

Why Use Frequency Distributions?

- A frequency distribution is a way to summarize data
- The distribution condenses the raw data into a more useful form...
- and allows for a quick visual interpretation of the data

Class Intervals and Class Boundaries

- Each class grouping has the same width
- Determine the width of each interval by $\mathrm{w}=$ interval width $=\frac{\text { largest number }- \text { smallest number }}{\text { number of desired intervals }}$
- Use at least 5 but no more than 15-20 intervals
- Intervals never overlap
- Round up the interval width to get desirable interval endpoints

Polative Frequency Dictribution_

The relative frequency of a class is the fraction or proportion of the total number of data items belonging to the class.

A relative frequency distribution is a tabular summary of a set of data showing the relative frequency for each class.

Grouping Data by Classes

Sort raw data in asterting ortier.

$12,13,17,21,24,24,26,27,27,30,32,35,37,38,41,43,44,46,53,58$

- Find range: 58-12=46
- Select number of classes: 5 (usually between 5 and 20)
- Compute class width: 10 (46/5 then round off)

Determine class boundaries:10, 20, 30, 40, 50

- Compute class midpoints: 15, 25, 35, 45, 55
- Count observations \& assign to classes
(Temperature is a continuous variable because it could be measured to any degree of precision desired)

Frequency Distribution Example

$$
\begin{aligned}
& \text { Data in ordered array: } \\
& \text { 12, 13, 17, 21, 24, 24, 26, 27, 27, 30, 32, 35, 37, 38, 41, 43, 44, 46, 53, } 58 \\
&
\end{aligned}
$$

