
Computer Programming Modul Supardi, M.Si

CHAPTER 1

INTRODUCTION TO MATLAB
Matlab is short for Matrix Laboratory, which is a special-purpose computer

program optimized to perform engineering and scientific calculations. It started life

to perform matrix mathematics, but over the years it has grown into a flexible

computing system capable of solving essentially any technical problem. Matlab

implements a Matlab programming language and provides an extensive library of

predifined functions that make technical programming tasks eisier and more

eficient.

1 The Advantage of Matlab

Matlab has many advantages compared with the conventional programming

language like fortran, C or Pascal for technical problem solving. Among of them are

the following:

1. Easy to Use. Matlab is intepreted language, so it is not needed compiling

when we want to execute the program. Program may be easily writen and

modified with the built-in integrated development inveronment and

debuged with the Matlab debuger.

2. Platform Independence. Matlab is supported on many computer systems. At

the time of tis writing, Matlab is supported on Windows 2000/ XP/Vista and

many version of UNIX. Programs writen in any platform can run on all the

other platforms and data files writen on any platform may be read on any

 1

Computer Programming Modul Supardi, M.Si

other proram.

3. Predefined Functions. Matlab comes complete with an extensive library of

predefined functions that provide tested and prepackaged solutions to many

technical problems. For example, suppose that you are writing a program

that calculate the stastitics associated with input data set. In most languages,

you need to write your own subroutines or functions to implement

calculations such as aritmatic mean, median, standard deviation and so forth.

These and hundreds of functions are built right into Matlab language,

making your job easier.

4. Device Independent Plotting. Unlike most other languages, Matlab has many

integral ploting and imaging commands. The plots and images can be

displayed on any graphical output device supported by computer on which

Matlab running. This capability makes Matlab an outstanding tool for

visualizing technical data.

5. Graphical User Interface (GUI). Matlab include tools that allow us to

interactively construct a Graphical User Interface (GUI) for his or her

program. With capability, the programmer can design a sophisticated data

analisys program that can be operated by relatively inexperienced users.

2 The Disadvantage of Matlab

There are two principal disadvantage of Matlab. First, because of Matlab is

intepreted language, therefor Matlab can run slowly compared with compiled

language such as pascal, c or fortran. Second, the disadvantage of Matlab is cost, full

 2

Computer Programming Modul Supardi, M.Si

copy of Matlab may be 5 to 10 times more expensive than conventional compiler c,

pascal or fortran.

3 The Matlab Dekstop

When we start Matlab version 6.5, the special window called The Matlab

Dekstop will appear. The default configuration of Matlab Dekstop Matlab is shown

in Figure 1.1. It integrates many tools for managing files, variables and application

within Matlab environment.

The major tools within Matlab Dekstop are the following:

a) command window

b) command history window

c) launch pad

d) edit/debug window

e) figure window

f) workspace browser and array editor

g) help browser

h) current directory browser

Exercise
1. Get help on Matlab function exp using: the “help exp” command typed on

the command window and get it with help browser.

 3

Computer Programming Modul Supardi, M.Si

2.

 4

Computer Programming Modul Supardi, M.Si

CHAPTER 2

MATLAB BASICS

1 Funncion and Constants

Matlab provides a large number of standard elementary mathematical

funsctions, including abs, sin, cos, sqrt, exp and so forth. Taking the square root of

negative number is not an error, because the appropriate complex number will be

produced automatically. Matlab also provide a large number of advanced

mathematical function, including bessel, gamma, beta, erf, and so forth. For a list of

standard elementary mathematical function, type

help elfun

and for a list of advanced mathematical functions, type

help specfun

Some functions, like sqrt, cos, sin,abs are built in. It means that they are has

been compiled, so we just apply them and computational details are not readily

accessible.

Matlab also provide some special constants that they may be useful to solve

any technical problem. Some constants are the following:

Tabel 2.3 Special Constants

No Constants Description

1 pi 3.14159265...

 5

Computer Programming Modul Supardi, M.Si

2 i Imajinary unit, −1

3 j Same as i

4 eps Floating-point relative precision, 10-52

5 realmin Smallest floating-point number

6 realmax Largest floating-point number

7 inf Infinite number

8 NaN Not-a-Number

>> pi

ans =

 3.1416

>> i

ans =

 0 + 1.0000i

>> j

ans =

 0 + 1.0000i

>> realmin

ans =

 2.2251e-308

>> realmax

ans =

 1.7977e+308

>> eps

ans =

 6

Computer Programming Modul Supardi, M.Si

 2.2204e-016

>> 1/0

Warning: Divide by zero.

ans =

 Inf

>> 0/0

Warning: Divide by zero.

ans =

 NaN

2 Using Meshgrid

Meshgrid is used to generate X and Y matrix for thrree dimensional plot. The

syntax of meshgrid are

[X,Y] = meshgrid(x,y)

[X,Y] = meshgrid(x)

[X,Y,Z] = meshgrid(x,y,z)

[X,Y]=meshgrid(x,y) transforms the domain specified by vector x and y into arrays X

and Y, which can be used to evaluate the function of two variables and three

dimensional mesh/surface plots. The rows of the output array X are copies of vector

x, and the column of the array Y are copies of the vector y.

Ex.

