by Taylor & Francis Group, LLC

Solutions to Odd-Numbered Exercises 4.7–4.15 371

4.7 αx ≡ 225 ≡ 412 ≡ X (mod 877); and αy ≡ 23 ≡ 8 ≡ Y (mod 877). Also,

Y x ≡ 825 ≡ 794 (mod 877),

Xy ≡ 4123 ≡ 794 (mod 877),

and so k ≡ αxy ≡ 794 (mod 877).

4.9 αx ≡ 369 ≡ 919 ≡ X (mod 1193); and αy ≡ 396 ≡ 30 ≡ Y (mod 1193). Also,

Y x ≡ 3069 ≡ 489 (mod 1193),

Xy ≡ 91996 ≡ 489 (mod 1193),

and so k ≡ αxy ≡ 489 (mod 1193).

4.11 If α = p − 1, then

X ≡ αx ≡ (p − 1)x ≡ (−1)x ≡ ±1 (mod p),

and
Y ≡ αy ≡ (p − 1)y ≡ (−1)y ≡ ±1 (mod p).

Thus, Xy ≡ (±1)y ≡ k ≡ Y (mod p), forcing k = ±1.

4.13 Suppose that m = r0 + r1q and m1 = r′0 + r′1q and

αr0βr1 ≡ αr′
0βr′

1 (mod p).

Since β ≡ αa (mod p), then the above congruence may be written as

αa(r1−r′
1)−(r′

0−r0) ≡ 1 (mod p).

However, α is a primitive root modulo p from which it follows that

αb ≡ 1 (mod p) if and only if b ≡ 0 (mod p − 1).

Hence,
a(r1 − r′1) ≡ (r′0 − r0) (mod p − 1).

If g = gcd(r1 − r′1, p−1), then there are exactly g solutions to the latter congru-
ence (see Section 1.3). Since (p− 1)/2 is prime, and 0 ≤ r1, r

′
1 ≤ q − 1, we must

have that −(q − 1) ≤ r1 − r′1 ≤ q − 1. So if r1 − r′1 �= 0, then q > |r1 − r′1|, so
g = 1, 2. We have shown that there are only two possible values for a, and by
calculating αa for each of these, exactly one will give β. Hence, a is determined.
Note that we cannt have

r1 − r′1 = 0

since, if it were, then r0 = r′0 ≡ 0 (mod p − 1). Given that

−(q − 1) ≤ r′0 − r0 ≤ q − 1,

it follows that r0 = r′0, forcing m = m1, a contradiction to the assumed distinct-
ness of the messages.

Section 4.3

4.15 φ(n) = 144900 and 1 = 11d + 144900x is solved by x = −4 and d = 52691, so
cd ≡ 9876 ≡ m (mod n).

© 2007 by Taylor & Francis Group, LLC

372 Solutions to Odd-Numbered Exercises 4.17–5.9

4.17 φ(n) = 1755280 and 1 = 13d +1755280x is solved by x = −11 and d = 1485237,
so cd ≡ 1111111 ≡ m (mod n).

4.19 Solving 1 = 74597e + 969760x yields e = 13 and x = −1. Since ce ≡ 2134
(mod n), we accept.

4.21 As in the above we get e = 19 and since ce ≡ 8872 ≡ m (mod n), we accept.

4.23 p = 599 and q = 859.

4.25 p = 1181 and q = 1471.

4.27 p = 1097 and q = 2351.

4.29 p = 1021 and q = 3329.

Section 4.4

4.31 (αb)−a ≡ (596)−71 ≡ 623 (mod 1973), so

(αb)−amαab ≡ 623 · 146 ≡ 200 ≡ m (mod 1973).

4.33 (αb)−a ≡ (1093)−19 ≡ 3243 (mod 3359), so

(αb)−amαab ≡ 3243 · 2530 ≡ 2112 ≡ m (mod 3359).

4.35 δ ≡ 2391335 · 3352367 ≡ 2212 (mod 3023) and σ ≡ 5203 ≡ 2212 (mod 3023), so
Bob accepts.

4.37 δ ≡ 59791723 · 17237045 ≡ 2031 (mod 7481) and σ ≡ 6487 ≡ 2031 (mod 7481), so
Bob accepts.

Section 5.1

5.1 Let r|m. It suffices to prove the result for the case where r is prime. Let m = rt
for some t ∈ N. Thus, rt = 0 in R so r is a zero divisor in R (see page 25). Let
I = {x ∈ R : xt = 0}. Then I is an ideal in R and r ∈ I (see Definition A.22 on
page 317). Let M be a maximal ideal in R containing r (see Definition A.23),
and set F = R/M , which is a field (see Theorem A.15). Since αs/p − 1 is a unit
in R for any prime divisor p of s, then the order of α modulo M must be s. In
other words, αs − 1 = 0 in M but αj − 1 �= 0 in M for any nonnegative j < s.
(Otherwise, there would be a unit in M forcing M = R, contradicting Definition
A.23.) Since f(x) ∈ Z/mZ[x] and r = 0 in F with r|m, then we may assume

without loss of generality that f(x) ∈ Z/rZ[x]. Thus, f(αr) = 0, so αr = αmj

for some nonnegative j < k. Since the order of α modulo M is s, then r ≡ mj

(mod s).

5.3 By Exercise 1.30 on page 5, gcd(2p − 1, 2q − 1) = 2gcd(p.q) − 1 = 1.

5.5 Since n = a · b + 1 = 24 · 4409 + 1 = 105817, mn−1 ≡ 2105816 ≡ 1 (mod n),
gcd(m(n−1)/q−1, n) = gcd(224−1, 105817) = 1, and clearly b = q = 4409 >

√
n,

then n is prime.

