

Stem-and-Leaf Diagram

Using other stem units

Example: Leaf Unit = 0.1
If we have data with values such as

- Using the 100's digit as the stem:
- The completed stem-and-leaf display:

a stem-and-leaf display of these data will be
Leaf Unit = 0.1
$8 \mid 68$

9	14

102
$11 \mid 07$

Pareto Diagram Example	
Example: 400 defective items are examined	
for cause of defect:	
Source of Manufacturing Error Number of defects	
Poor Alignment	34
Missing Part	223
Paint Flaw	25
Electrical Short	78
Cracked case	19
Total	21

\cdots Pareto Diagram Example		
Step 1: Sort by defect cause, in descending order Step 2: Determine \% in each category		
Source of Manufacturing Error	Number of defects	\% of Total Defects
Poor Alignment	223	55.75
Paint Flaw	78	19.50
Bad Weld	34	8.50
Missing Part	25	6.25
Cracked case	21	5.25
Electrical Short	19	4.75
Total	400	100\%
Staisitics for Business and Economics, 6e © 2007 Peasson Education, Inc. ${ }^{\text {a }}$		

Ogive (Cumulative Line Graph)
Data may be expressed using a single line.
An ogive (a cumulative line graph) is best used when you
want to display the total at any given time. The relative slopes from point to point will

- The relative slopes from point to point will indicate greater or lesser increases; for example, a steeper slope means a greater increase than a more gradual slope.
- An ogive, however, is not the ideal graphic for showing comparisons between categories because it simply combines the values in each category and thus indicates an accumulation, a growing or lessening total.
- If you simply want to keep track of a total and you
individual values are periodically combined, an ogive is an appropriate display.

Dot Plot

Dot plots are similar to bar graphs.
Typically used for a small set of values, a dot plot uses a dot for each unit of measurement;

Graphs for Time-Series Data

- A line chart (time-series plot) is used to show the values of a variable over time
- Time is measured on the horizontal axis
- The variable of interest is measured on the vertical axis

Crosstabulation Or Contingency Table

Frequency distribution for the price variable					
Price	Home Style				
Range	Colon	Log		Fra	
$\leq \$ 99,000$	18	6	19	12	55
> \$99,000	12	14	16	3	(45)
Total	30	20	35	15	100

Frequency distribution for the home style variable

Crosstabulation or Contingency Table (Column \%)

(Cell Count) (100)
Column Total

Crosstabulation Or Contingency Table

- Insights Gained from Preceding Crosstabulation
- The greatest number of homes in the sample (19) are a split-level style and priced at less than or equal to $\$ 99,000$.
- Only three homes in the sample are an A-Frame style and priced at more than $\$ 99,000$.

Crosstabulation or Contingency Table (Row \%)

(Cell Count) (100)
Row Total

Scatter Diagram and Trendline

- A scatter diagram is a graphical presentation of the relationship between two quantitative variables.
>- One variable is shown on the horizontal axis and the other variable is shown on the vertical axis.

The general pattern of the plotted points suggests the overall relationship between the variables.

- A trendline is a line that provides an approximation of the relationship.

