MEETING: 17-18

Learning Objectives: Students are able to

1. explain analytic functions
2. explain harmonic functions
3. determine a harmonic conjugate

1. Analytic Functions

Definition

(a). A function f of the complex variable z is analytic at point z_{0} if its derivative exists not only at z_{0} but at each point z in some neighborhood of z_{0}.
(b). An entire function is a function that is analytic at each point in the entire plane.
(c). If a functions fails to be analytic at a point z_{0} but is analytic at some point in every neighborhood of z_{0} is called a singular point or singularity of the function.

Example: the function

$$
f(z)=\frac{1}{z} \text { then } f^{\prime}(z)=-\frac{1}{z^{2}}
$$

We can see that f is analytic except in the point $z=0$ in the finite plane. Moreover, $z=0$ is called a singular point.

2. Harmonic Functions

A real-valued functions h of two real variables x and y is said to be harmonic in a given domain of the $x y$ plane if, throughout that domain, it has continuous partial derivatives of the first and second order and satisfies the partial differential equation

$$
\begin{equation*}
h_{x x}(x, y)+h_{y y}(x, y)=0 \tag{21}
\end{equation*}
$$

known as Laplace's equation.
Example

The function $H(x, y)=e^{-y} \sin x$ is harmonic since $H_{x}=e^{-y} \cos x, \quad H_{x x}=-e^{-y} \sin x$, $H_{y}=-e^{-y} \sin x, H_{y y}=e^{-y} \sin x$ and $H_{x x}(x, y)+H_{y y}(x, y)=0$

3. Harmonic Conjugate

If two given functions u and v are harmonic in a domain D and their first partial derivatives satisfy the Cauchy-Riemann equations throughout D, we say that v is a harmonic conjugate of u. We now illustrate one method of obtaining a harmonic conjugate of a given harmonic function.

The function

$$
u(x, y)=y^{3}-3 x^{2} y .
$$

To find a harmonic conjugate $v(x, y)$, we note that $u_{x}(x, y)=-6 x y$.
So, in view of the condition $u_{x}=v_{y}$ we may write $v_{y}=-6 x y$.
Holding x fixed and integrating both sides of this equation with respect to y, we find that

$$
v(x, y)=-3 x y^{2}+g(x)
$$

where $g(x)$ is arbitrary function of x. Since the condition $u_{y}=-v_{x}$ must hold, it follows that

$$
3 y^{2}-3 x^{2}=3 y^{2}-g^{\prime}(x)
$$

So, $g^{\prime}(x)=3 x^{2}$, and this means that $g(x)=x^{3}+c$, where c is an arbitrary real number. Hence the function

$$
v(x, y)=x^{3}-3 x y^{2}+c
$$

is a harmonic conjugate of our function. The corresponding analytic function is

$$
f(z)=\left(y^{3}-3 x^{2} y\right)+i\left(x^{3}-3 x y^{2}+c\right)
$$

It is easily verified that

$$
f(z)=i\left(z^{3}+c\right)
$$

Exercises:

1. In each case, determine the singular points of the functions and state why the function is analytic everywhere except at those points
a. $f(z)=\frac{z+1}{z\left(z^{2}+2\right)}$
b. $f(z)=\frac{z}{z^{2}-2 i z+3}$
2. Show that the following functions are entire
a. $\quad f(z)=\cosh x \sin y-i \sinh x \cos y$
b. $\quad g(z)=\cosh x \cos y+i \sinh x \sin y$
3. Let a, b and c be real constants. Determine a relation among the coefficients that will guarantee that the function $f(x, y)=a x^{2}+b x y+c y^{2}$ is harmonic.
4. Show that $u(x, y)$ is harmonic in some domain and find a harmonic conjugate $v(x, y)$ when
a. $\quad u(x, y)=2 x(1-y)$
b. $u(x, y)=2 x-x^{3}+3 x y^{2}$
5. Let $u_{1}(x, y)=x^{2}-y^{2}$ and $u_{2}(x, y)=x^{3}-3 x y^{2}$. Show that u_{1} and u_{2} are harmonic functions and that their product $u_{1}(x, y) \cdot u_{2}(x, y)$ is not a harmonic function.