5.7 Since n = 40961 = 213 · 5 + 1, c(n−1)/2 ≡ 320480 ≡ −1 (mod n), and c = 3 is a
quadratic nonresidue modulo n, then n is prime.

5.9 Since n = 16547 = 2 · 8273 + 1 = 2q + 1 where q = 8273 is prime and

m(n−1) ≡ 216546 ≡ 1 (mod n),

while m(n−1)/q ≡ 22 �≡ 1 (mod n), then n is prime.

© 2007 by Taylor & Francis Group, LLC

Solutions to Odd-Numbered Exercises 5.11–5.21 373

5.11 Since n−1 = 8272 = 24 ·11 ·47, then select m2 = 3 for which m8272
2 ≡ 1 (mod n),

and
m

(n−1)/2
2 ≡ 34136 ≡ −1 (mod n).

Also, for m11 = m47 = 2,

mn−1
11 ≡ 1 ≡ mn−1

47 (mod n),

while m
(n−1)/11
11 ≡ 2752 ≡ 3581 (mod n); and m

(n−1)/47
47 ≡ 2176 ≡ 165 (mod n).

Hence, n is prime.

5.13 Suppose that pt||n, where p is any prime dividing n. Also, let a be a generator
of (Z/pt

Z)∗. By the Chinese Remainder Theorem 1.12 on page 26, there exists
an element b ∈ (Z/nZ)∗ satisfying the congruences,

b ≡ a (mod pt) and b ≡ 1 (mod n/pt).

Thus, by hypothesis,
bn−1 ≡ an−1 ≡ 1 (mod pt).

Therefore, ordpt(b) = φ(pt) = pt−1(p−1)
∣∣∣ (n−1) by Proposition 1.5 on page 44.

Hence, t = 1 as required.

Section 5.2

5.15 Since n = 7331 and n − 1 = 2 · 3665 = 2m with 2m ≡ −1 (mod n), then we
conclude with n being probably prime, and indeed it is.

5.17 Since n = 2152302898747 and n−1 = 2 ·1076151449373, with 5m ≡ −1 (mod n),
then we declare n to be a probable prime. However, n = 6763 · 10627 · 29947 is
the canonical prime factorizarion. Indeed, it is known that this is the smallest
strong pseudoprime to all bases 2, 3, 5, 7, 11.

5.19 If n > 1 with 2n ≡ 1 (mod n), then there is a smallest prime p dividing n. Thus,

by Proposition 1.5 on page 44, ordp(2)
∣∣∣ n. However,

2p−1 ≡ 1 (mod p),

by Fermat’s Little Theorem, so by Proposition 1.5 again,

ordp(2)
∣∣∣ (p − 1).

Hence, ordp(2) < p. But since 1 < ordp(2)
∣∣∣ n, this contradicts the minimality

of p.

5.21 If n = pa where a > 1, then (pa − (D/n))
∣∣∣ ψD(n) = pa − pa−1(D/p). Thus,

pa − pa−1 < pa − 1 ≤ pa − (D/n) ≤ pa − pa−1(D/p), so (D/p) = −1. Therefore,
pa ± 1 divides pa + pa−1, which cannot happen since

2pa − 2 > pa + pa−1 ≥ pa ± 1 ≥ pa − 1.

If k > 1

ψD(n) ≤ 1

2k−1

k∏
j=1

p
aj−1

j (pj + 1) = 2n

k∏
j=1

1

2

(
1 +

1

pj

)
≤

© 2007 by Taylor & Francis Group, LLC

374 Solutions to Odd-Numbered Exercises 5.21–6.9

2n · 2

3
· 3

5
· · · ≤ 4n

5
< n − 1,

since both k > 1 and n > 5, contradicting the hypothesis: (n− (D/n))
∣∣∣ ψD(n).

Section 5.3

5.23 We have that (a) implies (b), a fortiori. If (b) holds, then by Exercise 1.103 on
page 43, n is a Carmichael number. Thus, by Exercise 5.22, n is squarefree and

by Exercise 1.103, (p − 1)
∣∣∣ (n − 1) for all primes p dividing n. Therefore, (b)

implies (c). It remains to show that (c) implies (a). If (c) holds, we need to show

n
∣∣∣ (an −a) for all a ∈ Z. However, since n is squarefree, it suffices to show that

each prime p dividing n also divides (an − a). Since ap−1 ≡ 1 (mod p) for each
a relatively prime to p by Fermat’s Little Theorem, then since n − 1 = (p − 1)s
for some s ∈ N, then an−1 ≡ as(p−1) ≡ 1 (mod p), so an ≡ a (mod p). Lastly, if

p
∣∣∣ a, then an−1 ≡ a ≡ 0 (mod p), so we have completed the proof.

5.25 Use the extended Euclidean algorithm 1.7 on page 12 on e and 2n′ to find
integers d and m′ such that ed + 2n′m′ = 1. Then destroy all records of p, q,
n′, and m′, and keep d as the private key (trapdoor). Thus, me ≡ c (mod n) is
the enciphering function and cd ≡ m (mod n) is the deciphering function where
ed ≡ 1 (mod φ(n)).

5.27 Let n − 1 = 2tm where m is odd. Since n is a strong pseudoprime to base a,
then either

am ≡ ±1 (mod n)

or
a2im ≡ −1 (mod n)

for some positive i < t. In the former case

(a2j+1)m ≡ (±1)2j+1 ≡ ±1 (mod n)

and in the latter case

(a2j+1)2
im ≡ (−1)2j+1 ≡ −1 (mod n).

