

Quartiles

Deciding Quartiles

Ungrouped data

- Short the data $\sigma_{x}=\frac{(n+1)}{4}$
- Example:
$\begin{array}{lllllll}2 & 2 & 4 & 5 & 6 & 6 & 8\end{array}$
$\begin{array}{lllllll}X_{1} & X_{2} & X_{3} & X_{4} & X_{5} & X_{6} & X_{7}\end{array}$
- Q_{1} is "the first" X value $=(7+1) / 4=X_{2}$
$X_{2}=2$, conclude $Q_{1}=2$
- Q 2 is "the second" X value $=(7+\mathrm{I}) / 4=\mathrm{X}_{4}$
$\mathrm{X}_{4}=5$, conclude Q2 $=5$
- Q 3 is "the third" X value $=(7+1) / 4=\mathrm{X}_{6}$
$X_{6}=6$, conclude Q3 $=6$
\square

Deciding Quartiles (count.)

Grouped data

- Decided the range $=\frac{x}{4} n$
- Decide the quartiles
$\rho_{x}=L_{Q_{0}}+\left(\frac{\left(\frac{x}{x_{2}} x-\tilde{f}_{Q_{x}}\right.}{f_{\rho_{x}}}\right) t$
$x=1,2,3$

Deciding Quintiles

Ungrouped data

- Shorting the data $(n+1)$
- Example: $\mathrm{Q}_{x}=\frac{(n+1)}{5}$
$\begin{array}{llllllllll}4,5 & 5 & 5 & 6 & 6 & 6,5 & 8 & 8 & 8,5 & 10\end{array}$

- Qnı is "the first" X value $=(9+1) / 5=X_{4}$
$\mathrm{X}_{4}=6$, conclude $\mathrm{QnI}=6$
- Qn_{2} is "the second" X value $=(9+1) / 5=\mathrm{X}_{8}$ $\mathrm{X}_{8}=5$, conclude $\mathrm{Qn} 2=8$
- Qn_{1} is "the third" X value $=(9+1) / 5=\mathrm{X}_{12}$ $\mathrm{X}_{12}=11$, conclude $\mathrm{Qn}_{3}=11$
- Qn4 is "the fourth" $\mathrm{X}_{\text {value }}=(9+1) / 5=\mathrm{X}_{15}$ $\mathrm{X}_{15}=15$, conclude $\mathrm{Qn} 4=15$

Percentiles

- Split the distributions in to 100 same different parts

Deciding Percentiles

- First percentile $\left(\mathrm{P}_{\mathrm{I}}\right)$ is a value in a distribution that limit I percent of frequency on the top of distributions from 99 percent on the below distribution
- $99^{\text {th }}$ percentile (P99) is a value in a distribution that limit I percent of frequency on the top of distributions from 99 percent on the below distribution

Ungrouped data

- Shorting the data $\quad F_{w}=\frac{(n+1)}{100}$

Deciding Percentiles (count.)

Grouped data

- Decided the range $=\frac{x}{160} n$
- Decide the percentiles

$$
\begin{aligned}
& R_{x}=L_{P_{i x}}+\left(\frac{\frac{x}{100} n-F_{L_{F_{x}}}}{f_{F_{x}}}\right) t \\
& x=1,2,3_{v} \ldots .99
\end{aligned}
$$