[X,Y] = meshgrid(1:3,10:14)

 7

Computer Programming Modul Supardi, M.Si

X =

 1 2 3

 1 2 3

 1 2 3

 1 2 3

 1 2 3

Y =

 10 10 10

 11 11 11

 12 12 12

 13 13 13

 14 14 14

Contoh

Plot the function graphic of z=x2− y2 specified by domain 0x5 dan

0 y0

Solution

Firstly, we must specify the grids on the surface x-y using meshgrid function

>> x=0:5;

>> y=0:5;

 8

Computer Programming Modul Supardi, M.Si

>> [X Y]=meshgrid(x,y)

X =

 0 1 2 3 4 5
 0 1 2 3 4 5
 0 1 2 3 4 5
 0 1 2 3 4 5
 0 1 2 3 4 5
 0 1 2 3 4 5

Y =

 0 0 0 0 0 0
 1 1 1 1 1 1
 2 2 2 2 2 2
 3 3 3 3 3 3
 4 4 4 4 4 4
 5 5 5 5 5 5

Then, the values of z can be obtained by replacing x and y in the original

function into X and Y

>> z=X.^2-Y.^2

z =

 0 1 4 9 16 25

 -1 0 3 8 15 24

 -4 -3 0 5 12 21

 -9 -8 -5 0 7 16

 -16 -15 -12 -7 0 9

 -25 -24 -21 -16 -9 0

Finally, we have the graphic of the function

 9

Computer Programming Modul Supardi, M.Si

>> mesh(X,Y,z)

3 Special Elementar Function Matlab

Matlab has a large number of special elementary function which may be

useful for numerical calculation. In this chapter, we will discuss some of them.

feval()

Function feval() is used to evaluate a function. For example, if we have a

function f x =x22 x1 and we evaluate the function at x=3

>> f=inline('x^2+2*x+1','x');

>> f(3)

 10

Illustration 1:

Computer Programming Modul Supardi, M.Si

ans =

 16

If we use the function provided by Matlab called humps. To evaluate the function,

we must create a handle function by using @ sign.

>> fhandle=@humps;

>> feval(fhandle,1)

ans =

16

 11

Gambar 2.1 Fungsi humps

Computer Programming Modul Supardi, M.Si

 Polyval

Function polyval is used to specify the value of the polynomial of the form

px =a0a1x
1a2 x

2a3 x
3a4 x

4...an−1x
n−1an x

n

Matlab has a simply way to express the form of the polynomial by

p=[an an−1 ... a3 a2 a1 a0]

Example

Given a polynomial px =x 43x 24x5 . It will be evaluated at

x=2, −3 and 4.

Solution

● First, we type the polynomial by simply way p=[1 0 3 4 5].

● Second, we type the point we are going to evaluate x=[2,-3,4]

● Third, Evaluate the polynomial at point x by command polyval(p,x)

If we write in the command window

>> p=[1 0 3 4 5];

>> x=[2,-3,4];

>> polyval(p,x)

ans =

 41 101 325

 12

Computer Programming Modul Supardi, M.Si

Polyfit

Fungsi polyder

Fungsi poly

Fungsi conv

Fungsi deconv

 13

Computer Programming Modul Supardi, M.Si

CHAPTER 3

VECTOR AND MATRICES

Vector is one-dimensional array of numbers. Vector can be a coulomn or row.

Matlab can create a coulomn vector by enclosing a set of numbers sparated by

semicolon. For example, to create a coulomn vector with three elements we write:

>> a=[1;2;3]

a =

 1

 2

 3

To create a row vector, we enclose a set of numbers in square brackets, but this time

we use coma or blank space to delimite the elements.

>> a=[4,5,6]

a =

 4 5 6

>> a=[4 5 6]

a =

 4 5 6

 14

Computer Programming Modul Supardi, M.Si

A column vector can be turned into a row vector by three ways. The first, we

can turn using the transpose operation.

>> v=[3,2,1];

>> v'

ans =

 3

 2

 1

Secondly, we can create a column vector by enclosing a set of numbers with

semicolon notation to delimite the numbers.

>> w=[3;2;1]

w =

 3

 2

 1

It is also possible to add or subtract two vectorsto produce a new vector. In

order to perform this operation, the two vectors must both be the same type and the

same length. So, we can add two column vectors together to produce a new column

vector or we can add two row vector to produce a new row vector. Lets add two

column vectors together:

 15

Computer Programming Modul Supardi, M.Si

>> p=[-1;2;3;1];

>> q=[2;1;-3;-2];

>> p+q

ans =

 1

 3

 0

 -1

Now, let's subtract one row vector from another:

>> p=[-1,2,3,1];

>> q=[2,1,-3,-2];

>> p+q

ans =

 1 3 0 -1

1 CREATING LARGER VECTOR FROM EXISTING VARIABLES

Matlab allow us to append vectors together to create a new one. Let u and v

are two column vectors with m and n elements respectively that we have created in

Matlab. We can create third vector w whose first m elements of vector u and whose

second n elements of vector v. In order to create the vector w, it is done by writing

 16

Computer Programming Modul Supardi, M.Si

[u;v].

>> u=[1;2;3];

>> v=[5;6];

>> w=[u;v]

w =

 1

 2

 3

 5

 6

This can also be done with row vector. If we have two row vectors r and s with m

and n elements respectively. So, a new row vector can be created by writing [r,s].

>> r=[1,2,3];

>> s=[5,6,7,8];

>> [r,s]

ans =

 1 2 3 5 6 7 8

2 CREATING A VECTOR WITH UNIFORMLY SPACED ELEMENTS

Matlab allow us to create a vector with elements that are uniformly spaced

 17

Computer Programming Modul Supardi, M.Si

by increment q. To create a vector x that have unformly spaced elements with first

element a, final element b and stepsize q is

x= [a : q : b];

We can create a list of even number from 0 to 10 with uniformly spaced elements:

>> x=[0:2:10]

x =

 0 2 4 6 8 10

Again, let's we create a list of small number starts from 0 to 1 with uniformly space

0.1;

>> x=0:0.1:1

x =

 Columns 1 through 7

 0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000

 Columns 8 through 11

 0.7000 0.8000 0.9000 1.0000

The set of x values can be used to create a list of points representing the values of

some given function. For example, suppose that whave y=e x , then we have

>> y=exp(x)

y =

 Columns 1 through 7

 18

Computer Programming Modul Supardi, M.Si

 1.0000 1.1052 1.2214 1.3499 1.4918 1.6487 1.8221

 Columns 8 through 11

 2.0138 2.2255 2.4596 2.7183

But, if we have a function y=x2 , we can not obtain a list of values representing

the function without adding dot notation.

