CHEMISTRY MADE SIMPLE # Why Learn Chemistry? - A basic knowledge of chemistry will help you understand biology better because all organisms, including yourself, are made up of *matter*. - Matter anything that has mass and volume. #### I. Matter and Atoms • Atom – the smallest particle of *matter* that cannot be broken down by chemical means. • Atoms are composed of three particles: electrons, protons, and neutrons. • Electrons are negatively charged. • Protons are positively charged. • Neutrons are neutrally charged, that means they have no charge. (0) # The Parts of an Atom #### **Protons** Protons are located in the center, or nucleus, of an atom. Protons have a positive charge. #### Neutrons Neutrons have no charge. They are located in the nucleus of an atom. #### Electrons Most of the volume of an atom is occupied by its moving electrons. Electrons have a negative charge. 1. Because protons (+) and electrons (-) are oppositely charged they are attracted to one another. 2. Protons (+) and neutrons (0) are found inside the *nucleus* of an atom. 3. Electrons (-) are found in *orbitals* around the nucleus. The nucleus of a carbon atom contains six neutrons, shown here in red, and six protons, shown here in blue. Six electrons move around the nucleus, traveling at very high speeds. ### II. Different Types of Atoms • Different amounts of electrons (-), protons (+), and neutrons (0) create different types of atoms. - "The Periodic Table of Elements" lists over 110 different types of atoms. - Element a substance made of only one type of atom. | | Periodic Table |-------------------------------------|------------------------------------|-----------------------------------|--|-----------------------------|--|--------------------------------------|--------------------------------|----------------------------------|-----------------------------------|------------------------------------|---|------------------------------------|--------------------------------------|-------------------------------------|------------------------------|------------------------------------|-----------------------------------|--|--|--| | 1
H
Hydrogen
1.0 | | | | | | | | | | | | | | | | | He
Helium
4.0 | | | | | 3
Li
Lithium
6.9 | Benyllium
9.0 | | | | | | 5
B
Boron
10.8 | 6
C
Carbon
12.0 | 7
N
Nitrogen
14.0 | 8
Oxogen
16.0 | 9
F
Fluorine
19.0
17 | 10
Ne
Neon
20.2 | | | | | | | | | | Na
Sodium
23.0 | Mg
Magnesium
9.0 | | | | | | Al
Auminum
27.0 | Si
Silicon
28.1 | Phosphorus
31.0 | Sulfur
32.1 | CI
Chlorine
35.5 | Ar
Argon
40.0 | | | | | | | | | | 19
K
Potassium
39.1 | 20
Ca
Calcium
40.2 | Scandium
45.0 | 22
Ti
Titanium
47.9 | 23
V
Vanadium
50.9 | Cr
Chromium
52.0 | 25
Mn
Manganese
54.9 | 26
Fe
ton
55.9 | CO
Colbalt
58.9 | 28
Ni
Nickel
58.7 | 29
Cu
Copper
63.5 | 30
Zn
Znc
65.4 | 31
Ga
Gallium
69.7 | 32
Ge
Germanium
72.6 | 33
As
Arsenic
74.9 | 34
Se
Selenium
79.0 | 35
Br
Bromine
79.9 | 36
Kr
Knpton
83.8 | | | | | 37
Rb
Rubidium
85.5 | 38
Sr
Strontium
87.6 | 39
Y
Yitrium
88.9 | 40
Zr
Zirconium
91.2 | 41
Nb
Nobium
92.9 | 42
Mo
Molybdenum
95.9 | 43
TC
Technetium
99 | Ru
Ru
Ruthenium
101.0 | 45
Rh
Rhodium
102.9 | 46
Pd
Palladium
106.4 | 47
Ag
Silver
107.9 | 48
Cd
Cadmium
112.4 | 49 In hdium 114.8 | 50
Sn
Tin
