1. Functions of a Complex Variable

Let *E* be a set of complex numbers. A *function f* defined on *E* is a rule that assigns to each *z* in *E* a complex number *w*. The number *w* is called the *value* of *f* at *z* and is denoted by f(z); that is, w = f(z). The set *E* is called the *domain of definition of f*, written D(f), $D(f) = \{z \in \mathbb{C} : f(z) \text{ defined}\}$. *Example 1*

Determine the domain definition of $f(z) = \frac{z+1}{z^2+z+1}$ and $g(z) = z^2+z+1$

Solution:

$$D(f) = \{z \in \mathbb{C} : f(z) \text{ defined} \}$$

= $\{z \in \mathbb{C} : z^2 + z + 1 \neq 0\}$
= $\{z \in \mathbb{C} : z \neq -\frac{1}{2} \pm \frac{1}{2}i\sqrt{3}\}$
$$D(g) = \{z \in \mathbb{C} : g(z) \text{ defined} \}$$

= \mathbb{C}

2. Limits

Let a function f be defined at all points z in some deleted neighborhood of z_0 . The statement that the *limit* of f(z) as z approaches z_0 is a number w_0 , or

$$\lim_{z \to z_0} f(z) = w_0 \tag{2}$$

means that the point w = f(z) can be made arbitrarily close to w_0 if we choose the point z close enough to z_0 but distinct from it. Equation (2) means that, for each positive number ε , there is a positive number δ such that

$$|f(z) - w_0| < \varepsilon$$
 whenever $0 < |z - z_0| < \delta$. (3)

Figure 4. Limit function

Example 1

Show that $\lim_{z \to i} z^2 - 1 = 2$

Solution:

From the properties of modulli, we have

$$|(z^2-1)-(-2)| = |z^2+1| = |z-i||z+i|.$$

Observe that when $\forall z \in \mathbb{C}$ is in the region |z-i| < 1,

$$|z+i| = |z-i+2i| \le |z-i| + |2i| < 1+2=3.$$

Hence, for $\forall z \in \mathbb{C}$ such that |z - i| < 1,

$$|(z^2-1)-(-2)| = |z^2+1| = |z-i||z+i| < 3|z-i|.$$

For any positive number ε , get $\delta = \min\left\{\frac{\varepsilon}{3}, 1\right\}$ such that $0 < |z-i| < \delta$,

$$\left| \left(z^2 - 1 \right) - \left(-2 \right) \right| < 3 \left| z - i \right| < 3 \left(\frac{\varepsilon}{3} \right) = \varepsilon .$$

Note that when a limit function f(z) exist at a point z_0 , it is unique.

Example 2

If $f(z) = \frac{\overline{z}}{z}$, then $\lim_{z \to 0} f(z)$ does not exist.

When z = (x, 0) is a nonzero point on the real axis,

$$f(z) = \frac{x - i0}{x + i0} = 1$$

and when z = (0, y) is a nonzero point on the imaginary axis,

$$f(z) = \frac{0 - iy}{0 + iy} = -1$$

Thus, by letting z approach the origin along real axis, we would find that the desired limit is 1. An approach along imaginary axis would, on the other hand, yield the limit -1. Since the limit is unique, we must conclude that $\lim_{z\to 0} \frac{\overline{z}}{z}$ does not exist.

Since limits of the latter type are studied in calculus, we use their definition and properties freely.

Theorem 1

Suppose that

f(z) = u(x, y) + iv(x, y), $z_0 = x_0 + iy_0,$ and $w_0 = u_0 + iv_0.$

Then

$$\lim_{z \to z_0} f(z) = w_0 \tag{4}$$

if and only if

$$\lim_{(x,y)\to(x_0,y_0)} u(x,y) = u_0 \qquad and \qquad \lim_{(x,y)\to(x_0,y_0)} v(x,y) = v_0 \tag{5}$$

Example

Find
$$\lim_{z \to 1+i} \left(z^2 + \frac{1}{z} \right)$$
.
Observe that $z^2 + \frac{1}{z} = (x + iy)^2 + \frac{1}{x + iy} = (x^2 - y^2) + \frac{x}{x^2 + y^2} + i \left(2xy - \frac{y}{x^2 + y^2} \right)$.
We have $u(x, y) = (x^2 - y^2) + \frac{x}{x^2 + y^2}$ and $v(x, y) = 2xy - \frac{y}{x^2 + y^2}$. From Theorem 1,
 $\lim_{(x,y)\to(1,i)} \left[(x^2 - y^2) + \frac{x}{x^2 + y^2} \right] = \frac{1}{2}$ and $\lim_{(x,y)\to(1,i)} \left[2xy - \frac{y}{x^2 + y^2} \right] = \frac{3}{2}$,
thus

thus

$$\lim_{z \to 1+i} \left(z^2 + \frac{1}{z} \right) = \frac{1}{2} + \frac{3}{2}i.$$