>> x^2

??? Error using ==> ^

Matrix must be square.

If we use dot notation behind the variable x;

>> x.^2

ans =

 Columns 1 through 7

 0 0.0100 0.0400 0.0900 0.1600 0.2500 0.3600

 Columns 8 through 11

 0.4900 0.6400 0.8100 1.0000

Matlab also allow us to create a row vector with m uniformly spaced element by

typing

linspace(a,b,m)

>> linspace(0,2,5)

ans =

 19

Computer Programming Modul Supardi, M.Si

 0 0.5000 1.0000 1.5000 2.0000

Matlab also allow us to create a a row vector with n logaritmically spaced

elements by typing

logspace(a,b,n)

>> logspace(1,3,5)

ans =

 1.0e+003 *

 0.0100 0.0316 0.1000 0.3162 1.0000

3 Characterizing Vector

The length command returns a number of a vector elements, for example:

>> a=[0:5];

>> length(a)

ans =

 6

We can find the largest and smallest of a vector by max and min command,

ffor example:

>> a=[0:5];

>> max(a)

ans =

 20

Computer Programming Modul Supardi, M.Si

 5

>> min(a)

ans =

 0

Accessing the array elements

 If we have array a=[1,2,3,4;5,6,7,8;6,7,8,9]. To display all of array elements at

the 3th row, we can type

>> a(3,:)

ans =

 6 7 8 9

The colon notation means all of array elements.

 For example, if we want to display all of array elements at the first and

second colomn then we can type

>> a(:,[1 2])

ans =

 1 2

 5 6

 6 7

 To access the array elements a at the 1st dan 2nd row, and 3rd and 4th colomn,

we can type

 21

Computer Programming Modul Supardi, M.Si

>> a(1:2,3:4)

ans =

 3 4

 7 8

 Ifwe wish to replace all of the array elements at 2nd and 3rd row and 1st and 2nd

colomn with the value equal to 1

>> a(2:3,1:2)=ones(2)

a =

 1 2 3 4

 1 1 7 8

 1 1 8 9

 We are able to create the table using the colon operator. For example, if we

wish to create the sinus table starting from a given angle and step size 30o

>> x=[0:30:180]';

>> trig(:,1)=x;

>> trig(:,2)=sin(pi/180*x);

>> trig(:,3)=cos(pi/180*x);

>> trig

trig =

 0 0 1.0000

 22

Computer Programming Modul Supardi, M.Si

 30.0000 0.5000 0.8660

 60.0000 0.8660 0.5000

 90.0000 1.0000 0.0000

 120.0000 0.8660 -0.5000

 150.0000 0.5000 -0.8660

 180.0000 0.0000 -1.0000

 The Colon operator can be used to perform the operation at Gauss

elimination. For example

>> a=[-1,1,2,2;8,2,5,3;10,-4,5,3;7,4,1,-5];

>> a(2,:)=a(2,:)-a(2,1)/a(1,1)*a(1,:)

a =

 -1.00 1.00 2.00 2.00

 0 10.00 21.00 19.00

 10.00 -4.00 5.00 3.00

 7.00 4.00 1.00 -5.00

>> a(3,:)=a(3,:)-a(3,1)/a(1,1)*a(1,:)

a =

 -1.00 1.00 2.00 2.00

 0 10.00 21.00 19.00

 23

Computer Programming Modul Supardi, M.Si

 0 6.00 25.00 23.00

 7.00 4.00 1.00 -5.00

>> a(4,:)=a(4,:)-a(4,1)/a(1,1)*a(1,:)

a =

 -1.00 1.00 2.00 2.00

 0 10.00 21.00 19.00

 0 6.00 25.00 23.00

 0 11.00 15.00 9.00

>> a(3,:)=a(3,:)-a(3,2)/a(2,2)*a(2,:)

a =

 -1.00 1.00 2.00 2.00

 0 10.00 21.00 19.00

 0 0 12.40 11.60

 0 11.00 15.00 9.00

>> a(4,:)=a(4,:)-a(4,2)/a(2,2)*a(2,:)

a =

 -1.00 1.00 2.00 2.00

 0 10.00 21.00 19.00

 0 0 12.40 11.60

 24

Computer Programming Modul Supardi, M.Si

 0 0 -8.10 -11.90

>> a(4,:)=a(4,:)-a(4,3)/a(3,3)*a(3,:)

a =

 -1.00 1.00 2.00 2.00

 0 10.00 21.00 19.00

 0 0 12.40 11.60

 0 0 0 -4.32

 The keyword end states the final element of the array elements. For example,

if we have a vector

>> a=[1:6];

>> a(end)

ans =

 6

>> sum(a(2:end))

ans =

 20

 The colon operator can play as a single subscript. For a spcial case, the colon

operator can be used to replace all of the array elements

>> a=[1:4;5:8]

a =

 25

Computer Programming Modul Supardi, M.Si

 1 2 3 4

 5 6 7 8

>> a(:)=-1

a =

 -1 -1 -1 -1

 -1 -1 -1 -1

Replication of row and column

Sometimes, we need to generate the array elements at a given row and

column to any other row and column. For this purpose, we need Matlab command

repmat to replicate the row/column elements.

>> a=[1;2;3];

>> b=repmat(a,[1 3])

b =

 1 1 1

 2 2 2

 3 3 3

The command repmat(a,[1 3]) means that “replicate vector a into one row and three

columns.