118.7 | Sb
Antimony
121.8 | Te
Tellurium
127.6 | 53

 bdine
 126.9 | 54
Xe
Xenon
131.3 | | | | | 55
Cs
Caesium
132.9 | 56
Ba
Barium
137.4 | 57-71 | 72
Hf Hafrium 178.5 | 73 Ta Tantalum 181.0 | 74
W
Tung <i>s</i> ten
183.9 | 75
Re
Rhenium
186.2 | 76
Os
0smium
190.2 | 77
 r
 hidium
 192.2 | 78 Pt Platinum 195.1 | 79
Au
Gold
197.0 | Hg
Mercury
200.6 | 81
TI
Thallium
204.4 | 82
Pb
Lead
207.2 | 83
Bi
Bismuth
209.0 | Po
Polonium
210.0 | 85
At
Astatine
210.0 | Rn
Radon
222.0 | | | | | 87
Fr
Frandum
223.0 | 88 Ra Radium 226.0 | 89-103 | 104
Rf
Rutherfordium
261 | 105 Db Dubnium 262 | 106
Sg
Seaborgium
263 | 107
Bh
Bohrium
262 | 108
Hs
Hassium
265 | 109 Vit Meitnerium 266 | Unn Ununnilium | | | Types of Elements Key: | Alkalimetak Alkalime earth metak | Transition metak | Lanthanides | Ac timides | | | | | | | La | Се | Pr | Ñd | Pm | Sm | Eu | Gd Gd | Tb | Ďy | Ho | Er | Tm | Ϋ́b | Lu | Poor metak | | | | | | | Lanthanum
138.9
89 | Cerium
140.1
90 | Prase odym Ium
140.9
91 | Neodymium
144.2
92 | Promethium
147.0
93 | Samarium
150.4
94 | Europium
152.0
95 | Gadolinium
157.3
96 | Terbium
158.9
97 | Dysprosium
162.5
98 | Holmium
164.9
99 | Erbium
167.3
100 | Thulium
168.9 | Ytterbium
173.0
102 | 175.0
103 | Semi-metak | | | | | | | Ac
Attinium
132.9 | Th
Thorium
232.0 | Pa
Protactinium
231.0 | Uranium
238.0 | Np
Neptunium
237.0 | Pu
Plutonium
242.0 | Am
Ameridium
243.0 | Cm
Curium
247.0 | Bk
Berkelium
247.0 | Cf
Californium
251.0 | Es
En steinium
254.0 | Fm
Fermium
253.0 | Md
Mendelevium
256.0 | No
Nobelium
254.0 | Lr
Lawrencium
257.0 | Non-metak Nob k gas es | | | | | | Early chemists describe the first dirt molecule. ## Interesting Facts: More than 90% of the atoms in your body are either nitrogen (N), oxygen (O), carbon (C), or hydrogen (H). • Only 30 elements are important for living organisms. #### A. Periodic Table Information - 1. Atomic Number (# of protons) - 2. Chemical Symbol (1-3 letter abbreviations) - 3. Atomic Mass (# of protons & neutrons) - Most of the time the number of protons (+) and electrons (-) are equal in the atom so it has a net charge of 0. - When an atom gains an electron it is called a **negative ion** and when an atom loses an electron it is called a **positive ion**. - Electrons move around the nucleus at very high speeds in one of seven different **Energy Levels**. • Electrons in the <u>outer</u> energy levels have *more* energy than those in <u>inner</u> Levels. - Each Energy Level (orbital) can hold only a certain number of electrons. - 1st level = 2 electrons - 2nd level = 8 electrons - 3rd level = 8 electrons - 4th and 5th levels = 18 electrons - 6th and 7th levels = 32 electrons • The number neutrons (0) is often, but not always equal to the number of protons (+) and electrons (-) in an atom. • Atoms that contain different numbers of neutrons are called <u>isotopes</u>. ### Examples: • Complete an atom diagram of Carbon. • Complete an atom diagram of Oxygen. • Complete an atom diagram of Sodium. • Complete an atom diagram of Chlorine. ### Any Questions? "What's the hardest task in the world? To think." --Ralph Waldo Emerson "Failure after long perseverance is much grander than never to have a striving good enough to be called a failure." --George Eliot