RECIPROCAL LATTICE (KISI RESIPROK)

Rita Prasetyowati Fisika FMIPA UNY 2012

Problem

Interplanar separation.(Problem 2.1 in Kittel.)
Consider a plane hkl in a crystal lattice.

- (a). Prove that the reciprocal lattice vector G = hb₁ + kb₂ + lb₃ is perpendicular to this plane.
- (b). Prove that the distance between two adjacent parallel planes of the lattice is d(hkl) = 2π/|G|.
- (c). Show for a simple cubic lattice that $d^2 = a^2/(h^2 + k^2 + l^2)$.

Problem #4

Hexagonal space lattice. (Problem 2.2 in Kittel.) The primitive translation vectors of the hexagonal space lattice may be taken as:

$$a_1 = \frac{\sqrt{3}a}{2}x + \frac{a}{2}y$$
, $a_2 = -\frac{\sqrt{3}a}{2}x + \frac{a}{2}y$, $a_3 = cz$ (20)

- (a). Show that the volume of the primitive cell is $\sqrt{3}a^2c/2$.
- (b). Show that the primitive translations of the reciprocal lattice are:

$$\boldsymbol{b_1} = \frac{2\pi}{\sqrt{3}a}\boldsymbol{x} + \frac{2\pi}{a}\boldsymbol{y}, \quad \boldsymbol{b_2} = -\frac{2\pi}{\sqrt{3}a}\boldsymbol{x} + \frac{2\pi}{a}\boldsymbol{y}, \quad \boldsymbol{b_3} = \frac{2\pi}{c}\boldsymbol{z}$$
 (21)

so that the lattice is its own reciprocal, but with a rotation of axes.

(c). Describe and sketch the first Brillouin zone of the hexagonal space lattice.

Reciprocal lattice:

Diffraction pattern of the crystal lattice

Diffraction data:

Reciprocal lattice X diffraction pattern of the unit cell content

The reciprocal lattice

 A diffraction pattern is not a direct representation of the crystal lattice

The diffraction pattern is a representation of the

reciprocal lattice

We have already considered some reciprocal features -

Miller indices were derived as the reciprocal (or inverse) of unit cell intercepts.

Reciprocal Lattice vectors

Any set of planes can be defined by:

- (1) their orientation in the crystal (hkl)
- (2) their d-spacing

The orientation of a plane is defined by the direction of a normal (vector product)

Defining the reciprocal

Take two sets of planes:

Draw directions normal:

These lines define the orientation but not the length

We use $\frac{1}{d}$ to define the lengths

These are called reciprocal lattice vectors G_1 and G_2

Dimensions = 1/length

The K vector

We define incident and reflected X-rays as k_o and k respectively, with moduli $1/\lambda$

Then we define vector $\mathbf{K} = \mathbf{k} - \mathbf{k}_0$

Kvector

As **k** and \mathbf{k}_o are of equal length, $1/\lambda$, the triangle O, O', O" is isosceles.

The angle between ${\bf k}$ and ${\bf -k_o}$ is $2\theta_{hkl}$ and the hkl plane bisects it.

The length of K is given by:

$$|\mathbf{K}| = 2|\mathbf{k}|\sin\theta_{\mathsf{hkl}} = \frac{2\sin\theta_{\mathsf{hkl}}}{\lambda}$$

The Laue condition

K is perpendicular to the (hkl) plane, so can be defined as:

$$K = \left\lceil \frac{2 \sin \theta_{hkl}}{\lambda} \right\rceil \hat{\mathbf{n}} \qquad \text{where } \hat{\mathbf{n}} \text{ is a vector of unit length}$$

G is also perpendicular to (hkl) so

$$\hat{\mathbf{n}} = \frac{\mathbf{G}_{hkl}}{|\mathbf{G}_{hkl}|}$$

$$\Rightarrow \quad K = \frac{2}{\lambda |G_{hkl}|} sin \, \theta_{hkl} G_{hkl} \qquad and \quad |G_{hkl}| = \frac{1}{d_{hkl}} \quad from \, previous$$

$$\Rightarrow K = \frac{2d_{hkl} \sin \theta_{hkl}}{\lambda} G_{hkl}$$
But Bragg: $2d\sin\theta = \lambda$

So $K = G_{hkl}$ the Laue condition

What does this mean?!

Laue assumed that each set of atoms could radiate the incident radiation in all directions

Constructive interference only occurs when the scattering vector, K, coincides with a reciprocal lattice vector, G

This naturally leads to the <u>Ewald</u> <u>Sphere</u> construction