

N	0	ta	ti	0	n	۱.	

ht © 2005 Brooks

When referring to the number of observations in a *population*, we use uppercase letter N

When referring to the number of observations in a *sample*, we use lower case letter **n**

The arithmetic mean for a *population* is denoted with Greek letter "mu": μ

The arithmetic mean for a *sample* is denoted with an "x-bar": \overline{x}

Sta	tistics is a p	attern lang	uage	
		Population	Sample	
	Size	Ν	n	
	Mean	$\mu = \frac{\sum_{i=1}^{N} x_i}{N}$	$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$	
Copyright © 2005	Brooks/Cole, a division of Thomson Learning	, Inc.		

© Mahendra Adhi Nugroho, M.Sc, Accounting Program Study of Yogyakarta State University For internal use only!

Harmonic Mean

- Base on all of observation value
- Cannot be used if one of the variables have zero value
- HM is used if ratio and the numerator have same value

$$H = \frac{n}{\Sigma \frac{1}{X}}$$