In any case, n is a strong pseudoprime to base a2j+1.

Section 6.1

6.1 10817 = 29 · 373.
6.3 767 = 13 · 59.
6.5 87611 = 79 · 1109.

Section 6.2

6.7 n = 3090847 = 1481 · 2087.
6.9 n = 3774403 = 1123 · 3361.

© 2007 by Taylor & Francis Group, LLC

Solutions to Odd-Numbered Exercises 6.11–8.5 375

6.11 n = 35923031 = 5039 · 7129.
6.13 n = 63382447 = 7757 · 8171.
6.15 n = 82979779 = 8999 · 9221.

Section 6.3

6.17 n = 1324237 = 1021 · 1297.
6.19 n = 5951129 = 2281 · 2609.

Section 6.4

6.21 n = 3191491 = 2311 · 1381.
6.23 n = 42723991 = 5711 · 7481.

Section 6.5

6.25 n = 561707 = 331 · 1697.
6.27 n = 20235773 = 3557 · 5689.
6.29 n = 72425447 = 7673 · 9439.

Section 7.1

7.1 It has the same reason as it was replaced for the standard by AES, namely it is
insecure in the modern day.

Section 8.1

8.1 Throw two dice three times, for each word, recording the numbers after each
throw. Then after 3n (n ∈ N) throws, one has an n-word passphrase. Assuming
the dice are fair, this is a random selection.

8.3 This tunneling may be used to advantage to connect through a firewall to upload
and download mail securely, as well as browse WWW sites. However, Mallory
can easily establish an open connection to an Internet telnet server, for instance,
or any other much more malicious intervention.

Section 8.4

8.5 (a) Leaving a voice mail message to another party allows them to spoof an identity.

(b) Having a cold, laryngitis, etc. can alter the voice print.

© 2007 by Taylor & Francis Group, LLC

Bibliography

[1] M. Agrawal, N. Kayal, and N. Saxena, Primes is in P, Annals of Math.
160 (2004), 781–793. (Cited on pages 194–196.)

[2] W.R. Alford, A. Granville, and C. Pomerance, There are infinitely many
Carmichael numbers, Ann. Math. 140 (1994), 703–722. (Cited on page
192.)

[3] D. Atkins, M. Graff, A.K. Lenstra, and P.C. Leyland, The magic words
are SQUEAMISH OSSIFRAGE in Advances in Cryptology — ASI-
ACRYPT ’94, Springer-Verlag, Berlin, LNCS 917, (1995), 263–277. (Cited
on page 219.)

[4] E. Biham and L.R. Knudsen, Cryptanalysis of the ANSI X9.52 CBCM
mode, J. Cryptol. (2002), 47–59. (Cited on page 150.)

[5] E. Biham and A. Shamir, Differential cryptanalysis of the full 16-round
DES, Advances in Cryptology — CRYPTO ’92, Springer-Verlag (1993),
487–496. (Cited on page 145.)

[6] E. Biham and A. Shamir, Differential Cryptanalysis of the Data En-
cryption Standard, Springer-Verlag, New York (1993). (Cited on page
145.)

[7] D. Bleichenbacher, Generating ElGamal signatures without knowing thes-
ecret key, in Advances in Cryptology — EUROCRYPT ’96, Springer-
Verlag, Berlin, LNCS 1070 (1996), 10–18. (Cited on page 185.)

[8] D. Boneh, R.A. DeMillo, and R.J. Lipton, On the importance of checking
cryptographic protocols for faults, in Advances in Cryptology, EURO-
CRYPT ’97, Springer-Verlag, Berlin, LNCS 1233 (1997), 37–51. (Cited on
page 293.)

[9] R. Bright, Smart Card Principles, Practice, Applications, LS
Howard Books, Chinchester (1988). (Cited on page 291.)

[10] J. Brillhart and J. Selfridge, Some factorizations of 2n ± 1 and related
results, Math. Comp. 21 (1967), 87–96. (Cited on pages 193, 208.)

377
© 2007 by Taylor & Francis Group, LLC

378 Introduction to Cryptography

[11] A.A. Bruen and M.A. Forcinito, Cryptography, Information Theory,
and Error-Correction, Wiley (2005). (Cited on page 119.)

[12] J. Brunner, Shockwave Rider, Ballentine Books, New York (1975). (Cited
on page 283.)

[13] K.W. Campbell and M.J. Weiner, Proof that DES is not a group in Ad-
vances in Cryptology — CRYPTO ’92 Proc., Springer-Verlag, Berlin,
LNCS 740 (1993), 518–526. (Cited on page 150.)

[14] R.D. Carmichael, On the numerical factors of the arithmetic forms αn±βn,
Ann. Math. 15 (1913–14), 30–70. (Cited on page 191.)

[15] A. Cauchy, Mémoire sur diverses formules relatives à l’algèbre et à la
théorie des nombres (suite), C.R. Acad. Sci. Paris 12 (1841), 813–846.
(Cited on page 369.)

[16] B. Chor and R.L. Rivest, A knapsack type public key cryptosystem based on
arithmetic in finite fields in Advances in Cryptology — CRYPTO ’84,
Springer-Verlag, Berlin, LNCS 196 (1985), 54–65. (Cited on page 340.)

[17] B. Chor and R.L. Rivest, A knapsack type public key cryptosystem based
on arithmetic in finite fields in IEEE Trans. Inform. Theory, 34 (1988),
901–909. (Cited on page 340.)

[18] D. Coppersmith, The Data Encryption Standard (DES) and its strength
against attacks, IBM J. R. and D. 38 (1994), 243–250. (Cited on pages
134–135.)

