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Abstract: In this study we focus on the Fission Products (FP) group constant 
treatment by considering around 50 of the most important nuclides. We then 
calculate the fission product effective yield for each of the modified chains  
and also generate one group constant using the System for Reactor Analysis 
Code (SRAC) and other methods (Origen, etc.). We use two approaches  
for investigating the important FP nuclides: the equilibrium model and the 
numerical solution for the time-dependent model. Based on the results we 
obtained three global patterns of the time-dependent atomic density change 
during burn-up for the considered nuclides. The first pattern is about nuclides 
that soon reach the asymptotic value, which can be grouped together by weight 
that may depend on parameters such as flux and power density. The second 
pattern includes nuclides that change during burn-up, with a nonlinear pattern, 
which can be combined into one group or more by nonlinear weight (quadratic, 
cubic, etc.). The third pattern is about nuclides that change in an almost linear 
way during burn-up, which can be grouped into two or more group constants by 
flux level, power level and time. 
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1 Introduction 

Small and very small nuclear power plants with a moderate economic aspect are 
important candidates for electric power generation in many parts of the Third World, 
including outside the Java-Bali area in Indonesia. A nuclear energy system in the range 
5–50 MWe matches the requirements of many cities and provinces outside the Java-Bali 
islands. In addition to electricity, a desalination plant or a cogeneration plant is a  
good candidate for nuclear energy applications. Madura Island is one place where  
the Indonesian government has planned to install a desalination plant for a clean water 
source. Owing to the difference in load between afternoon and night, the use of  
fast reactors is a better choice. Lead (Pb) and lead-bismuth (Pb-Bi)-cooled nuclear power 
reactors are now considered potential candidates for the next generation of nuclear power 
reactors. Various versions of lead-cooled nuclear power reactors have been analysed  
and safety analysis has also been applied to them. The results are generally satisfactory, 
as mentioned in Su’ud (2008a–b), Su’ud et al. (2005), Su’ud (1998) and Su’ud  
et al. (2007). 

One important feature of lead/lead-bismuth cooled fast reactors is the zero burn-up 
core capability, which can eliminate possible superprompt critical accidents and make 
possible an inherent safety feature based on a reactivity feedback mechanism. The new 
design and safety approach, however, needs a high-quality system analysis as well as 
nuclear and material data to reduce calculation errors, so that their influence on the key 
design and safety parameters can be negligible. In the present research, benchmarking 
will be performed using various calculation systems and some experimental results.  
It is expected that the results will contribute to the achievement of the above goal. 

2 Calculation methods 

The current research focuses on solving the Fission Products (FP) treatment group 
constant with the following methods: 

Method 1 Rigorous treatment: We cover 165 nuclides with other relevant FP nuclides 
in direct individual burn-up calculations. This method will give rigorous 
results but with considerable calculation time. However, this method is 
important to test other simpler methods. 
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Method 2 Lumped FP treatment: We build the best FP lumped cross-section for  
many general conditions and use this FP group constant in the burn-up 
calculation. This method can give accurate results if the spectrum is the 
same or near the spectrum to build the lumped FP cross-section. 

Method 3 Combination method: We treat some of the most important nuclides 
individually and treat the rest of the FP using a lumped FP cross-section. 
This method seems to be good for general usage. 

Method 4 Lumped FP cross-section with many interpolable parameters: We develop a 
concept similar to the background cross-section in the Bondanrenko-based 
cell calculation libraries. This will improve lumped FP cross-section results 
for general usage. 

Method 5 We develop a few group-effective FP similar to those in the reactor kinetics 
problem. If we can get a few reasonably good group-effective FP then we 
can generally solve for all types of the core. 

In general, our methodology consists of the following six steps: 

Step 1 The important FP nuclides that have a strong influence on the overall FP  
cross-section are identified. Based on the study of Tabuchi and Aoyama (2000), 
we select the 50 most important nuclides for fast reactors. Based on this 
selection we then identify the relevant and important decay chains which should 
be considered. 

Step 2 The important FP decay chains relevant to the important nuclides are identified. 

Step 3 The contribution of each FP nuclide to the overall FP cross-section based on the 
equilibrium model is analysed. 

Step 4 The contribution of each FP nuclide to the overall FP cross-section based on the 
time-dependent model is analysed. 

Step 5 Based on the relevant and important decay chains, a differential equation for the 
model can be derived, and using the equilibrium approximation model, we can 
obtain the formula for the contribution of each nuclide to a certain flux level.  
The detailed process will be discussed in the next section. 

