MEETING: 11

Learning Objectives: Students are able to determine continuity of complex variable

Continuity

A function f is continuous at point z_{0} if all three of the following conditions are satisfied

$$
\begin{align*}
& \lim _{z \rightarrow z_{0}} f(z) \quad \text { exists, } \tag{9}\\
& f\left(z_{0}\right) \text { exist, } \tag{10}\\
& \lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right) \tag{11}
\end{align*}
$$

Statement (11) says that, for each positive number \mathcal{E}, there is a positive number δ such that

$$
\begin{equation*}
\left|f(z)-f\left(z_{0}\right)\right|<\varepsilon \quad \text { whenever } \quad\left|z-z_{0}\right|<\delta \tag{12}
\end{equation*}
$$

A function of a complex variable is said to be continuous in a region R if it is continuous at each point in R.

Theorem

If $f(z), g(z)$ are continuous at $z=z_{0}$, then
(1) $f(z) \pm g(z)$
(2) $f(z) g(z)$
(3) $\frac{f(z)}{g(z)}, g\left(z_{0}\right) \neq 0$
are also continuous at $z=z_{0}$.
Note that, a polynomial, natural exponential and trigonometric function are continuous in the entire plane. It follows directly from definition (12) that a composition of continuous functions is continuous.

Example 1

The function
$f(z)=z^{2}+3 z-i$ is continuous everywhere in the complex plane since it polynomial function.

Example 2

Suppose
$f(z)= \begin{cases}z^{2}, & z \neq i \\ 0, & z=i\end{cases}$
Then, $\lim _{z \rightarrow i} f(z)=-1$, but $f(i)=0$. Hence $\lim _{z \rightarrow i} f(z) \neq f(i)$ and the function is not continuous at $z=i$.

Points in the complex plane where $f(z)$ fails to be continuous are called discontinuities of $f(z)$, and $f(z)$ is said to be discontinuous at these points. If $\lim _{z \rightarrow z_{0}} f(z)$ exist but is not equal to $f\left(z_{0}\right)$, we call z_{0} a removable discontinuity since by redefining $f\left(z_{0}\right)$ to be same as $\lim _{z \rightarrow z_{0}} f(z)$, the function becomes continuous.

Exercises

1. Is the function $f(z)=\frac{z^{3}+2 z^{2}-3 z-1}{z-3 i}$ continuous at $z=3 i$? If not, is it can be continuous? How?
2. For what values of z are each of the following function continuous?
(a) $f(z)=\frac{3 i}{z^{2}+3}$
(b) $f(z)=\frac{1}{\cos z}$
