1. Derivatives

Let f be a function whose domain of definition contains a neighborhood of a point z_{0}. The derivative of f at z_{0}, written $f^{\prime}\left(z_{0}\right)$, is defined by the equation

$$
\begin{equation*}
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} \tag{13}
\end{equation*}
$$

provided this limit exist.
By expressing the variable z in definition (13) in terms of the new complex variable $\Delta z=z-z_{0}$, we can write that definition as

$$
\begin{equation*}
f^{\prime}\left(z_{0}\right)=\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z} . \tag{14}
\end{equation*}
$$

Note that, because f is defined throughout a neighborhood of z_{0}, the number $f\left(z_{0}+\Delta z\right)$ is always defined for $|\Delta z|$ sufficiently small. Let $\Delta w=f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)$, then if we write $\frac{d w}{d z}$ for $f^{\prime}(z)$, equation (14) becomes

$$
\begin{equation*}
\frac{d w}{d z}=\lim _{\Delta z \rightarrow 0} \frac{\Delta w}{\Delta z} \tag{15}
\end{equation*}
$$

Example

Suppose that $f(z)=z^{3}$. At any point z,

$$
\lim _{\Delta z \rightarrow 0} \frac{\Delta w}{\Delta z}=\lim _{\Delta z \rightarrow 0} \frac{(z+\Delta z)^{3}-z^{3}}{\Delta z}=\lim _{\Delta z \rightarrow 0} 3 z^{2}+3 z(\Delta z)^{2}+(\Delta z)^{2}=3 z^{2} . \text { Hence } \frac{d w}{d z}=3 z^{2} \text { or } f^{\prime}(z)=3 z^{2}
$$

2. Differentiation Formulas

Let c be a complex constant, and let f be a function whose derivative exist at a point z. It is easy to show that

$$
\begin{equation*}
\frac{d}{d z} c=0, \quad \frac{d}{d z} z=1, \quad \frac{d}{d z} c f(z)=c f^{\prime}(z) \tag{16}
\end{equation*}
$$

Also, if n is a positive integer

$$
\begin{equation*}
\frac{d}{d z} z^{n}=n z^{n-1} \tag{17}
\end{equation*}
$$

Theorem

If the derivation of two function f and g exist at a point z, then
(1) $\frac{d}{d z}[f(z)+g(z)]=f^{\prime}(z)+g^{\prime}(z)$
(2) $\frac{d}{d z}[f(z) g(z)]=f^{\prime}(z) g^{\prime}(z)$
(3) $\frac{d}{d z}\left[\frac{f(z)}{g(z)}\right]=\frac{f^{\prime}(z) g(z)-g^{\prime}(z) f(z)}{(g(z))^{2}}$, when $g(z) \neq 0$.

Example

To find the derivative of $\left(2 z^{2}+i\right)^{5}$. According to the theorem, we have $\frac{d\left(2 z^{2}+i\right)^{5}}{d z}=5\left(2 z^{2}+i\right)^{4}(4 z)=20 z\left(2 z^{2}+i\right)^{4}$.

Exercises

1. Apply definition (15) of derivative to find $f^{\prime}(z)$ when
a. $\quad f(z)=\frac{1}{z}, z \neq 0$
b. b. $f(z)=3 z^{2}-2 z$
c. c. $f(z)=\left(z+\frac{1}{2}\right)^{4}$
2. Apply definition (15) of derivative to find $f^{\prime}(z)$ when $f(z)=z^{3}-4 z$ at point
a. $\quad z=z_{0}$
b. $z=i$
3. Use result in Sec. 2 to find $f^{\prime}(z)$ when
a. $\quad f(z)=3 z^{2}-4 z+1$
b. $f(z)=\left(1-3 z^{3}\right)^{2}$
c. $f(z)=\frac{z+i}{3 z-2}$
4. If the derivation of two function f and g exist at a point z, proof that $\frac{d}{d z}[f(z)+g(z)]=f^{\prime}(z)+g^{\prime}(z)$.
5. Show that $f^{\prime}(z)$ does not exist at any point z when $f(z)=\bar{z}$.