>> c=repmat(a,[2 1])

c =

 26

Computer Programming Modul Supardi, M.Si

 1

 2

 3

 1

 2

 3

The command repmat(a,[2 1]) means that “replicate vector a into two rows

and 1 column.

The alternative command repmat (a,[1 3]) is repmat(a,1,3) and repmat (a,[2 1])

is repmat(a,2,1).

Deleting rows and columns

We can use the colon operator and the blank array to delete the array

elements.

>> b=[1,2,3;3,4,5;6,7,8]

b =

 1 2 3

 3 4 5

 6 7 8

>> b(:,2)=[]

b =

 27

Computer Programming Modul Supardi, M.Si

 1 3

 3 5

 6 8

If we want to delete the array elements at 2nd and 3rd column, we just type

>> b=[1,2,3;3,4,5;6,7,8];

>> b(:,[2 3])=[]

b =

 1

 3

 6

Similarly, if we want to delete the array elements at 2nd and 3rd rows

>> b=[1,2,3;3,4,5;6,7,8];

>> b([2 3],:)=[]

b =

 1 2 3

Array manipulation

Below are some funtions applied to manipulate an array,

 diag, the function is used to create an diagonal array. If we have a vector v

then diag(v) will create a diagonal array with diagonal elements of v.

 28

Computer Programming Modul Supardi, M.Si

>> v=[1:4];

>> diag(v)

ans =

 1 0 0 0

 0 2 0 0

 0 0 3 0

 0 0 0 4

To move right or move down the diagonal elements, we just type diag(v,b)

>> diag(v,2)

ans =

 0 0 1 0 0 0

 0 0 0 2 0 0

 0 0 0 0 3 0

 0 0 0 0 0 4

 0 0 0 0 0 0

 0 0 0 0 0 0

>> diag(v,-2)

ans =

 0 0 0 0 0 0

 0 0 0 0 0 0

 29

Computer Programming Modul Supardi, M.Si

 1 0 0 0 0 0

 0 2 0 0 0 0

 0 0 3 0 0 0

 0 0 0 4 0 0

 fliplr, . The function is used to exchange the array elements at left colomn to

right colomn.

>> a=[1,2,3;4,5,6]'

a =

 1 4

 2 5

 3 6

>> fliplr(a)

ans =

 4 1

 5 2

 6 3

If a is a vector,

>> a=[1,2,3,4,5,6]

a =

 1 2 3 4 5 6

 30

Computer Programming Modul Supardi, M.Si

>> fliplr(a)

ans =

 6 5 4 3 2 1

 flipud, this function is used to exchange the array elements at the upper row

to lower row.

>> a=[1,2,3;4,5,6]

a =

 1 2 3

 4 5 6

>> flipud(a)

ans =

 4 5 6

 1 2 3

 rot90, this function is used to rotate matrix A with 90o counter clockwise.

>> a=[1,2,3;4,5,6]

a =

 1 2 3

 4 5 6

>> rot90(a)

 31

Computer Programming Modul Supardi, M.Si

ans =

 3 6

 2 5

 1 4

 tril, this function is used to determine the elements of lower tridiagonal

matrix, and triu is used to determine the elements of upper tridiagonal

matrix.

>> a=[1,2,3;4,5,6]

a =

 1 2 3

 4 5 6

>> tril(a)

ans =

 1 0 0

 4 5 0

>> triu(a)

ans =

 1 2 3

 0 5 6

 32

Computer Programming Modul Supardi, M.Si

Another Functions in Matlab

Masih ada banyak fungsi yang dapat digunakan untuk manipulasi matriks.

Beberapa diantaranya

 det,fungsi ini digunakan untuk menentukan determinan matriks. Ingat,

bahwa matriks yang memimiliki determinan hanyalah matriks bujur sangkar.

>> a=[1,2,3;4,3,-2;-1,5,2];

>> det(a)

ans =

 73

 eig, ini digunakan untuk menentukan nilai eigen.

>> a=[1,2,3;4,3,-2;-1,5,2];

>> eig(a)

ans =

 5.5031

 0.2485 + 3.6337i

 0.2485 – 3.6337i

 inv, fungsi ini digunakan untuk melakukan invers matriks seperti telah

dijelaskan di atas.

 lu, adalah fungsi untuk melakukan dekomposisi matriks menjadi matriks

segitiga bawah dan matriks segitiga atas.

 33

Computer Programming Modul Supardi, M.Si

>> a=[1,2,3;4,3,-2;-1,5,2];

>> [L,U]=lu(a)

L =

 0.25 0.22 1.00

 1.00 0 0

 -0.25 1.00 0

U =

 4.00 3.00 -2.00

 0 5.75 1.50

 0 0 3.17

 34

Computer Programming Modul Supardi, M.Si

CHAPTER 4

INTRODUCTION TO GRAPHICS

Basic 2-D graphs

Graphs in 2-d are drawn with the plot statement. Axes are automatically

created and scaled to include the minimum and maximum data points. The most

common form of plot is plot(x,y) where x and y are vectors with the same length. For

example

x=0:pi/200:10*pi;

 y=cos(x);

 plot(x,y)

We may also use the linspace command to specify thefunction domain, so the

previous scripts can be writen as

 x=linspace(0,10*pi,200);

 35

Picture 4.2 Graph of x vs y

Computer Programming Modul Supardi, M.Si

 y=cos(x);

 plot(x,y)

Multiple plot on the same axes

There are at least two ways of drawing multiple plots on the same axes. The

ways are followings:

1. The simplest way is to use hold to keep the current plot on the axes. All

subsequents plots are added to the axes until hold is released. For example,

x=linspace(0,2*pi,200);

 y1=cos(x);

 plot(x,y1);

 hold;

 y2=cos(x-0.5);

 plot(x,y2);

 y3=cos(x-1.0);

 plot(x,y3)

