

LESSON PLAN 2

FRM/FMIPA/062-01 18 February 2012

1. Faculty /Study Program : Mathematics and Science / Biology Education

2. Course / Code : BIC 223

3. Credits : 2

4. Semester and Duration : IV , 100 minutes

5. Basic competence : Describe the pattern of inheritance in Mendelian genetics
 6. Achievement indicator : Students are able to explain Mendels' experiment, Mendel I

and II Law, and analyze the inheritance of different traits

according to Mendels' findings.

7. Topics / Sub-topics : Mendelian Genetics : Mendel postulate and monohybrid,

dihybrid, trihybrid crosses

8. Lecture activity :

Activity	Details of activity	Duration	Method	Media	References
Introduction	 Discussion on why Mendel has become an important figure in genetics A brief explanation on the method used by Mendel in his experiment and the effect it has in the study of genetics 	10 minutes	Discussion and lecture	PPT, boardmarker	Klug et al., 2006. Concepts of Genetics and Brooker.2009.Genetics Analysis and Principles

					
Main Presentation	 Explanation about Mendels' experiment, his postulates, and also on his monohybrid cross Students are asked to analyze the method used by Mendel and use it to solve several problems of monohybrid cross Explanation on dihybrid cross, mendel II law, trihybrid cross, reciprocal cross, and test cross Students are asked to analyze several examples of dihybrid and 	30 minutes 10 minutes 10 minutes	Lecture Discussion Lecture	PPT, animasi, boardmarker	Klug et al., 2006. Concepts of Genetics and Brooker.2009.Genetics Analysis and Principles
	trihybrid cross				
Closing	 Studentas are asked tomake a conclusion of the topic and a quiz is given to test students' understanding on the topic 	10 minutes	Discussion		

Follow up	 An assignment is given in relation to this topic (a trihybrid cross) 		

9. Evaluation

Questions:

- 1) In a cross between black and white guinea pigs, all of the F1 were black. In the F2 generation there were ¾ black and ¼ white. Draw a diagram of the cross and write all of the genotype and phenotype in each generation!
- 2) Why is the pea plant (Pisum sativum) a good model organism for Mendels' experiment?

Answers:

1) Parent: BB x bb (black x white)

F1: Bb (all black)

F2: BB, Bb, bb (3/4 black, 1/4 white)

2) Peas: - easy to grow in Mendels' environment

- Have many offsprings (1 pod, many seeds)

- A short life cycle

- Can be crossed artificially

- Simple genetic analysis

Yogyakarta, February 2012 Lecturer

Head of Departement Biology Education Department

Dr. Slamet Suyanto NIP 19620702 199101 1 001 Paramita Cahyaningrum K., M.Sc. NIP 19781022 201012 2 001