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Abstract: Trans Jogja is a public transportation in Yogyakarta which is operated by Dishubkominfo DIY. It is 

one of the ways to overcome transportation problems especially traffic jams. The total number of the buses 

until now reaches to 54. In fact, it does not significantly overcome the traffic jam problem yet. 

Dishubkominfo DIY always makes some efforts to improve the Trans Jogja management. One of them is by 

giving good services to the passengers. So, it is important to predict the amount of the passengers of Trans 

Jogja. This forecast uses the data from July 1st 2014 – September 29th 2014. This forecast is based on 

Weighted Fuzzy Time Series (WFTS).To forecast using WFTS, there are some important steps.Thereare 

defining the universe of discourse U, defining the fuzzy sets, establishing fuzzy logical relationship, 

grouping, forecasting, defuzzification, assigning weights and the last is calculating the final forecast values. 

The data of passengers is not stationer. It must be stationered first by differencing the data. From the 

forecasting result, MAPE and MSE of testing data are larger than MAPE and MSE of training data. So, WFTS 

can be used to predictTrans Jogja passenger in the following time.   
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1. Introduction 

Yogyakarta is one of the populous cities in Indonesia [1]. Traffic jam happens especially at the rush hours.  

Operating Trans Jogja bus is one of strategies that have been made [2] to solve traffic jams. Trans Jogja bus 

is operated since 2008 and it has been alternative solution to provide public transport-based on "buy the 

service". The number of the buses is 54 buses with 112 shelters. A good management of buses of Trans 

Jogjamakes them interesting. To improve the management, it is needed to know the number of passengers. 

Thus, a research to predict the number of Trans Jogja passengers is significant to be conducted. 

Some researchers have conducted researches which predict the buses passengers. One of them is Hidayat 

[3] with hisresearch about the method of Adaptive Neuro Fuzzy Inference System and When-xia [4] using 

regression analysis method. 

The fuzzy time series method is a dynamic process that uses linguistic values as observations. The 

research on fuzzy system that uses time series data was first conducted by Song [5] - [6] - [7] to predict the 

number of enrollments in a university. Other research conducted by Nurhayadi [8] is to predict the register 

at the Albama University. Then, Shah [9] applied fuzzy time series to predict the gross domestic capital in 

India. One more researcher, Abadi [10], constructed fuzzy time series that combines the lookup tables and 



  

value decomposition method for predicting inflation rate. 

Chen [11], in the year 1996 developed Song method which isfurther developed by Yu [12] in 2005.Again, Song 

methodis developed by Lee [13] talking about the seasonal data and by Suhartono [14] - [15] about forecasting 

seasonal and trend data.Finally, the study by Suhartono is applied to forecast tourist arrivals. 

In fact, Lee’s research [16] weighted fuzzy time series method has better accuracy than Chen’s [11], Yu’s 

[12], and Cheng’s [17] method. Thus, in this paper, the writer used the Lee’s method to predict the 

passengers of Trans Jogja bus. Since Lee [16] has many orders, the writer merely use the first one which is 

about weighted fuzzy time series model with data time variant. The data obtained are in the form of daily 

data of TransJogja’s passengers. Differencing data to get stationary data is important since the data are not 

stationer. After acquiring the results of forecasting, the writer calculated the value of MAPE (Mean Absolute 

Percentage Error) and MSE (Mean Square Error) of fuzzy time series method and weighted fuzzy time 

series method [16]. 

2. Forecasting with Fuzzy Time Series 

Fuzzy time series (FTS) is the development of a fuzzy system using time series data. Linguistic variables 

that used in this research are the data in the previous period which is mapped in to the data in the next 

period. 

Definition 2.1. [11] Let U  be universe of discourse, { }121 ,...,, nuuuU = . A fuzzy set A  of U  is defined by  
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where
Af  is the membership function of A , ]1,0[: →UfA

, and )( 1ufA
 indicates the grade of membership of 1u in A, 

where ]1,0[)( 1 ∈ufA
and ni ≤≤1 . 