Theorem 2

If
$$\lim_{z \to z_0} f(z)$$
, $\lim_{z \to z_0} g(z)$ exist and $c \in \mathbb{C}$, then

(1)
$$\lim_{z \to z_0} (f(z) + g(z)) \text{ exist and } \lim_{z \to z_0} (f(z) + g(z)) = \lim_{z \to z_0} f(z) + \lim_{z \to z_0} g(z)$$

(2)
$$\lim_{z \to z_0} (cf(z)) \text{ exist and } \lim_{z \to z_0} (cf(z)) = c \lim_{z \to z_0} f(z)$$

(3)
$$\lim_{z \to z_0} (f(z)g(z)) exist and \lim_{z \to z_0} (f(z)g(z)) = \lim_{z \to z_0} f(z) \lim_{z \to z_0} g(z)$$

(4)
$$\lim_{z \to z_0} \left(\frac{f(z)}{g(z)} \right) exist and \lim_{z \to z_0} \left(\frac{f(z)}{g(z)} \right) = \frac{\lim_{z \to z_0} f(z)}{\lim_{z \to z_0} g(z)}, \text{ whenever } \lim_{z \to z_0} g(z) \neq 0$$

Limits Involving the Point at Infinity

We have three point about limits that is involving the point at infinity:

$$\lim_{z \to z_0} f(z) = \infty \qquad \text{if and only if} \qquad \lim_{z \to z_0} \frac{1}{f(z)} = 0. \tag{6}$$

$$\lim_{z \to \infty} f(z) = w_0 \qquad \text{if and only if} \qquad \lim_{z \to 0} f\left(\frac{1}{z}\right) = w_0. \tag{7}$$

$$\lim_{z \to \infty} f(z) = \infty \qquad \text{if and only if} \qquad \lim_{z \to 0} \frac{1}{f(\frac{1}{z})} = 0. \tag{8}$$

Example 1

Observe that $\lim_{z \to -i} \frac{i+3}{z+i} = \infty$ since $\lim_{z \to -i} \frac{z+i}{i+3} = 0$.

Example 2

Observe that
$$\lim_{z \to \infty} \frac{3z - i}{z + 2} = 3$$
 since $\lim_{z \to 0} \frac{3(\frac{1}{z}) - i}{(\frac{1}{z}) + 2} = \lim_{z \to 0} \frac{3 - iz}{1 + 2z} = 3$.

Example 3

Observe that
$$\lim_{z \to \infty} \frac{3z^4 - i}{z^3 + 2} = \infty$$
 since $\lim_{z \to 0} \frac{\left(\frac{1}{z^3}\right) + 2}{3\left(\frac{1}{z^4}\right) - i} = \lim_{z \to 0} \frac{z + 2z^4}{3 - iz^4} = 0$.

Exercises

1. For each of the functions below, describe the domain of definition that is understood

(a)
$$f(z) = \frac{1}{z^2 + 4}$$
 (c) $f(z) = \cos(z^2 - i)$

(b)
$$f(z) = \frac{\overline{z} + 2i}{z + \overline{z}}$$

- 2. Write the function $f(z) = z^3 + 2z i$ in the form f(z) = u(x, y) + iv(x, y).
- 3. Let z_0, c denote complex constant. Use definition (3) to prove that
 - (a) $\lim_{z \to z_0} c = c$ (b) $\lim_{z \to 1-i} (x + i2y) = 1 2i$

4. Let $f(z) = \frac{z^2}{|z|^2}$

- a. Find $\lim_{z\to 0} f(z)$ along the line y = x
- b. Find $\lim_{z\to 0} f(z)$ along the line y = 2x
- c. Find $\lim_{z\to 0} f(z)$ along the parabola $y = x^2$
- d. What can you conclude about the limit of f(z) along $z \to 0$
- 5. Using (6), (7) and (8) of limits, show that

(a)
$$\lim_{z \to \infty} \frac{z^4 - z^3 + 2z}{(z+1)^4} = 1$$
 (c)
$$\lim_{z \to \infty} \frac{z^2 - 1}{z+1} = \infty$$

(b)
$$\lim_{z \to 2i} \frac{z}{(z-2i)^2} = \infty$$

6. Find the value of limits below

(a)
$$\lim_{z \to 1+2i} z^2 + 2z - 1$$

(b) $\lim_{z \to -2i} \frac{z^2 + 2z - 1}{z^2 - 2z + 4}$
(c) $\lim_{z \to (1+i\sqrt{3})} \frac{z^3 + 8}{z^4 + 4z^2 + 16}$
(e) $\lim_{z \to i} \frac{z^2 + 4z + 2}{z + 1}$
(f) $\lim_{z \to 1+i} \frac{z^2 + z - 1 - 3i}{z^2 - 2z + 2}$