THERMAL PROPERTIES
OF CRYSTAL




Plot of C. as a function of T

Specific heat at constant volume depends on temperature as
shown in figure below. At high temperatures the value of C, is
close to 3R, where R is the universal gas constant. Since R is
approximately 2 cal/K-mole, at high temperatures C, is app. 6
cal/K-mole.

This range usually includes RT.
v From the figure it is seen that C, is
equal to 3R at high temperatures
regardless of the substance. This
fact is known as Dulong-Petit law.
This law states that specific heat of
a given number of atoms of any
solid is independent of
temperature and is the same for all

materials!




Classical theory of
heat capacity of solids

The solid 18 one 1n which each atom 1s bound to 1its side by
a harmonic force. When the solid 18 heated, the atoms vibrate
around their sites like a set of harmonic oscillators. The
average energy for a 1D oscillator 18 kT. Therefore, the
averaga energy per atom, regarded as a 3D oscillator, 1s 3kT,
and consequently the energy per mole 1s

E = 3Nk, T =3RT
where N 1s Avagadro’s number, kg 18 Boltzmann constant

and R 1s the gas constant. The differentiation wrt temperature
gIveEs;
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Einstein heat capacity of solids

» The theory explained by Einstein is the first quantum theory of
solids. He made the simplifying assumption that all 3N vibrabonal
modes of a 3D solid of N atoms had the same frequency, so that the

whole solid had a heat capacity 3N tim%:,;{
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» In this model, the atoms are treated as independent oscillators, but
the energy of the oscillators are taken quantum mechanically as

ho

This refers to an isolated oscillator, but the atomic oscillators in a
solid are not isolated.They are continually exchanging their energy
with their surrounding atoms.

» Even this crude model gave the correct limit at high temperatures, a
heat capacity of
pacity 3Nk, =3R

Dulong-Petit law where R is universal gas constant.



- At high temperatures, all crystalline solids have a specific heat of

6 cal/K per mole; they require 6 calories per mole to raise their
temperature 1 K.

'ThlS arrangement between ebservatmn and classical theory break
n 1f the temperature 1= hig

*Observations show that af room temperatures and below the
specific heat of crystalline solids 18 not a universal constant.

t In all of these materials

cal ; (Pb,Al, Si,and Diamond)

' specific heat approaches

constantvalue

asymptotically at high T's.
But at low T's, the specific

., T heatdecreases towards
zero which is in a complete

— (. =3R contradiction with the
above classical result.
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The Discrepancy of Einstein model

» Einstein model also gave correctly a specilic heat tending to
zero at absolute zero, but the temperature dependence near
T=0 did not agree with experiment.

» Taking 1nto account the actual distribution of wibration

frequencies 1n a solid this discrepancy can be accounted using
one dimensional model of monoatomic lattice




Debye cut-off frequency @,

The cut-off freqency 1s chosen to make the total number of
lattice modes correct. Since there are 3N lattice wibration

modes 1n a crystal having N atoms, we choose @, so that

Tg(m)dm =3N
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First term 1s the estimate of the zero point energy, and
all T dependence 1s 1n the second term. The heat capacity 1s
_ obtamned by differentiating above eqn wrt temperature.
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The heat capacity is g7
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Let’s convert this complicated integral into an
expression for the specific heat changing variables to
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The Debye prediction for lattice specific heat
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How does €, limit at high and low temperatures?

High temperature

X 1s always small e =1+ x + £+ £+
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Thermal energy and lattice vibrations

N «Atoms vibrate about their equilibrium position.
772\ *They produce vibrational waves.
N/ *This motion 1s increased as the temperature 1s
ST e -
SN raised. ‘ ‘

In a solid, the energy associated with this vibration and perhaps also with
the rotation of atoms and molecules is called as thermal energy.

Note: In a gas, the translational motion of atoms and molecules
contribute to this energy.




| ow temperature

For low temperature the upper limit of the integral 1s
infinite; the integral 1s then a known integral of
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We obtain the Debye 7° law in the form
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Anharmonic Effects

» This 1s an anharmonic effect due to the higher order terms 1n
potential which are 1gnored in harmonic approximation.