Definition 2.2. [5] Let ...),2,1,0,...()( =ttY , a subset of R , be the universe of discourse on which fuzzy set 

)...,2,1()( =itfi are defined and )(tF be a collection of )...,2,1()( =itfi
. Then, )(tF is called a fuzzy time series on 

...),2,1,0,...()( =ttY . 

Definition 2.3. [11] If there exists a fuzzy relationship ),1( ttR − , such that ),1()1()( ttRtFtF −−= o , where o

is an arithmetic operator, then )(tF is said to be caused by )1( −tF . The relationship between )(tF and )1( −tF  

can be denoted by )()1( tFtF →− . 

Definition 2.4. [11] Let )(tF  be a fuzzy time series. If for any time, )1()( −= tFtF and )(tF  only has finite 

elements, then )(tF  is called a time-invariant fuzzy time series. Otherwise, it is called a time-variant fuzzy 

time series. 

Based on Definition 2.4., in this forecasting, the data must be stationary data. 

Definition 2.5. [11] Suppose 
iAtF =− )1( and 

jAtF =)( , a fuzzy logical relationship can be defined as  

ji AA →        (2) 

where
iA  and 

jA are called the left-hand side (LHS) and right-hand side (RHS) the fuzzy logical relationship, 

respectively. 

The steps to forecast with fuzzy time series [11] are given as follows: 

Step 1. Define the universe of discourse U. 

Step 2. Divide the universal of discourse U with the same interval. 

Step 3. Define fuzzy set on a universal discourse called U. 

Step 4. Determine the fuzzy logical relationship. 

Step 5. Establish group the fuzzy logical relationship. 



  

Step 6. Forecast. Let 
iAtF =− )1( , 

Case 1: If the fuzzy logical relationship of 
i

A  is empty; ∅→
i

A , then )(tF , forecast value, is equal to 
i

A . 

Case 2: There is only one fuzzy logical relationship in the fuzzy logical relationship sequence. If 
ji

AA→ , 

then )(tF , forecast value, is equal to 
jA . 

Case 3:  If 
kjjji

AAAA ,,,
21
K→ , then )(tF , forecast value, is equal to 

kjjj
AAA ,,,

21
K . 

Step 7. Defuzzification. If the forecast of )(tF is 
kjjj AAA ,,,

21
K , the defuzzified result is equal to the arithmetic 

average of the midpoints of 
kjjj

AAA ,,,
21
K .  

3. Forecasting with Weighted Fuzzy Time Series  

Different with forecasting using fuzzy time series, forecasting using weighted fuzzy time series adds 

weight after defuzzification step. The steps of forecasting using Weighted Fuzzy Time Series (WFTS) 

method [16] are given as follows: 

Step 1. Define the universe of discourse U. 

Step 2. Divide the universal of discourse U with the same interval. 

Step 3. Define fuzzy set on a universal discourse called U. 

Step 4. Determine the fuzzy logical relationship. 

Step 5. Establish group the fuzzy logical relationship. 

Step 6. Forecast, with fuzzy time series method. 

Step 7. Defuzzification.  

Step 8. Assign weights. Suppose the forecast of )(tF is 
jkjj AAA ,...,, 21

. The corresponding weight for 

jkjj AAA ,...,, 21
, say ''
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where 11 =w and 1−
=

i

i cw for 1≥c and ki ≤≤2 . Changed to weight matrix form, equation (3) will be 
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where kw is the corresponding weight for ijA . Step 9. Calculate the final forecast values. The final forecast is 

equal to the product of the defuzzified matrix and the transpose of the weight matrix: 
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where× is the matrix product operator. 