[19] D. Coppersmith, H. Krawczyk, and Y. Mansour, The shrinking generator
in Advances in Cryptology — CRYPTO ’93, Springer-Verlag, Berlin,
LNCS 773 (1994), 22–39. (Cited on page 120.)

[20] R. Crandall, K. Dilcher, and C. Pomerance, A search for Wiefereich and
Wilson primes., Math. Comp. 66 (1997), 433–449. (Cited on page 33.)

[21] J.A. Davies, D.B. Holdridge, and G.L. Simmons, Status report on factoring
(at Sandia National Labs) in Advances in Cryptology — EUROCRYPT
’84, Springer-Verlag, Berlin, LNCS 209, (1985), 183–215. (Cited on page
219.)

[22] T. Dierks and C. Allen, The TLS protocol, version 1.0, Internet Request
for Comments 2246 (January 1999). (Cited on page 243.)

[23] L.E. Dickson, History of the Theory of Numbers, Vol. 1, Chelsea,
New York, (1992). (Cited on page 197.)

[24] W. Diffie and M.E. Hellman, New directions in cryptography, IEEE Trans-
actions on Information Theory 22 (1976), 644–654. (Cited on pages 157,
160.)

© 2007 by Taylor & Francis Group, LLC

Bibliography 379

[25] W. Diffie and M.E. Hellman, Exhaustive cryptanalysis of the NBS data
encryption standard, Computer, June (1977). (Cited on page 149.)

[26] T. ElGamal, A public key cryptosystem and signature scheme based on
discrete logarithms, IEEE Transactions on Information Theory 31 (1985),
469–472. (Cited on pages 181, 183.)

[27] T. ElGamal, A public key cryptosystem and a signature scheme based
on discrete logarithms in Advances in Cryptology — CRYPTO ’84,
Springer-Verlag, Berlin, LNCS 196 (1985), 10–18. (Cited on page 183.)

[28] FIPS 46-3, Data encryption standard (DES) defines and specifies the use
of DES and triple DES, November (1999). (Cited on page 149.)

[29] FIPS 180-1, Secure Hash Standard, April 17, 1995. (Cited on page 346.)

[30] FIPS PUB 180-2, Secure Hash Standard (SHS), August 26, 2002. (Cited
on page 346.)

[31] FIPS PUB 185, Escrowed Encryption Standard (EES), February 9, 1994.
(Cited on page 246.)

[32] FIPS 186, Digital signature standard, Federal Information Processing Stan-
dards Publication 186, U.S. Department of Commerce/N.I.S.T. National
Tecnical Information Service, Springfield, VA (1994). (Cited on page 246.)

[33] FIPS 186-2, Digital signature standard, February (2002). (Cited on page
187.)

[34] M.R. Garey and D.S. Johnson, Computers and Intractability, Freeman,
New York, Twenty-second printing (2000). (Cited on page 168.)

[35] C.F. Gauss, Disquisitiones Arithmeticae (English edition), Springer-
Verlag, Berlin (1985). (Cited on pages 42, 46, 61, 209.)

[36] A.Géradin F. Proth, Sphinx-Oedipe, 7 (1912), 50–51. (Cited on page 192.)

[37] J. Gerver, Factoring large numbers with a quadratic sieve, Math. Comp. 41
(1983), 287–294. (Cited on page 219.)

[38] S.W. Golomb, Shift Register Sequences, Holden-Day, San Francisco
(1967). Reprinted by Aegean Park Press (1982). (Cited on pages 117, 121.)

[39] J. Gordon, Strong primes are easy to find, in Advances in Cryptology,
EUROCRYPT ’84, Springer-Verlag, Berlin, LNCS 209 (1985), 216–223.
(Cited on page 204.)

[40] R.K. Guy, Unsolved Problems in Number Theory, Vol. 1, Second
Edition, Springer-Verlag, Berlin (1994). (Cited on pages 43, 48.)

© 2007 by Taylor & Francis Group, LLC

380 Introduction to Cryptography

[41] H.M. Heys, A tutorial on linear and differential cryptanalysis, Technical
Report CORR 2001-17, Department of Combinatorics and Optimization,
University of Waterloo, Waterloo, Canada (2001). (Cited on page 150.)

[42] A. Hurwitz, Question 801, L’Intermédiaire Math. 3 (1896), 214. (Cited on
page 191.)

[43] D. Kahn, The Codebreakers, Macmillan, New York (1967). (Cited on
page 80.)

[44] J. Kilian and P. Rogaway, How to protect DES against exhasutive key
search, in Advances in Cryptology — CRYPTO ’96, Springer-Verlag,
Berlin (1996), 252–267. (Cited on page 150.)

[45] G. Kipper, Investigator’s Guide to Steganography, Auerbach, (A
CRC Press Company), Boca Raton, London, New York, Washington, D.C.,
(2004). (Cited on page 80.)

[46] D.E. Knuth, The Art of Computer Programming, Volume 2/
Seminumerical Algorithms, Third Edition, Addison-Wesley, Reading,
Paris (1998). (Cited on pages 76 and 114.)

[47] M. Kraitchik, Mathematical Recreations, Dover, New York (1953).
(Cited on page 210.)

[48] H. Krawczyk, The order of encryption and authentication for protecting
communications (or: How secure is SSL?), in Advances in Cryptology
— CRYPTO 2001, Springer-Verlag, LNCS 2139 (2001), 310–331. (Cited
on pages 248, 272.)

[49] R.S. Lehman, Factoring large integers, Math.Comp. 28 (1974), 637–646.
(Cited on page 208.)

[50] S. Lehtinen, SSH protocol assigned numbers, INTERNET-DRAFT, draft-
ietf-secsh-assignednumbers-05.txt, October (2003). (Cited on page 271.)

