
 

 

 

 

 

1. Derivatives 

Let f be a function whose domain of definition contains a neighborhood of a point 
0z . The 

derivative of f at 
0z , written ( )0f z′ , is defined by the equation 
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provided this limit exist. 

 By expressing the variable z in definition (13) in terms of the new complex variable 

0z z z∆ = − , we can write that definition as 
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Note that, because f is defined throughout a neighborhood of 
0z , the number ( )0f z z+ ∆ is 

always defined for z∆ sufficiently small. Let ( ) ( )0 0w f z z f z∆ = + ∆ − , then if we write 
dw
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 for 

( )f z′ , equation (14) becomes 
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Example  

Suppose that ( ) 3
f z z= . At any point z,  
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2. Differentiation Formulas 

Let c be a complex constant, and let f be a function whose derivative exist at a point z. It is 

easy to show that 
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Also, if n is a positive integer 
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TheoremTheoremTheoremTheorem    

If the derivation of two function f and g exist at a point z , then 
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, when ( ) 0g z ≠ . 

Example 

To find the derivative of ( )
5

22z i+ . According to the theorem, we have  
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Exercises 

1. Apply definition (15) of derivative to find ( )f z′  when 

a. ( )
1

, 0f z z
z

= ≠    

b. b. ( ) 23 2f z z z= −    
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2. Apply definition (15) of derivative to find ( )f z′  when ( ) 3 4f z z z= −  at point  

a. 
0z z=     b. z i=  

3. Use result in Sec. 2 to find ( )f z′  when 

a. ( ) 23 4 1f z z z= − +    
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4. If the derivation of two function f and g exist at a point z, proof that 

( ) ( ) ( ) ( )
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f z g z f z g z
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′ ′+ = +   . 

5. Show that ( )f z′  does not exist at any point z when ( )f z z= . 

 

 