4. Application on Forecasting TheTrans Jogja’s Passengers 

4.1. Determining Stationary Data 

Before predicting the number of Trans Jogja’s passengers using the Weighted Fuzzy Time series, the data 

must be stationered. The data [18] that used in this research is data of Trans Jogja’s passengers count based 

from the ticket sales in the period of 1 July2014to 29 September2014. The number of data is 91 data taken 

from daily data of Trans Jogja passengers. The data are divided into 72 training and 19 testing data. 

Checkingdata is done by using Minitab 16,by ploting data using Autocorelation Function (ACF). Here is the 

plot of the data of passengers, followed by ACF plot. 



  

 
(a)                    (b) 

 
(c) 

Fig. 1. (a) The data plot of Trans Jogja’s passengers; (b) The ACF of original data; (c) The ACF plot of resulting data after differentiation. 

 

Fig. 1 (b) displays that there are some lags that come out of the significance line.It means that the data 

are not stationary. Thus, to obtain stationary data, diferencing the data is a must. In this paper, differencing 

the data is conducted using Minitab16 or manually by [19]: 

ttt YYP −= ++ 11
       (7) 

We need to plot the ACF to see the data of Trans Jogja’s passengers after the differencing process. Fig.1(c) 

shows that there is no lag came out of the significance line. It means that the data has been stationary with 

one differentiation. Furthermore, by using resulting data after differentiation that has already stationared 

(hereinafter called stationary data), the passengers of Trans Jogja can be forecasted  by using the Weighted 

Fuzzy Time Series (WFTS). 

4.2. Forecasting Trans Jogja’s Passengers Using Weighted Fuzzy Time Series 

The forecasting process of Trans Jogja’s passengers with stationary data that has been obtained is 

conducted by the following steps: 

Step 1. Define the universal discourse U. 

Based on obtained stationary data,the smallest datum is -6106 and the largest datum 9772. So, the 

universal of discourse for this data is ]102507250[−=U . 

Step 2.Divide the universal of discourse U with the same interval. 

To simplify universal set of partitions into particular parts, the data is changed to the form of chart. The 

chart is represented in Fig 2(a).Based on the chart, the universal of discourse U is partitioned into 7 

sections with long intervals (2500) of each section. The sections are: ]47507250[1 −−=u , ]22504750[2 −−=u , 

]2502250[3 −=u , ]2750250[4 =u , ]52502750[5 =u , ]77505250[6 =u , and ]102507750[7 =u . 



  

Step 3. Define fuzzy set on a universal of discourse called U. 

The next step is to define the intervals into a fuzzy set. In this study, the writer used 5 linguistic variables:
1A

= very very little, 
2A = very little, 

3A = a little
4A = moderate,

5A = much, 
6A = very much, and 

7A = very very 

much.Then, the writer defined fuzzy sets 
654321 ,,,,, AAAAAA  and 

7A  on the universal of discourse U: 

7654321

1

000005.01

uuuuuuu
A ++++++=

, 

7654321

2

00005.015.0

uuuuuuu
A ++++++=

, 

7654321

3

0005.015.00

uuuuuuu
A ++++++=

, 

7654321

4

005.015.000

uuuuuuu
A ++++++=

, 

7654321

5

05.015.0000

uuuuuuu
A ++++++=

, 

7654321

6

5.015.00000

uuuuuuu
A ++++++=

, 

7654321

7

15.000000

uuuuuuu
A ++++++=

. 
From the fuzzy sets,it is known that this study uses a triangular membership functions. 

Step 4. Determine the fuzzy logical relationship. 

Fuzzy logical relationship (FLR) is used in forecasting established by partitioning the universal of discourse 

and defining of fuzzy sets. Establishment of the FLR conducted based on fuzzy logic: if
it AP = then 

1
ˆˆ

+
= ii AP . 

Step 5. Group or establish the fuzzy logical relationship. 

In this step, the FLR on step 4 is grouped for each fuzzy set. The result of grouping fuzzy logic relationship is 

shown on Table 1.  

