

© Mahendra Adhi Nugroho, M.Sc, Accounting Program Study of Yogyakarta State University For internal use only!

Stretched Stem- 5 6 6 6 7 7 8 8 8 9 9 9 10 10	and-Leaf Display 2 7 2 2 2 2 2 5 6 7 8 8 8 9 9 9 1 1 2 2 3 4 4 5 5 5 6 7 8 9 9 9 0 0 2 3 5 8 9 1 3 7 7 7 8 9 1 4 5 5 9	✓ The first value -corresponds to leaf values of 0 - 4, and the second value corresponds to leaf values of 5 - 9
		Slide 10

Leaf Units

- A single digit is used to define each leaf.
- In the preceding example, the leaf unit was 1.
- Leaf units may be 100, 10, 1, 0.1, and so on.
- Where the leaf unit is not shown, it is assumed to equal 1.

© Mahendra Adhi Nugroho, M.Sc, Accounting Program Study of Yogyakarta State University For internal use only!

Slide 11

	Exa	mple: I	Leaf	Unit =	• 0.1		
If we have d	ata w	ith value	es suc	h as			
▶ 8.6	11.7	9.4	9.1	10.2	11.0	8.8	
a stem-	and-l	eaf disp	lay o	these	data w	ill be	
		Leaf U 8 9	nit = 6 8 1 4	0.1			
		10 11	2 0 7				
							Slide 14

	Pareto Diagrar	m Example	
	Example: 400 defective iten for cause of defective	ns are examined ct:	
	Source of Manufacturing Error	Number of defects	
	Red Wold	24	
	Bad weid	34	
	Poor Alignment	223	
	Missing Part	25	
	Paint Flaw	78	
	Electrical Short	19	
	Cracked case	21	
	Total	400	
Statistics f	or Business and Economics, 8e © 2007 Pearson Education, Inc.	c	Chap 2-19

Paret	o Diagram	Example	
		(continue	d,
Step 1: Sort by c	lefect cause. in	descendina order	
Step 2: Determin	ne % in each ca	tegory	
Source of Manufacturing Error	Number of defects	% of Total Defects	
Poor Alignment	223	55.75	
Paint Flaw	78	19.50	
Bad Weld	34	8.50	
Missing Part	25	6.25	
Cracked case	21	5.25	
Electrical Short	19	4.75	
Total	400	100%	
atatistics for Business and Economics, 6e © 2007 Pe	arson Education, Inc.	Chap	٥2-2

© Mahendra Adhi Nugroho, M.Sc, Accounting Program Study of Yogyakarta State University For internal use only!

Slide 32

Crosstabulation Or Contingency Table Insights Gained from Preceding Crosstabulation The greatest number of homes in the sample (19) are a split-level style and priced at less than or equal to \$99,000. Only three homes in the sample are an A-Frame style and priced at more than \$99,000.

© Mahendra Adhi Nugroho, M.Sc, Accounting Program Study of Yogyakarta State University For internal use only!