 36

Picture 4.2 Creating multiple graphs on the same
axes with hold

Computer Programming Modul Supardi, M.Si

2. The second way is to use plot with multiple arguments, e.g

plot(x1,y1,x2,y2,x3,y3,...)

plot the vector pairs (xi,y1), (x2,y2), (x3,y3), etc. For example,

x=linspace(0,2*pi,200);

 y1=cos(x);

 y2=cos(x-0.5);

 y3=cos(x-1.0);

 plot(x,y1,x,y2,x,y3)

Line style, markers and color

Line style, markers and color may be selected for a graph with a string

argument to plot. The general form of using line style, markers and color for a graph

is

plot(x,y,'LineStyle_Marker_Color)

 37

Picture 4.3 Three graphs on the one axes

Computer Programming Modul Supardi, M.Si

 For example

 x=linspace(0,2*pi,200);

 y1=cos(x);

 y2=cos(x-0.5);

 y3=cos(x-1.0);

 plot(x,y1,'-',x,y2,'o',x,y3,':')

grid

Notice that picture 4.4 is displayed with grids. The grids can be accompanied

on the graph with grid command.

 x=linspace(0,2*pi,200);

 y=cos(x);

 plot(x,y,'-squarer')

 38

Picture 4.4. Displaying three graphs with different line
style

Computer Programming Modul Supardi, M.Si

We can specify color and line width on the graph with commands:

 LineWidth: specify line width of the graph

 MarkerEdgeColor: specify the marker color and edge color of the graph.

 MarkerFaceColor: specify the face color of the graph.

 MarkerSize: specify the size of the graph

x = -pi:pi/10:pi;

y = tan(sin(x)) - sin(tan(x));

plot(x,y,'--rs','LineWidth',3,...

 'MarkerEdgeColor','k',...

 'MarkerFaceColor','g',...

 'MarkerSize',5)

The previous script will display a graph y vs x with

 Line style is dash with red color and the marker is square('--rs'),

 Line width is 3

 Color of the edge marker is balack(k),

 39

Picture 4.5. The graph is displayed with line style,
marker and color

Computer Programming Modul Supardi, M.Si

 The face marker is green (g),

 The size of marker is 5

Adding Label, Legend and Title of the Graph

It is very important to add label on the axes of the graph. As it can be used to

make easy understanding the meaning of the graph. The commands that are

common :

 xlabel : to add label on the absis (x axes)

 ylabel : to add label on the ordinat (y axes)

 zlabel : to add label on the absis (z axes)

 tittle : to add title of the graph

 legend : to add legend of the graph

 40

Picture 4.6. The graph is displayed with line style dash, line width 3,
followed by squqre marker with fill color is green and the edge color is
black with size of squre marker is 5.

Computer Programming Modul Supardi, M.Si

For example, notice the script below

clear; close all;

x=-2:0.1:2;

y=-2:0.1:2;

[X,Y]=meshgrid(x,y);

f=-X.*Y.*exp(-2*(X.^2+Y.^2));

mesh(X,Y,f);

xlabel('Sumbu x');

ylabel('Sumbu y');

zlabel('Sumbu z');

title('Contoh judul grafik');

legend('ini contoh legend')

 41

Computer Programming Modul Supardi, M.Si

Adding Text on the Graph

Sometime, we need to add any text to make clearly if there are more than one

graph on the one axes. To add some texts one the graph, we can use gtext(). For

example

clear; close all;

x=linspace(0,2*pi,200);

y1=cos(x);

y2=cos(x-0.5);

y3=cos(x-1.0);

plot(x,y1,x,y2,x,y3);

 42

Picture 4.12

Computer Programming Modul Supardi, M.Si

gtext('y1=cos(x)');gtext('y1=cos(x-0.5)');

gtext('y1=cos(x-1.5)');

We can also add the adding text on the graph with the way as below

clear; close all;

x=linspace(0,2*pi,200);

y1=cos(x);

y2=cos(x-0.5);

y3=cos(x-1.0);

plot(x,y1,x,y2,x,y3)

text(pi/2,cos(pi/2),'\leftarrowy1=cos(x)');

text(pi/3,cos(pi/3-0.5),'\leftarrowy1=cos(x-0.5)');

text(2*pi/3,cos(2*pi/3-1.0),'\leftarrowy1=cos(x-1.0)')

 43

Gambar 4.12 The graph with adding text

Computer Programming Modul Supardi, M.Si

CHAPTER 6

FLOW CONTROL

There are eight flow control statements in MATLAB:

1. if, together with else and elseif, executes a group of statements based on some

logical condition.

2. switch, together with case and otherwise, executes different groups of

statements depending on the value of some logical condition.

3. while executes a group of statements an indefinite number of times, based on

some logical condition.

4. for executes a group of statements a fixed number of times.

5. continue passes control to the next iteration of a for or while loop, skipping

any remaining statements in the body of the loop.

6. break terminates execution of a for or while loop.

7. try...catch changes flow control if an error is detected during execution.

8. return causes execution to return to the invoking function. All flow constructs

use end to indicate the end of the flow control block.

if, else, and elseif evaluates a logical expression and executes a group of

statements based on the value of the expression. In its simplest form, its syntax is

 44

Computer Programming Modul Supardi, M.Si

if (logical_expression)

 statements

end

If the logical expression is true (1), MATLAB executes all the statements between the

if and end lines. It resumes execution at the line following the end statement. If the

condition is false (0), MATLAB skips all the statements between the if and end lines,

and resumes execution at the line following the end statement. For example,

if mod(a,2) == 0

 disp('a is even')

 b = a/2;

end

The if statement can be desribed in the diagram as picture 3 below

 45

Gambar 6.1 Diagram alir percabangan if

if (kondisi)

Perintah

ya

tidak

Computer Programming Modul Supardi, M.Si

Generally, the condition is logical expression, that is, the expression consisting of

relational operator that is true (1) or false (0). The followings are some relational operators:

Relational
Operator

Meaning

< Less than
<= Less than or equal
> Greater than
>= Greater than or equal
== Equal to
~= Not equal

The followings are some examples of logical expression using relational operator

and its meaning

b^2-4*a*c<0 b2−4a c0

b^2>4*a*c b24 ac

b^2-4*a*c==0 b2−4a c =0

b~=4 b≠4

There are also some logical operators as below

Logical
Operator

Symbol Meaning

And & And
Or | Or
Not ~ not
Xor Eksklusiv Or

The following is a table to describe the value of the expression with logical operator.