 

Table 1. Group of Fuzzy Logical Relationship (FLR) 

Group LHS RHS Number of RHS 

1 A1 A6, A7 2 

2 A2 A1, A4 2 

3 A3 
A4, A3, A4, A4, A4, A4, A3, A3, A3, A4, A4, A3, A2, A3, A5, A4, A4, A4, A3, A3, A4, A3, A4, A3, A3, A4, A4, A3, 

A4, A4, A3, A4, A3, A3, A3 
35 

4 A4 A4, A3, A4, A1, A3, A3, A3, A3, A4, A3, A4, A4, A3, A3, A4, A3, A3, A3, A3, A3, A3, A4, A3, A2, A4, A3, A4, A3 28 

5 A5 A3 1 

6 A6 A3 1 

7 A7 A4 1 

Step 6-7. Forecast and Defuzzification.In this step, the first thing to do is determining the midpoint of each 

interval fuzzy sets. There are 60001 −=m , 35002 −=m , 10003 −=m , 15004 =m , 40005 =m , 65006 =m , dan 90007 =m . 

Step 8-9. Assigning weights and calculating the value of forecasting result.After acquiring the midpoint of 

the interval fuzzy sets, the next step is defuzzifying. The Table 2 shown the defuzzification results of each 

linguistic variable with c = 2. 

Table 2. The value of Forecast Result 

Fuzzy Sets Computation 

A1 ����� =
�� + 2��

1 + 2
=
6500 + 2(9000)

3
= 8166.667 = 8166 

A2 ����� =
�� + 2��

1 + 2
=
−6000 + 2(1500)

3
= −1000 

A3 

����� 	 =
�� + 2�� + 4�� +⋯+ 2����

1 + 2 + 4 +⋯+ 2��
=
1500 + 2(−1000) + 4(1500) +⋯+ 2��(10000)

34359738367

=
−2.67123� + 13

34359738367
= −777.4316699 = −777 

A4 

�����	 	=
�� + 2�� + 4�� +⋯+ 2����

1 + 2 + 4 +⋯+ 2��
=
1500 + 2(−1000) + 4(1500) +⋯+ 2��(10000)

268435455

=
−74399722500

268435455
= −277.1605655 = −277 

A5 ����� = �� = −1000 

A6 ����� = �� = −1000 

A7 ����� = �� = 1500 

4.3. Return of The Differencing Data 

After acquiring the value of forecasting results, the result data from the stationary datais returned to the 

original data to obtain the results of forecasting. Based on the equation (7), the return of the differencing 

data to the stationary data is obtained by equation 



  

ttt YPY += ++ 11
ˆˆ        (8) 

The forecasting result that are needed as training data are shown on Table 3andTable 4show the testing 

data. The data forecasting result with weighted fuzzy time series method is still in the form of differencing 

data. Table 3 showsthat data from the forecasting resultinforms the number passengers on day-t.  