[51] D.H. Lehmer, Selected Papers of D.H. Lehmer, Volumes I–III, D.
McCarthy (Ed.), The Charles Babbage Research Centre, St. Pierre, Canada
(1981). (Cited on page 57.)

[52] D.H. Lehmer and R.E. Powers, On factoring large numbers, Bull. Amer.
Math. Soc. 37 (1931), 770–776. (Cited on page 209.)

[53] A.K. Lenstra and M.S. Manasse, Factoring by electronic mail in Advances
in Cryptology — EUROCRYPT ’89, Springer-Verlag, Berlin, LNCS 434,
(1990), 355–371. (Cited on page 219.)

[54] H.W. Lenstra Jr., On the Chor-Rivest knapsack cryptosystem, Journal of
Cryptology 3, (1991), 149–155. (Cited on page 343.)

© 2007 by Taylor & Francis Group, LLC

Bibliography 381

[55] S. Levy, Crypto, Penguin Books, New York (2001). (Cited on pages 138,
158–159, 183.)

[56] M. Matsui, The first experimental cryptanalysis of the Data Encryption
Standard in Advances in Cryptology — CRYPTO ’94, Springer-Verlag,
Berlin, LNCS 839 (1994), 1–11. (Cited on page 151.)

[57] M. Matsui, Linear cryptanalysis method for the DES cipher in Advances
in Cryptology — EUROCRYPT ’93, Springer-Verlag, Berlin, LNCS 765
(1994), 386–397. (Cited on page 150.)

[58] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone, Handbook of Ap-
plied Cryptography, CRC Press, Boca Raton, New York, London, Tokyo
(1997). (Cited on pages 75, 120, 176, 178.)

[59] R.C. Merkle and M.E. Hellman, Hiding information and signatures in trap-
door knapsacks, IEEE Trans. Inform. Theory, 24 (1978), 525–530. (Cited
on page 337.)

[60] R.C. Merkle and M.E. Hellman, On the security of multiple encryption, J.
Communicatons of the ACM, 24 (1981), 465–467. (Cited on page 148.)

[61] R.A. Mollin, Fundamental Number Theory with Applications, CRC
Press, Boca Raton, New York, London, Tokyo (1998). (Cited on pages 18,
77, 301, 304, 307–307, 316, 321, 325, 328, 369.)

[62] R.A. Mollin, Algebraic Number Theory, Chapman and Hall/CRC
Press, Boca Raton, New York, London, Tokyo (1999). (Cited on pages
18, 47, 63, 77, 191.)

[63] R.A. Mollin, RSA and Public-Key Cryptography, Chapman and
Hall/CRC Press, Boca Raton, FL (2003). (Cited on pages 170, 160, 176,
198, 203–205.)

[64] R.A. Mollin, Codes — The Guide to Secrecy from Ancient to Mod-
ern Times, Chapman and Hall/CRC (2005). (Cited on pages 122,126, 128,
133, 155, 157, 166, 181, 204, 227, 229–230, 241, 250, 263, 346, 413.)

[65] R. Moreno and P. Le Clech, IPR and smart card patents — France, (In-
novatron) — Smart Card Eurpoe, London, December 12 (1995). (Cited on
page 291.)

[66] M.A. Morrison and J. Brillhart, A method of factoring and the factorization
of F7, Math. Comp. 29 (1975), 183–205. (Cited on page 213.)

[67] S. Murphy, The cryptanalysis of FEAL-4 with 20 chosen plaintexts, J.
Cryptol. 2 (1990), 50–61. (Cited on page 145.)

© 2007 by Taylor & Francis Group, LLC

382 Introduction to Cryptography

[68] P. van Oorschot, A comparison of practical public-key cryptosystems based
on integer factorization and discrete logarithms, in Contemporary Cryp-
tography: The Science of Information Integrity, G. Simmons, ed.,
IEEE Press, Piscatoway, NJ (1992), 289–322. (Cited on page 165.)

[69] W. Peterson and E.J. Weldon, Error-Correction Codes, M.I.T. Press,
second edition (1972). (Cited on page 117.)

[70] J.M. Pollard, An algorithm for testing the primality of any integer, Bull.
London Math. Soc. 3 (1971), 337–340. (Cited on page 214.)

[71] C. Pomerance, The quadratic sieve factoring algorithm in Advances in
Cryptology — EUROCRYPT ’84, Springer-Verlag, Berlin, LNCS 209,
(1985), 169–182. (Cited on page 217.)

[72] C. Pomerance, J. Selfridge, and S.S. Wagstaff Jr., The pseudoprimes to
2.5 · 109, Math. comp. 35 (1980) 1003–1026. (Cited on page 200.)

[73] A.J. van der Poorten, Notes on Fermat’s Last Theorem, Wiley, New
York, Toronto (1996). (Cited on page 37.)

[74] F. Proth, Théorèmes sur les nombres premiers, Comptes Rendus Acad. des
Sciences, Paris, 87 (1878), 926. (Cited on page 192.)

[75] RFC 1928, SOCKS protocol version 5, March (1996). (Cited on page 256.)

[76] RFC 2109, RFC 2109 — HTTP state management mechanism, February
(1997). (Cited on page 261.)

[77] RFC 2440, OpenPGP Message Format, November (1998). (Cited on pages
240, 350–351.)

[78] RFC 2459, Internet X.509 public key infrastructure certificate and CRL
profile, January (1999). (Cited on page 288.)

[79] R.L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital
signatures and public-key cryptosystems, Communications of the A.C.M.
21 (1978), 120–126. (Cited on page 160.)

