

CHEMISTRY MADE SIMPLE

Why Learn Chemistry?

- A basic knowledge of chemistry will help you understand biology better because all organisms, including yourself, are made up of *matter*.
 - Matter anything that has mass and volume.

I. Matter and Atoms

• Atom – the smallest particle of *matter* that cannot be broken down by chemical means.

• Atoms are composed of three particles: electrons, protons, and neutrons.

• Electrons are negatively charged.

• Protons are positively charged.

• Neutrons are neutrally charged, that means they have no charge.

(0)

The Parts of an Atom

Protons

Protons are located in the center, or nucleus, of an atom. Protons have a positive charge.

Neutrons

Neutrons have no charge. They are located in the nucleus of an atom.

Electrons

Most of the volume of an atom is occupied by its moving electrons. Electrons have a negative charge.

1. Because protons (+) and electrons (-) are oppositely charged they are attracted to one another.

2. Protons (+) and neutrons (0) are found inside the *nucleus* of an atom.

3. Electrons (-) are found in *orbitals* around the nucleus.

The nucleus of a carbon atom contains six neutrons, shown here in red, and six protons, shown here in blue. Six electrons move around the nucleus, traveling at very high speeds.

II. Different Types of Atoms

• Different amounts of electrons (-), protons (+), and neutrons (0) create different types of atoms.

- "The Periodic Table of Elements" lists over 110 different types of atoms.
- Element a substance made of only one type of atom.

	Periodic Table																			
1 H Hydrogen 1.0																	He Helium 4.0			
3 Li Lithium 6.9	Benyllium 9.0						5 B Boron 10.8	6 C Carbon 12.0	7 N Nitrogen 14.0	8 Oxogen 16.0	9 F Fluorine 19.0 17	10 Ne Neon 20.2								
Na Sodium 23.0	Mg Magnesium 9.0						Al Auminum 27.0	Si Silicon 28.1	Phosphorus 31.0	Sulfur 32.1	CI Chlorine 35.5	Ar Argon 40.0								
19 K Potassium 39.1	20 Ca Calcium 40.2	Scandium 45.0	22 Ti Titanium 47.9	23 V Vanadium 50.9	Cr Chromium 52.0	25 Mn Manganese 54.9	26 Fe ton 55.9	CO Colbalt 58.9	28 Ni Nickel 58.7	29 Cu Copper 63.5	30 Zn Znc 65.4	31 Ga Gallium 69.7	32 Ge Germanium 72.6	33 As Arsenic 74.9	34 Se Selenium 79.0	35 Br Bromine 79.9	36 Kr Knpton 83.8			
37 Rb Rubidium 85.5	38 Sr Strontium 87.6	39 Y Yitrium 88.9	40 Zr Zirconium 91.2	41 Nb Nobium 92.9	42 Mo Molybdenum 95.9	43 TC Technetium 99	Ru Ru Ruthenium 101.0	45 Rh Rhodium 102.9	46 Pd Palladium 106.4	47 Ag Silver 107.9	48 Cd Cadmium 112.4	49 In hdium 114.8	50 Sn Tin 118.7	Sb Antimony 121.8	Te Tellurium 127.6	53 bdine 126.9	54 Xe Xenon 131.3			
55 Cs Caesium 132.9	56 Ba Barium 137.4	57-71	72 Hf Hafrium 178.5	73 Ta Tantalum 181.0	74 W Tung <i>s</i> ten 183.9	75 Re Rhenium 186.2	76 Os 0smium 190.2	77 r hidium 192.2	78 Pt Platinum 195.1	79 Au Gold 197.0	Hg Mercury 200.6	81 TI Thallium 204.4	82 Pb Lead 207.2	83 Bi Bismuth 209.0	Po Polonium 210.0	85 At Astatine 210.0	Rn Radon 222.0			
87 Fr Frandum 223.0	88 Ra Radium 226.0	89-103	104 Rf Rutherfordium 261	105 Db Dubnium 262	106 Sg Seaborgium 263	107 Bh Bohrium 262	108 Hs Hassium 265	109 Vit Meitnerium 266	Unn Ununnilium			Types of Elements Key:								
														Alkalimetak Alkalime earth metak						
												Transition metak								
												Lanthanides								
															Ac timides					
La	Се	Pr	Ñd	Pm	Sm	Eu	Gd Gd	Tb	Ďy	Ho	Er	Tm	Ϋ́b	Lu	Poor metak					
Lanthanum 138.9 89	Cerium 140.1 90	Prase odym Ium 140.9 91	Neodymium 144.2 92	Promethium 147.0 93	Samarium 150.4 94	Europium 152.0 95	Gadolinium 157.3 96	Terbium 158.9 97	Dysprosium 162.5 98	Holmium 164.9 99	Erbium 167.3 100	Thulium 168.9	Ytterbium 173.0 102	175.0 103	Semi-metak					
Ac Attinium 132.9	Th Thorium 232.0	Pa Protactinium 231.0	Uranium 238.0	Np Neptunium 237.0	Pu Plutonium 242.0	Am Ameridium 243.0	Cm Curium 247.0	Bk Berkelium 247.0	Cf Californium 251.0	Es En steinium 254.0	Fm Fermium 253.0	Md Mendelevium 256.0	No Nobelium 254.0	Lr Lawrencium 257.0	Non-metak Nob k gas es					

Early chemists describe the first dirt molecule.

Interesting Facts:

More than 90% of the atoms in your body are either nitrogen (N), oxygen (O), carbon (C), or hydrogen (H).

• Only 30 elements are important for living organisms.

A. Periodic Table Information

- 1. Atomic Number (# of protons)
- 2. Chemical Symbol (1-3 letter abbreviations)
- 3. Atomic Mass
 (# of protons & neutrons)

- Most of the time the number of protons (+) and electrons (-) are equal in the atom so it has a net charge of 0.
- When an atom gains an electron it is called a **negative ion** and when an atom loses an electron it is called a **positive ion**.
- Electrons move around the nucleus at very high speeds in one of seven different **Energy Levels**.

• Electrons in the <u>outer</u> energy levels have *more* energy than those in <u>inner</u> Levels.

- Each Energy Level (orbital) can hold only a certain number of electrons.
 - 1st level = 2 electrons
 - 2nd level = 8 electrons
 - 3rd level = 8 electrons
 - 4th and 5th levels = 18 electrons
 - 6th and 7th levels = 32 electrons

• The number neutrons (0) is often, but not always equal to the number of protons (+) and electrons (-) in an atom.

• Atoms that contain different numbers of neutrons are called <u>isotopes</u>.

Examples:

• Complete an atom diagram of Carbon.

• Complete an atom diagram of Oxygen.

• Complete an atom diagram of Sodium.

• Complete an atom diagram of Chlorine.

Any Questions?

"What's the hardest task in the world? To think." --Ralph Waldo Emerson

"Failure after long perseverance is much grander than never to have a striving good enough to be called a failure."

--George Eliot