Table 3. The Forecasting Result of Training Data  

Day tY  
Result 

Day tY  
Result 

Day tY  
Result 

Day tY  
Result 

tP̂  
tŶ  

tP̂  
tŶ  

tP̂  
tŶ  

tP̂  
tŶ  

1 15015 
  

25 15987 -777 15477 37 20357 -277 18874 55 20761 -277 20067 

2 14978 
  

26 13862 -777 15210 38 20450 -777 19580 56 20419 -777 19984 

3 15346 -277 14701 27 9759 -1000 12862 39 20813 -277 20173 57 18710 -777 19642 

4 15825 -277 15069 28 4834 8166 17925 40 21602 -277 20536 58 21455 -277 18433 

5 15707 -777 15048 29 14606 1500 6334 41 21727 -777 20825 59 22637 -277 21178 

6 14046 -777 14930 30 16776 -277 14329 42 22709 -277 21450 60 22590 -777 21860 

7 16108 -277 13769 31 17297 -277 16499 43 21225 -777 21932 61 23653 -277 22313 

8 16514 -277 15831 32 17548 -277 17020 44 20981 -777 20448 62 19195 -1000 22653 

9 10408 8166 24680 33 17333 -777 16771 45 20662 -777 20204 63 20037 -277 18918 

10 16670 -1000 9408 34 17201 -777 16556 46 21294 -277 20385 64 20346 -277 19760 

11 15754 -777 15893 35 20297 -1000 16201 47 20476 -777 20517 65 20262 -777 19569 

12 16070 -277 15477 36 19151 -777 19520 48 19691 -777 19699 66 20055 -777 19485 

13 14568 -777 15293 19 16496 -777 15853 49 21001 -277 19414 67 21452 -277 19778 

14 17050 -277 14291 20 14974 -777 15719 50 21099 -777 20224 68 23348 -277 21175 

15 16920 -777 16273 21 16336 -277 14697 51 19662 -777 20322 69 21718 -777 22571 

16 17459 -277 16643 22 14654 -777 15559 52 19576 -777 18885 70 21086 -777 20941 

17 16500 -777 16682 23 15700 -277 14377 53 21583 -277 19299 71 19820 -777 20309 

18 16630 -777 15723 24 16254 -277 15423 54 20344 -777 20806 72 19991 -777 19043 

Similar to Table 3, Table 4 shows that the data from the forecasting resultsarechanged to be the data of 

forecasting passenger, but in the form of testingdata. Testing data in Table 4are not used to build the model 

(the rules of fuzzy relationship).  

Table 4. The Forecasting Result of Testing Data 

Day tY
 Result 

Day tY
 Result 

Day tY
 Result 

Day tY
 Result 

t
P̂

 
tŶ  

t
P̂

 
tŶ  

t
P̂

 
tŶ  

t
P̂

 
tŶ  

1 20163 -777 19214 6 18742 -777 20164 11 19606 -777 20443 16 20241 -277 18724 

2 21097 -277 19886 7 18844 -777 17965 12 19987 -277 19329 17 20987 -277 19964 

3 21593 -277 20820 8 19309 -277 18567 13 18376 -777 19210 18 18618 -1000 19987 

4 20380 -777 20816 9 20561 -277 19032 14 18422 -777 17599 19 19099 -277 18341 

5 20941 -277 20103 10 21220 -277 20284 15 19001 -277 18145         

Based on Table 3. and 4. the results of forecasting with the original data is shown in the following figure. 

 
(a) (b) 

Fig. 2.(a) The chart of stationary data; (b) The Plot of Original Data and Forecasting Result 

Here is a comparison of the value of MAPE and MSEfor the training data that is used to seethe results of 

forecastingusing the Fuzzy Time Series and Weighted Fuzzy Time Series Method. 

Table 5. The Value of MAPE and MSE 

Fuzzy Time Series [11] Weighted Fuzzy Time Series [16] 

Training MAPE : 13.98% MSE : 9078581.286 Training MAPE : 12.28 % MSE : 8789055.686 

Testing MAPE : 5.90% MSE: 1798624.316 Testing MAPE : 4.89 % MSE : 1023784.947 

Table 5. show that MAPE and MSE values on the testing data has a lower value than the value of MAPE 

and MSE on the training data. It means that the forecasting model isacceptable to forecast the future. MAPE 



  

and MSE values with weighted fuzzy time series model is smaller than the value of MAPE and MSE with 

fuzzy time series. It means that forecasting Trans Jogja passengers with weighted fuzzy time series model  

is better than fuzzy time series model.  

5. Conclusion 

The result of the forecasting process with WFTS model is betterthan forecast with fuzzy time series 

model. Since, the values of MAPE and MSE with fuzzy time series model is bigger than the values of MAPE 

and MSE with weighted fuzzy time series model.However, this study did not consider the seasonal effect. In 

Indonesia, the effect of eidmubarokday makes the number of Trans Jogja passengers increase significantly. 

Therefore, it is expected that some future researchers concentrate on forecastingTrans Jogja’s passengersin 

the seasonal moments. 
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