 46

Computer Programming Modul Supardi, M.Si

a b a&b a|b ~a ~b a xor b

TRUE TRUE TRUE TRUE FALSE FALSE FALSE

TRUE FALSE FALSE TRUE FALSE TRUE TRUE

FALSE TRUE FALSE TRUE TRUE FALSE TRUE

FALSE FALSE FALSE FALSE TRUE TRUE FALSE

1 else and elseif statements

The else statement has no logical condition. The statements associated with it

execute if the preceding if (and possibly elseif condition) is false (0). The elseif

statement has a logical condition that it evaluates if the preceding if (and possibly

elseif condition) is false (0). The statements associated with it execute if its logical

condition is true (1). You can have multiple elseifs within an if block. if n < 0

% If n negative, display error message.

 disp('Input must be positive');

elseif rem(n,2) == 0 % If n positive and even, divide by 2.

 A = n/2;

else

 A = (n+1)/2; % If n positive and odd, increment and divide.

end

 47

Computer Programming Modul Supardi, M.Si

if Statements and Empty ArraysAn if condition that reduces to an empty array

represents a false condition. That is, if A

 S1

else

 S0

end

will execute statement S0 when A is an empty array.

 48

Computer Programming Modul Supardi, M.Si

 49

Computer Programming Modul Supardi, M.Si

 50

Computer Programming Modul Supardi, M.Si

 51

Computer Programming Modul Supardi, M.Si

 52

Computer Programming Modul Supardi, M.Si

 53

Computer Programming Modul Supardi, M.Si

 54

Computer Programming Modul Supardi, M.Si

 55

Computer Programming Modul Supardi, M.Si

CHAPTER 6

FLOW CONTROL

1 Introduction

There are eight flow control statements in MATLAB:

1. if, together with else and elseif, executes a group of statements based on some

logical condition.

2. switch, together with case and otherwise, executes different groups of

statements depending on the value of some logical condition.

3. while executes a group of statements an indefinite number of times, based on

some logical condition.

4. for executes a group of statements a fixed number of times.

5. continue passes control to the next iteration of a for or while loop, skipping

any remaining statements in the body of the loop.

6. break terminates execution of a for or while loop.

7. try...catch changes flow control if an error is detected during execution.

8. return causes execution to return to the invoking function. All flow constructs

 56

Computer Programming Modul Supardi, M.Si

use end to indicate the end of the flow control block.

2 The if Statement

The flow control, if, else, and elseif evaluates a logical expression and

executes a group of statements based on the value of the expression. In its simplest

form, its syntax is

if (logical_expression)

 statements

end

If the logical expression is true (1), MATLAB executes all the statements between

the if and end lines. It resumes execution at the line following the end statement. If

the condition is false (0), MATLAB skips all the statements between the if and end

lines, and resumes execution at the line following the end statement. For example,

a=3;

if (a>2)

 disp('TRUE')

end

The if statement can be desribed in the diagram as picture 3 below

 57

Computer Programming Modul Supardi, M.Si

Generally, the condition is logical expression, that is, the expression consisting of

relational operator that is true (1) or false (0). The followings are some relational operators:

Relational
Operator

Meaning

< Less than
<= Less than or equal
> Greater than
>= Greater than or equal
== Equal to
~= Not equal

The followings are some examples of logical expression using relational operator

and its meaning

b^2-4*a*c<0 b2−4a c0

b^2>4*a*c b24 ac

b^2-4*a*c==0 b2−4a c =0

b~=4 b≠4

 58

Picture 6.1 Ilustration for if statement

if (kondisi)

Perintah

ya

tidak

Computer Programming Modul Supardi, M.Si

There are also some logical operators as below

Logical
Operator

Symbol Meaning

And & And
Or | Or
Not ~ not
Xor Eksklusiv Or

The following is a table to describe the value of the expression with logical operator.

a b a&b a|b ~a ~b a xor b

TRUE TRUE

TRUE FALSE

FALSE TRUE

FALSE FALSE

3 else and elseif statements

The else statement has no logical condition. The statements associated with it

execute if the preceding if (and possibly elseif condition) is false (0). The elseif

statement has a logical condition that it evaluates if the preceding if (and possibly

elseif condition) is false (0). The statements associated with it execute if its logical

condition is true (1). You can have multiple elseifs within an if block. if n < 0

 59

Computer Programming Modul Supardi, M.Si

Exercise 2.

Create a program to express the number of days every a specific month. As you

know that January, Maret, May, July, August, October and Desember have 31 days,

and April, June, September and November have 30 days. February has 28 days, but

when number of the year can be divided by 4, so it has 29 days.

Exercise 3.

