

Frequency distribution

Arithmetic Mean for Grouped Data

Short method

Weight-Average Mean

Giving weight for each data to make the data smoother

- This technique is used to fixing heteroscedacity problem
Need a rationalization to decide the
"weight"
$\bar{x}=\frac{\Sigma X W}{\Sigma W^{W}}$
$W=$ wetght

Geometric Mean

- Base on all of observation value
- Only for positive values

GM is used if growth is counted in mean

$$
\begin{gathered}
G=\sqrt[n]{(X 1)(X 2)(X 3) \ldots(X n)} \\
\text { Or } \\
\log G=\frac{\sum \log X}{n} \\
G=\operatorname{antllog} \frac{\sum \log X}{n}
\end{gathered}
$$

Harmonic Mean

- Base on all of observation value
- Cannot be used if one of the variables have zero value
- HM is used if ratio and the numerator have same value

Finding the Median

- The location of the median:

Median position $=\frac{\mathrm{n}+1}{2}$ position in the ordered data

- If the number of values is odd, the median is the middle number
- If the number of values is even, the median is the average of the two middle numbers
- Note that $\frac{\mathrm{n}+1}{2}$ is not the value of the median, only the position of the median in the ranked data

Grouped Data Median

- GDMe is used for counting grouped data $\left.\begin{array}{l}\text { series } \\ M d=L_{M a}+\left(\frac{m_{2}}{2}-F_{\text {LMd }}\right. \\ f_{M d d}\end{array}\right)$
Md $=$ Median
$L_{\text {Md }}=$ lowast hatul
$n=$ freq. number in distritoution
$f_{\text {Mu }}=$ comulative freq.
$E_{M d}=$ class Freq
$t=$ class wttd

Grouped Data Mode

- GDMo is used for counting grouped data series
- Data present in freq. distribution
$M \rho=L_{M \rho}+\left(\frac{d 1}{d 1+d 2}\right)$
Mo $=$ Mode
$L_{M_{0}}=$ lowest linit of freq, that will becounted
d1 - highest ferg, - freg, before highest freeg
$\mathrm{d} 2=$ highest ferg, -freq.after highest freq