[80] P. Rogaway, The security of DESX, CryptoBytes 2 (Summer 1996). (Cited
on page 150.)

[81] L. Rosenhead, Henry Cabourn Pocklington, Obituary Notices of the Royal
Society, (1952), 555-565. (Cited on page 191.)

[82] E. Schaefer, A simplified data encryption standard algorithm, Cryptologia,
January (1996). (Cited on page 140.)

[83] B. Schneier, Applied Cryptography, Wiley, New York, Toronto (1994).
(Cited on page 72.)

© 2007 by Taylor & Francis Group, LLC

Bibliography 383

[84] A. Shamir, A polynomial-time algorithm for breaking the basic Merkle-
Hellman cryptosystem in Advances in Cryptology — CRYPTO ’82
Proc., Plenum Press, New York (1983), 279–288. (Cited on page 340.)

[85] A. Shamir, A polynomial-time algorithm for breaking the basic Merkle-
Hellman cryptosystem, IEEE Trans. Inform. Theory, 30 (1984), 699–704.
(Cited on page 340.)

[86] C.E. Shannon, Communication theory of secrecy systems, Bell System Tech-
nical J., 28 (1949), 656–715. (Cited on pages 112, 146–148.)

[87] J.F. Shoch and J.A. Hupp, The ‘worms’ programs: Early experience with
a distributed computation, J. Comm. ACM 25 (1982), 172–180. (Cited on
page 283.)

[88] C. Suetonius Tranquillus, The Lives of the Twelve Caesars, Corner
House, Williamstown, Mass. (1978). (Cited on pages 82, 89–90.)

[89] J.C.A. Van Der Lubbe, Basic Methods of Cryptography, Cambridge
University Press (1998). (Cited on page 121.)

[90] S. Vaudenay, Cryptanalysis of the Chor-Rivest cryptosystem, J. Cryptol.
14 (2001), 87–100. (Cited on page 340.)

[91] S.S. Wagstaff, Cryptanalysis of NumberTheoretic Ciphers, Chapman
and Hall/CRC (2003). (Cited on pages 121, 188.)

[92] E.W. Weisstein, CRC Concise Encyclopedia of Mathematics, CRC
Press LLC, Boca Raton, London, Tokyo (1999). (Cited on page 316.)

[93] H.C. Williams, On numbers analogous to Carmichael numbers, Canad.
Math. Bull. 20 (1977), 133–143. (Cited on page 43.)

[94] H.C. Williams, Primality testing on a computer, Ars Combin. 5 (1978),
127–185. (Cited on page 200.)

[95] T. Ylonen, SH protocol architechture, INTERNET-DRAFT, draft-ietf-
secsh-architecture-15.txt, October (2003). (Cited on page 270.)

[96] T. Ylonen, SSH transport layer protocol INTERNET-DRAFT, draft-ietf-
secsh-transport-17.txt, October (2003). (Cited on page 270.)

[97] T. Ylonen, SSH connection protocol, INTERNET-DRAFT, draft-ietf-secsh-
agent-18.txt, October (2003). (Cited on page 271.)

[98] G. Yuval, How to swindle Rabin, Cryptologia 3 (1979), 187–190. (Cited on
page 130.)

© 2007 by Taylor & Francis Group, LLC

The Author 413

Figure 8.1: The author at the ruins of Phaistos in Crete, Greece, July, 2006.

Richard Anthony Mollin received his Bachelor’s and Master’s degrees from
the University of Western Ontario in 1971 and 1972, respectively. His Ph.D.
was obtained from Queen’s University in 1975 in Kingston, Ontario, where he
was born. Since then he has held various positions including Montreal’s Con-
cordia University, the University of Victoria, the University of Toronto, York
University, McMaster University in Hamilton, the University of Lethbridge, and
Queen’s University in Kingston, where he was one of the first NSERC University
Research Fellows. He is currently a full professor in the Mathematics Depart-
ment of the University of Calgary, where he has been employed since 1982. He
has over 180 publications, including 8 books, in algebra, number theory, and
computational mathematics. He has been awarded 5 separate Killam awards
over the past quarter century, including one in 2005, to complete his eighth
book Codes —The Guide to Secrecy from Ancient to Modern Times, [64]. He is
a member of the Mathematical Association of America, past member of both the
Canadian and American Mathematical Societies, a member of various Editorial
Boards, invited to lecture at numerous universities, conferences, and society
meetings, as well as holding numerous research grants from universities and
governmental agencies. Moreover, he is the founder of the Canadian Number
Theory Association, and held its first conference in Banff in 1988, immediately
preceding his NATO Advanced Study Institute.

© 2007 by Taylor & Francis Group, LLC

	c6188fm
	C6188ch1
	Chapter 1: Mathematical Basics
	1.1 Divisibility
	1.2 Primes, Primality Testing, and Induction
	1.3 An Introduction to Congruences
	1.4 Euler, Fermat, and Wilson
	1.5 Primitive Roots
	1.6 The Index Calculus and Power Residues
	1.7 Legendre, Jacobi, & Quadratic Reciprocity
	1.8 Complexity
	Appendix A: Fundamental Facts
	Appendix B: Computer Arithmetic
	Appendix C: The Rijndael S-Box
	Appendix D: Knapsack Ciphers
	Appendix E: Silver-Pohlig-Hellman Algorithm
	Appendix F: SHA-1
	Appendix G: Radix-64 Encoding
	Appendix H: Quantum Cryptography
	Solutions to Odd-Numbered Exercises
	Bibliography
	About the Author