Vr)=V(a)+ (r _;) [iﬂ#ﬂ o

» Thermal expansion 1s an example to the anharmonic effect.

» In harmonic approximation phonons do not interact with each
other, 1n the absence of boundaries, lattice defects and
impurifies (which also scatter the phonons), the thermal
conductivity 1s infinite.

» In anharmonic effect phonons collide with each other and
these collisions limit thermal conductivity which 1s due to the
flow of phonons.




Phonon-phonon collisions

The coupling of normal modes by the unharmonic terms
in the interatomic forces can be pictured as collisions between
the phonons associated with the modes.

phononi —) Ny @, , k,
'g ml’kl /o
IR /a_// After collision another phonon
x\ Is produced
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Phonons are represented by wavenumbers with
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If k, lies outside thisrange add a suitable multible of 4 o bring

1t back within therange of _Z «x<Z . Then, k, =k +k, becomes
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Thermal conduction by phonons

» A flow of heat takes place from a hotter region to a
cooler region when there 1s a temperature gradient 1n a
solid.

» The most important contribution to thermal conduction
comes from the flow of phonons 1n an electrically
Insulating solid.

» Transport property1s an example of thermal conduction.

» Transport property is the process 1n which the flow of
some quantity occurs.

» Thermal conductivity 1s a transport coefficient and it
describes the flow.

» The thermal conductivity of a phonon gas 1n a solid will
be calculated by means of the elementary kinetic theory
the transport coefficients of gases.




Heat conduction in a phonon and real gas
The essential differences between the processes of heat
conduction in a phonon and real gas;

Phonon gas

«Speed is approximately constant.

«Both the number density and encrpy
density is greater at the hot end.

«Heat flow is primarily duc to phonon
flow with phonons being created at the
hot end and des#royed at the cold end

Real gas

«No flow of particles

«Average velocity and kinctic encrgy per
particle are greater at the hot end, but the
mumber density is greater at the cold end,
and the encrgy density is uniform due to the
uniform pressure.

«Heat flow is solely by transfer of kinetic

encrgy from onc particle to another in
collisions which is a minor efiect in phonon
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Therefore, the concept of thermal energy 1s fundamental to an
understanding many of the basic properties of solids. We would

like to know:

What 1s the value of this thermal energy?

How much 1s available to scatter a conduction electron 1n a
metal; since this scattering gives rise to electrical resistance.

The energy can be used to activate a crystallo

oraphic or a

magnetic transition.

How the vibrational energy changes with temperature since

this gives a measure of the heat energy which 1s
raise the temperature of the materal.

Recall that the specific heat or heat capacity 1s

necessary to

the thermal

energy which 1s required to raise the temperature of unit
B—1pass or 1gmole by one Kelvin.
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Heat capacity from Lattice vibrations

The energy given to lattice vibrations is the dominant
contribution to the heat capacity in most solids.

Other contributions;
* Inmetals—> from the conduction electrons.
* In magnetic materials—> from magneting ordering.

Atomic wibrations leads to band of normal mode frequencies
from zero up to some maximum value.

Calculation of the lattice energy and heat capacity of a solid
therefore falls into two parts:

1) the evaluation of the contribution of a single mode, and

=11) the summation over the frequency distribution of the modes.
T




Energy and heat capacity

of a harmonic

osclllator, Einstein Model
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Avarage cnergy of a hammonic
oscillator and hence of a lattice
mode of angular frequency at

The probability of the oscillator being in this
level as given by the Boltzman factor

exp(—¢,/k;T)

o

Enecrgy of oscillator
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Eqn (*) can be written
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Heat Capacity C

» Heat capacity C can be found by differentiating the average energy of

phonons of
- 1 hw
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Plot of C. as a function of T
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Specific heat vanishes

exponentially at low T’°s and tends to
classical value at high temperatures.

The features are common to all
quantum systems; the energy tends
to the zero-point-energy at low T°’s
and to the classical wvalue of
Boltzmann constant at high T’s.




