MEETING: 11

Learning Objectives: Students are able to determine continuity of complex variable

Continuity

A function f is continuous at point z_0 if all three of the following conditions are satisfied

$$\lim_{z \to z_0} f(z) \qquad \text{exists,} \tag{9}$$

$$f(z_0)$$
 exist, (10)

$$\lim_{z \to z_0} f(z) = f(z_0). \tag{11}$$

Statement (11) says that, for each positive number ε , there is a positive number δ such that

$$|f(z) - f(z_0)| < \varepsilon$$
 whenever $|z - z_0| < \delta$. (12)

A function of a complex variable is said to be continuous in a region R if it is continuous at each point in R.

Theorem

If
$$f(z), g(z)$$
 are continuous at $z = z_0$, then
(1) $f(z) \pm g(z)$
(2) $f(z)g(z)$
(3) $\frac{f(z)}{g(z)}, g(z_0) \neq 0$

are also continuous at $z = z_0$.

Note that, a polynomial, natural exponential and trigonometric function are continuous in the entire plane. It follows directly from definition (12) that *a composition of continuous functions is continuous*.

Example 1

The function

 $f(z) = z^2 + 3z - i$ is continuous everywhere in the complex plane since it polynomial function.

Example 2

Suppose

 $f(z) = \begin{cases} z^2, \ z \neq i \\ 0, \ z = i \end{cases}$

Then, $\lim_{z \to i} f(z) = -1$, but f(i) = 0. Hence $\lim_{z \to i} f(z) \neq f(i)$ and the function is not continuous at z = i.

Points in the complex plane where f(z) fails to be continuous are called discontinuities of f(z), and f(z) is said to be *discontinuous* at these points. If $\lim_{z \to z_0} f(z)$ exist but is not equal to $f(z_0)$, we call z_0 a *removable discontinuity* since by redefining $f(z_0)$ to be same as $\lim_{z \to z_0} f(z)$, the function becomes continuous.

Exercises

1. Is the function $f(z) = \frac{z^3 + 2z^2 - 3z - 1}{z - 3i}$ continuous at z = 3i? If not, is it can be continuous?

How?

2. For what values of z are each of the following function continuous?

(a)
$$f(z) = \frac{3i}{z^2 + 3}$$

(b) $f(z) = \frac{1}{\cos z}$