Step 6 To see the process towards equilibrium in Section 4, the time-dependent change 
of each important nuclide is calculated. The calculation is performed based on 
the most important equation using analytical or numerical methods. A detailed 
explanation is given in Section 4. 

The mathematical equations used in this study are as follows: 

5
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2
2 2 1 1152*Sm

aSm Sm cSm Sm

dN
y F N N

dt
φ σ φ σ φ= − +  (57) 

3
3 3 2 2153*Eu

aEu Eu cSm Sm

dN
y F N N

dt
φ σ φ σ φ= − +  (58) 

5
5 5 a 5 5155* NEu

Eu Eu Eu Eu

dN
y F N

dt
φ λ σ φ= − −  (59) 

5
5 5 5 5.Gd

Eu Eu aGd Gd

dN
N N

dt
λ σ φ= −  (60) 

We calculate the atomic density during long-life burn-up using the equilibrium approach 
and by directly solving the above equations using numerical methods (finite difference 
and analytical methods). 

3 Calculation results and discussion 

For the data for calculation, we use the fission yield from Japanese Nuclear Data 
Committee (JNDC) nuclear data, and for one group microscopic cross-section data we 
calculated them based on RBEC benchmark model using System for Reactor Analysis 
Code (SRAC) (Okumura et al., 2002). 

Figures 1–8 show the effective/cumulative yield from JNDC. 
The first pattern is about nuclides that soon reach the asymptotic value, such as  

Nb-95, Y-91, Zr-95, Ru-103, Ru-106, Ce-141, Nd-147 and Sm-151. Such nuclides can be 
grouped together by weight which may depend on some parameters such as flux and 
power density. These results are also in line with the equilibrium model. Ru-106 may be 
on the boundary between the first pattern and the second pattern. 

The second pattern includes nuclides that change during burn-up nonlinearly. Such 
nuclides include Kr-85, Pd-106, Cs-137, Ce-142, Pm-147, Sm-147 and Eu-155. They can 
be combined into one group or more by weight (quadratic, cubic, quartic, etc.). 

The third pattern is about nuclides that change almost linearly during burn-up.  
Such nuclides include Rb-85, Zr-91, Zr-92, Zr-93, Zr-94, Zr-96, Mo-95, Mo-97, Mo-98, 
Mo-100, Tc-99, Ru-101, Ru-102, Ru-104, Rh-103, Pd-105, Pd-107, Pd-108, Ag-109,  
Cd-111, I-127, I-129, Xe-131, Xe-132, Xe-134, Cs-133, Cs-135, La-139, Pr-141,  
Nd-143, Nd-145, Nd-146, Nd-148, Nd-150, Sm149, Sm152 and Eu-153. Such nuclides 
can be grouped into two or more group constants by flux level, power level and time. 
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Figure 1 Time-dependent nuclide density for Kr-85 and Rb-85 during the burn-up process  
(see online version for colours) 
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Figure 2 Time-dependent nuclide density for Nb-95 and Y-91 during the burn-up process  
(see online version for colours) 
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Figure 3 Time-dependent nuclide density for Zr-91 and Zr-95 during the burn-up process  
(see online version for colours) 
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Figure 4 Time-dependent nuclide density for Tc-99 and Ru-106 during the burn-up process  
(see online version for colours) 
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Figure 5 Time-dependent nuclide density for I-129 and Xe-131 during the burn-up process  
(see online version for colours) 
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Figure 6 Time-dependent nuclide density for Cs-135 and Cs-137 during the burn-up process  
(see online version for colours) 
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Figure 7 Time-dependent nuclide density for La-139 and Sm-147 during the burn-up process  
(see online version for colours) 
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Figure 8 Time-dependent nuclide density for Pm-147 and Sm-151 during the burn-up process  
(see online version for colours) 
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4 Conclusion 

In this study we focus on the FP group constant treatment by considering around 50 of 
the most important nuclides. We then calculate the fission product effective yield for each 
modified chain and generate one group constant using the SRAC and other methods 
(Origen, etc.). 

We use two approaches for investigating the important FP nuclides: the equilibrium 
model and a numerical solution for the time-dependent model. We found that we could 
separate the FP nuclides into three groups: 

1 those that soon reach the asymptotic value 

2 those that have a nonlinear pattern 

3 those that have a linear pattern. 

In future work we will complete the detailed lumped FP model and include this in the  
full core benchmark calculation. 
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