	C6188ch2
	Table of Contents
	Chapter 2: Cryptographic Basics
	2.1 Definitions and Illustrations
	2.2 Classic Ciphers
	2.3 Stream Ciphers
	2.4 LFSRs
	2.5 Modes of Operation
	2.6 Attacks
	Appendix A: Fundamental Facts
	Appendix B: Computer Arithmetic
	Appendix C: The Rijndael S-Box
	Appendix D: Knapsack Ciphers
	Appendix E: Silver-Pohlig-Hellman Algorithm
	Appendix F: SHA-1
	Appendix G: Radix-64 Encoding
	Appendix H: Quantum Cryptography
	Solutions to Odd-Numbered Exercises
	Bibliography
	About the Author

	C6188ch3
	Table of Contents
	Chapter 3: DES and AES
	3.1 S-DES and DES
	3.2 AES
	Appendix A: Fundamental Facts
	Appendix B: Computer Arithmetic
	Appendix C: The Rijndael S-Box
	Appendix D: Knapsack Ciphers
	Appendix E: Silver-Pohlig-Hellman Algorithm
	Appendix F: SHA-1
	Appendix G: Radix-64 Encoding
	Appendix H: Quantum Cryptography
	Solutions to Odd-Numbered Exercises
	Bibliography
	About the Author

	C6188ch4
	Table of Contents
	Chapter 4: Public-Key Cryptography
	4.1 The Ideas Behind PKC
	4.2 Digital Envelopes and PKCs
	4.3 RSA
	(I) RSA Key Generation
	(II) RSA Public-Key Cipher

	4.4 ElGamal
	(I) ElGamal Key Generation
	(II) ElGamal Public-Key Cipher

	4.5 DSA — The DSS
	Appendix A: Fundamental Facts
	Appendix B: Computer Arithmetic
	Appendix C: The Rijndael S-Box
	Appendix D: Knapsack Ciphers
	Appendix E: Silver-Pohlig-Hellman Algorithm
	Appendix F: SHA-1
	Appendix G: Radix-64 Encoding
	Appendix H: Quantum Cryptography
	Solutions to Odd-Numbered Exercises
	Bibliography
	About the Author

	C6188ch5
	Table of Contents
	Chapter 5: Primality Testing
	5.1 True Primality Tests
	5.2 Probabilistic Primality Tests
	5.3 Recognizing Primes
	Appendix A: Fundamental Facts
	Appendix B: Computer Arithmetic
	Appendix C: The Rijndael S-Box
	Appendix D: Knapsack Ciphers
	Appendix E: Silver-Pohlig-Hellman Algorithm
	Appendix F: SHA-1
	Appendix G: Radix-64 Encoding
	Appendix H: Quantum Cryptography
	Solutions to Odd-Numbered Exercises
	Bibliography
	About the Author

	C6188ch6
	Table of Contents
	Chapter 6: Factoring
	6.1 Classical Factorization Methods
	6.2 The Continued Fraction Algorithm
	6.3 Pollard’s Algorithms
	6.4 The Quadratic Sieve
	6.5 The Elliptic Curve Method (ECM)
	Appendix A: Fundamental Facts
	Appendix B: Computer Arithmetic
	Appendix C: The Rijndael S-Box
	Appendix D: Knapsack Ciphers
	Appendix E: Silver-Pohlig-Hellman Algorithm
	Appendix F: SHA-1
	Appendix G: Radix-64 Encoding
	Appendix H: Quantum Cryptography
	Solutions to Odd-Numbered Exercises
	Bibliography
	About the Author

	C6188ch7
	Table of Contents
	Chapter 7: Electronic Mail and Internet Security
	7.1 History of the Internet and the WWW
	7.2 Pretty Good Privacy (PGP)
	7.3 Protocol Layers and SSL
	7.4 Internetworking and Security — Firewalls
	What A Firewall Can Do
	What Firewalls Cannot Do

	7.5 Client–Server Model and Cookies
	Appendix A: Fundamental Facts
	Appendix B: Computer Arithmetic
	Appendix C: The Rijndael S-Box
	Appendix D: Knapsack Ciphers
	Appendix E: Silver-Pohlig-Hellman Algorithm
	Appendix F: SHA-1
	Appendix G: Radix-64 Encoding
	Appendix H: Quantum Cryptography
	Solutions to Odd-Numbered Exercises
	Bibliography
	About the Author

	C6188ch8
	Table of Contents
	Chapter 8: Leading-Edge Applications
	8.1 Login and Network Security
	Passphrase Selection Criteria
	Attacks on Passwords
	IEEE
	Ethernet and Promiscuous Mode
	Packet Sni.er Components
	Token Applications
	What is SSH?
	Basically, How Does SSH work?
	Key Exchange Protocol
	Authentication
	Connection
	Exercises

	8.2 Viruses and Other Infections
	Virus Targets
	Stages of a Virus
	Types of Viruses
	Examples
	Virus Detection and Prevention
	Advanced Protection
	DIS Closed-Loop Process

	8.3 Smart Cards
	8.4 Biometrics
	Exercises

	Appendix A: Fundamental Facts
	Appendix B: Computer Arithmetic
	Appendix C: The Rijndael S-Box
	Appendix D: Knapsack Ciphers
	Appendix E: Silver-Pohlig-Hellman Algorithm
	Appendix F: SHA-1
	Appendix G: Radix-64 Encoding
	Appendix H: Quantum Cryptography
	Solutions to Odd-Numbered Exercises
	Bibliography
	About the Author