Create a computer program to determine the letter grade if it is given some

criterions as below

1. Grade A as numerical grade > 80

2. Grade B as numerical grade in the range 71 and 80

 60

Figure 6.2 Ilustration for if – else statement

if (kondisi)

Perintah

ya

tidak

Perintah

Computer Programming Modul Supardi, M.Si

3. Grade C as numerical grade in the range 61 and 70

4. Grade D as numerical grade in the range 40 and 60

5. Grade E as numerical grade < 39.

4 Switch-case statement

The switch statement executes certain statements based on the value of a variable

or expression. In this example it is used to decide whether a random integer is 1, 2

or 3

d = floor(3*rand) + 1
switch d
case 1

disp(’That’’s a 1!’);
case 2

disp(’That’’s a 2!’);
otherwise

disp(’Must be 3!’);
end

Multiple expressions can be handled in a single case statement by enclosing the case

expression in a cell array

d = floor(10*rand);
switch d
case {2, 4, 6, 8}

disp(’Even’);
case {1, 3, 5, 7, 9}

disp(’Odd’);
otherwise

disp(’Zero’);
end

 61

Computer Programming Modul Supardi, M.Si

Exercise 4.

Write a computer program to compute (1) area of a circle, (2) area of square

(bujur sangkar) and (3) area of rectangle (persegi panjang). In this program, you must

set if your input is 1, it means that you must calculate the area of circle. Similarly, if

your input is 2, so you calculate the area of bujursangkar, and so on.

`

 62

Computer Programming Modul Supardi, M.Si

CHAPTER 7

LOOPING

So far we have seen how to get data into a program, how to do arithmetic,

and how to get some answers out. In this section we look at a new feature:

repetition. This is implemented by the extremely powerful for construct. We will

first look at some examples of its use, followed by explanations. For starters, enter

the following group of statements on the command line. Enter the command format

compact first to make the output neater:

for i = 1:5, disp(i), end

Now change it slightly to

for i = 1:3, disp(i), end

And what about

for i = 1:0, disp(i), end

Can you see what’s happening? The disp statement is repeated five times, three

times, and not at all.

Square rooting with Newton

The square root x of any positive number a may be found using only the

arithmetic operations of addition, subtraction and division, with Newton’s method.

This is an iterative (repetitive) procedure that refines an initial guess. The structure

plan of the algorithm to find the square root, and the program with sample output

for a = 2 is as follows. Run it.

1. Initialize a

 63

Computer Programming Modul Supardi, M.Si

2. Initialize x to a/2

3. Repeat 6 times (say)

Replace x by (x + a/x)/2

Display x

4. Stop.

Here is the program:

a=2;

x = a/2;

for i = 1:6

x=(x+a/x)/2;

disp(x)

end

disp(’Matlab’’s value: ’)

disp(sqrt(2))

Output (after selecting format long):

Enter number to be square-rooted: 2

1.50000000000000

1.41666666666667

1.41421568627451

1.41421356237469

1.41421356237310

1.41421356237310

Matlab’s value:

1.41421356237310

 64

Computer Programming Modul Supardi, M.Si

The value of x converges to a limit, which is √a. Note that it is identical to the value

returned by MATLAB’s sqrt function. Most computers and calculators use a similar

method internally to compute square roots and other standard mathematical

functions.

Factorials!

Run the following program to generate a list of n and n! (spoken as ‘n factorial’, or

‘n shriek’) where

n! = 1 × 2 × 3 × ... × (n − 1) × n.

n = 10;

fact = 1;

for k = 1:n

fact = k * fact;

disp([k fact])

end

Do an experiment to find largest value of n for which MATLAB can find n factorial

(you’d better leave out the disp statement!).

The basic for construct

In general the most common form of the for loop (for use in a program, not on the

command line) is

for index = j:k

statements

end

or

for index = j:m:k

 65

Computer Programming Modul Supardi, M.Si

statements

end

Note the following points carefully:

1. j:k is a vector with elements j, j + 1,j + 2,...,k.

2. j:m:k is a vector with elements j, j + m, j + 2m,..., such that the last element

does not exceed k if m> 0, or is not less than k if m< 0.

3. index must be a variable. Each time through the loop it will contain the next

element of the vector j:k or j:m:k, and for each of these values statements

(which may be one or more statement) are carried out.

The for statement in a single line

If you insist on using for in a single line, here is the general form:

for index = j:k, statements, end

or

for index = j:m:k, statements, end

Note:

1. Don’t forget the commas (semi-colons will also do if appropriate). If you

leave them out you will get an error message.

2. Again, statements can be one or more statements, separated by commas or

semi-colons.

3. If you leave out end, MATLAB will wait for you to enter it. Nothing will

happen until you do so.

Exercise 1.

Create a computer program to calculate ∑
n=1

1000

n with the for statement.

 66

Computer Programming Modul Supardi, M.Si

Exercise 2.

Create a computer program to calculate the series with alternating sign

1−1
2
+ 1

3
−1

4
+⋯+1

n where n=999 with the for statement.

The while Statement.

The while loop is used in cases where the looping process must terminate

when a specified condition is satisfied, and thus the number of passes is not known

in advance. A simple example of a while loop is

x = 5 ;

k = 0 ;

while x < 25

k = k + 1 ;

y(k) = 3 *x;

x = 2 *x -l ;

end

The loop variable x is initially assigned the value 5, and it keeps this value

until the statement x = 2*x - 1 is encountered the first time. Its value then changes to

9. Before each pass through the loop, x is checked to see if its value is less than

25. If so, the pass is made. If not, the loop is skipped and the program

continues to execute any statements following the end statement. The variable x

takes on the values 9, 17, and 33 within the loop. The resulting array y contains

the values y (1) = 15, y (2) = 27, y (3) = 51.

Example

 67

Computer Programming Modul Supardi, M.Si

Create a computer program, when algoritm of the program is given. Here is the

algoritm

1. Generate random integer

2. Ask user for guess

3. While guess is wrong:

If guess is too low

Tell her it is too low

Otherwise

Tell her it is too high

Ask user for new guess

4. Polite congratulations

5. Stop.

Example.

Create a computer program to make an arragement of number shown below

1

1 2

1 2 3

1 2 3 4

1 2 3 4 5

1 2 3 4 5 6

Exercise 3.

