MEETING: 14-15

Learning Objectives: Students are able to

1. explain Cauchy-Riemann equations
2. explain sufficient conditions for differentiability

1. Cauchy-Riemann Equations

In this section, we obtain a pair of equations that the first-order partial derivative of the component functions u and v of a function

$$
\begin{equation*}
f(z)=u(x, y)+i v(x, y) \tag{18}
\end{equation*}
$$

must satisfy at a point $z_{0}=\left(x_{0}, y_{0}\right)$ when the derivative of f exist there. We also show how to write $f^{\prime}\left(z_{0}\right)$ in terms of those partial derivative.

Theorem

Suppose that $f(z)=u(x, y)+i v(x, y)$ and that $f^{\prime}(z)$ exists at a point $z_{0}=\left(x_{0}, y_{0}\right)$. Then the first-order partial derivatives of u and v must exist at $\left(x_{0}, y_{0}\right)$ and they must satisfy the CauchyRiemann equations

$$
\begin{equation*}
u_{x}=v_{y} \quad \text { and } \quad u_{y}=-v_{x} \tag{19}
\end{equation*}
$$

there. Also, $f^{\prime}\left(z_{0}\right)$ can be written

$$
\begin{equation*}
f^{\prime}\left(z_{0}\right)=u_{x}+i v_{x} \tag{20}
\end{equation*}
$$

where these partial derivatives are to be evaluated at $\left(x_{0}, y_{0}\right)$.
Example
The function $f(z)=z^{2}+3-i=x^{2}-y^{2}+3+i(2 x y-1)$ is differential everywhere and that $f^{\prime}(z)=2 z$. To verify that Cauchy-Riemann equations are satisfied everywhere, we note that $u(x, y)=x^{2}-y^{2}+3$ and $v(x, y)=2 x y-1$. Thus $u_{x}=2 x=v_{y}$ and $u_{y}=-2 y=-v_{x}$. Moreover, according to equation (20), $f^{\prime}(z)=2 x+i 2 y=2(x+i y)=2 z$.

2. Sufficient Conditions for Differentiability

Theorem

Let the function $f(z)=u(x, y)+i v(x, y)$ be defined throughout some ε neighborhood of a point $z_{0}=x_{0}+i y_{0}$. Suppose that the first-order partial derivatives of the functions u and v with respect to x and y exist everywhere in that neighborhood and that they are continuous at $\left(x_{0}, y_{0}\right)$. Then, if those partial derivatives satisfy the Cauchy-Riemann equations $u_{x}=v_{y}$ and $u_{y}=-v_{x}$ at $\left(x_{0}, y_{0}\right)$, the derivative $f^{\prime}\left(z_{0}\right)$ exists.

Exercises

1. Use theorem in Sec. 1 to show that $f^{\prime}(z)$ does not exist at any point if
a. $\quad f(z)=\bar{z}$
b. $f(z)=z+\bar{z}$
c. $f(z)=x+i x y$
d. $f(z)=e^{x}(\cos y-i \sin y)$
2. Use theorem in Sec. 2 to show that $f^{\prime}(z)$ and its derivative $f^{\prime \prime}(z)$ exist everywhere and find $f^{\prime \prime}(z)$ when
a. $\quad f(z)=i z+2011$
b. $f(z)=z^{2}$
3. Find the constant a and b such that $f(z)=(2 x-y)+i(a x+b y)$ is differentiable for all z.
4. Let $f(z)=|z|^{2}$. Show that f is differentiable at a point $z_{0}=0$ but is not differentiable at any other point.