	C6188appa
	Table of Contents
	Appendix A: Fundamental Facts
	Appendix B: Computer Arithmetic
	Appendix C: The Rijndael S-Box
	Appendix D: Knapsack Ciphers
	Appendix E: Silver-Pohlig-Hellman Algorithm
	Appendix F: SHA-1
	Appendix G: Radix-64 Encoding
	Appendix H: Quantum Cryptography
	Solutions to Odd-Numbered Exercises
	Bibliography
	About the Author

	C6188appb
	Table of Contents
	Appendix B: Computer Arithmetic
	Appendix A: Fundamental Facts
	Appendix C: The Rijndael S-Box
	Appendix D: Knapsack Ciphers
	Appendix E: Silver-Pohlig-Hellman Algorithm
	Appendix F: SHA-1
	Appendix G: Radix-64 Encoding
	Appendix H: Quantum Cryptography
	Solutions to Odd-Numbered Exercises
	Bibliography
	About the Author

	C6188appc
	Table of Contents
	Appendix C: The Rijndael S-Box
	Appendix A: Fundamental Facts
	Appendix B: Computer Arithmetic
	Appendix D: Knapsack Ciphers
	Appendix E: Silver-Pohlig-Hellman Algorithm
	Appendix F: SHA-1
	Appendix G: Radix-64 Encoding
	Appendix H: Quantum Cryptography
	Solutions to Odd-Numbered Exercises
	Bibliography
	About the Author

	C6188appd
	Table of Contents
	Appendix D: Knapsack Ciphers
	Appendix A: Fundamental Facts
	Appendix B: Computer Arithmetic
	Appendix C: The Rijndael S-Box
	Appendix E: Silver-Pohlig-Hellman Algorithm
	Appendix F: SHA-1
	Appendix G: Radix-64 Encoding
	Appendix H: Quantum Cryptography
	Solutions to Odd-Numbered Exercises
	Bibliography
	About the Author

	C6188appe
	Table of Contents
	Appendix E: Silver-Pohlig-Hellman Algorithm
	Appendix A: Fundamental Facts
	Appendix B: Computer Arithmetic
	Appendix C: The Rijndael S-Box
	Appendix D: Knapsack Ciphers
	Appendix F: SHA-1
	Appendix G: Radix-64 Encoding
	Appendix H: Quantum Cryptography
	Solutions to Odd-Numbered Exercises
	Bibliography
	About the Author

	C6188appf
	Table of Contents
	Appendix F: SHA-1
	Appendix A: Fundamental Facts
	Appendix B: Computer Arithmetic
	Appendix C: The Rijndael S-Box
	Appendix D: Knapsack Ciphers
	Appendix E: Silver-Pohlig-Hellman Algorithm
	Appendix G: Radix-64 Encoding
	Appendix H: Quantum Cryptography
	Solutions to Odd-Numbered Exercises
	Bibliography
	About the Author

	C6188appg
	Table of Contents
	Appendix G: Radix-64 Encoding
	Appendix A: Fundamental Facts
	Appendix B: Computer Arithmetic
	Appendix C: The Rijndael S-Box
	Appendix D: Knapsack Ciphers
	Appendix E: Silver-Pohlig-Hellman Algorithm
	Appendix F: SHA-1
	Appendix H: Quantum Cryptography
	Solutions to Odd-Numbered Exercises
	Bibliography
	About the Author

	C6188apph
	Table of Contents
	Appendix H: Quantum Cryptography
	Appendix A: Fundamental Facts
	Appendix B: Computer Arithmetic
	Appendix C: The Rijndael S-Box
	Appendix D: Knapsack Ciphers
	Appendix E: Silver-Pohlig-Hellman Algorithm
	Appendix F: SHA-1
	Appendix G: Radix-64 Encoding
	Solutions to Odd-Numbered Exercises
	Bibliography
	About the Author

	C6188solution
	Table of Contents
	Solutions to Odd-Numbered Exercises
	Section 1.1
	Section 1.2
	Section 1.3
	Section 1.4
	Section 1.5
	Section 1.6
	Section 1.7
	Section 1.8
	Section 2.1
	Section 2.2
	Section 2.3
	Section 2.4
	Section 2.5
	Section 3.1
	Section 4.2
	Section 4.3
	Section 4.4
	Section 5.1
	Section 5.2
	Section 5.3
	Section 6.1
	Section 6.2
	Section 6.3
	Section 6.4
	Section 6.5
	Section 7.1
	Section 8.1
	Section 8.4
	Appendix A: Fundamental Facts
	Appendix B: Computer Arithmetic
	Appendix C: The Rijndael S-Box
	Appendix D: Knapsack Ciphers
	Appendix E: Silver-Pohlig-Hellman Algorithm
	Appendix F: SHA-1
	Appendix G: Radix-64 Encoding
	Appendix H: Quantum Cryptography
	Bibliography
	About the Author

	C6188bib
	Table of Contents
	Bibliography
	Appendix A: Fundamental Facts
	Appendix B: Computer Arithmetic
	Appendix C: The Rijndael S-Box
	Appendix D: Knapsack Ciphers
	Appendix E: Silver-Pohlig-Hellman Algorithm
	Appendix F: SHA-1
	Appendix G: Radix-64 Encoding
	Appendix H: Quantum Cryptography
	Solutions to Odd-Numbered Exercises
	About the Author

	C6188author
	Table of Contents
	About the Author
	Appendix A: Fundamental Facts
	Appendix B: Computer Arithmetic
	Appendix C: The Rijndael S-Box
	Appendix D: Knapsack Ciphers
	Appendix E: Silver-Pohlig-Hellman Algorithm
	Appendix F: SHA-1
	Appendix G: Radix-64 Encoding
	Appendix H: Quantum Cryptography
	Solutions to Odd-Numbered Exercises
	Bibliography