 68

Computer Programming Modul Supardi, M.Si

Make a program to calculate the series of number shown below

−1+1/3−1/5+1 /7−1/9+⋯

until the final term less than 10−10 .

 69

Computer Programming Modul Supardi, M.Si

MODUL 8

BREAK AND CONTINUE

break

The break statement will terminate execution of a for loop or while loop

Syntax
break

Description

The break statement will terminate the execution of a for or while loop.

Statements in the loop that appear after the break statement are not executed. In

nested loops, break exits only from the loop in which it occurs. Control passes to the

statement that follows the end of that loop.

Remarks

The break statement is not defined outside a for or while loop. Use return in this

context instead.

Examples

N=20;

for i=1:N

 if (i>5)

 break;

 end

 fprintf('%i. I am a student at UNY \n',i);

 70

Computer Programming Modul Supardi, M.Si

end

The break statement at the above program will exit the for loop when i>5 is

encountered. In other word, the sentence “ I am a student at UNY” will not be

displayed when i=6.

Exercise 1.

 Create a Matlab program to calculate the sumation as below

−1+1/3−1/5+1 /7−1/9+⋯

until the last term is less than 10−4 . Following is algoritm of the program

(1) initialize jum=0,

(2) determine the constant tol=10−4 , N=10000000

(3) initialize sign=1

(4) initialize term=1

(5) Repeat N times, starting from k=1

➔ sign=-sign

➔ term=1/(2*k-1)

➔ if term<tol

➔ stop

➔ jum=jum+sign*term

(6) display the result

(7) end

continue

The continue statement will pass control to the next iteration of FOR or

 71

Computer Programming Modul Supardi, M.Si

WHILE loop in which it appears, skipping any remaining statements in the body

of the FOR or WHILE loop. In nested loops, CONTINUE passes control to the next

iteration of FOR or WHILE loop enclosing it.

Example.

N=20;

for i=1:N

 if (i>5)

 continue;

 end

 fprintf('%i. I am a student at UNY \n',i);

end

Exercise 2.

Calculate the series of number as shown below

1+1/ 2+1/ 4+1/6+1/8+⋯

and the program will be stoped after the final summation is greater than 6 and how

many terms of the series are?

Exercise 3.

Below is shown part of Matlab script

if a>b

 if c>a

 tmp=c;

 else

 tmp=a;

 72

Computer Programming Modul Supardi, M.Si

 end

else

 if c>b

 tmp=c;

 else

 tmp=b;

 end

end

fprintf(tmp)

If a=2, b=4 and c=5, determine the final value of variable tmp.

Exercise 4.

Here is an algoritm which will display the variable N,P and E. Create a

program based on the algoritm

• initialize A=1 and N=6

• Repeat 10 times

• replace N with 2N

• suppose L=NA/2 and U=L1−A2/2

• suppose P=(U+L)/2

• suppose E=(U-L)/2

• displayN,P,E

• End

 73

Computer Programming Modul Supardi, M.Si

CHAPTER 6
SOLVING ALGEBRAIC EQUATION

To solve an algebraic equation in MATLAB we can call upon the solve

command. At its most basic all we have to do is type in the equation we want to

solve enclosed in quotes and hit return. Let’s start by looking at a trivial example.

Suppose that we wanted to use MATLAB to fi nd the value of x that solves:

x + 3 =0

To solve this equation, we just write comand as

>> solve ('x+3=0')

ans =

-3

Now it isn’t necessary to include the right-hand side of the equation. To verify this,

we run this command line

>> solve ('x+3')

ans =

-3

It is possible to include multiple symbols in the equation you pass to solve.

For stance, we might want to have a constant included in an equation like this:

ax + 5 = 0

 74

Computer Programming Modul Supardi, M.Si

>> solve ('a*x+3=0')

ans =

-3/a

But, if we want to determine a specific variable in the equation. For example, we can

determine the variale a from the above equation by writing

>> solve ('a*x+3=0','a')

ans =

-3/x

Solving Quadratic Equation

The solve command can be used to solve higher order equations as quadratic

equation.

>> s=solve ('x^2+3*x-2=0')

s =

 -3/2+1/2*17^(1/2)

 -3/2-1/2*17^(1/2)

The alternative way to write command line is

>> d='x^2+3*x-2=0';

>> s=solve (d)

s =

 75

Computer Programming Modul Supardi, M.Si

 -3/2+1/2*17^(1/2)

 -3/2-1/2*17^(1/2)

Plotting Symbolic Equation

For clearly, let’s create the string to represent the equation:

>> d='x^2+3*x-2';

>> ezplot(d)

 76

MODULE

COMPUTER
PROGRAMMING

by:
Supardi, M.Si

DEPARTMENT OF PHYSICS EDUCATION
FACULTY OF MATHEMATICS AND NATURAL SCIENCES

YOGYAKARTA STATE UNIVERSITY
2011

	1 The Advantage of Matlab
	2 The Disadvantage of Matlab
	3 The Matlab Dekstop
	Exercise
	1 Funncion and Constants
	2 Using Meshgrid
	3 Special Elementar Function Matlab
	feval()
	 Polyval
	Polyfit
	Fungsi polyder
	Fungsi poly
	Fungsi conv

	1 CREATING LARGER VECTOR FROM EXISTING VARIABLES
	2 CREATING A VECTOR WITH UNIFORMLY SPACED ELEMENTS
	3 Characterizing Vector
	Accessing the array elements
	Replication of row and column
	Deleting rows and columns
	Array manipulation
	Another Functions in Matlab
	Basic 2-D graphs
	Multiple plot on the same axes
	Line style, markers and color
	Adding Label, Legend and Title of the Graph
	Adding Text on the Graph

	1 else and elseif statements
	1 Introduction
	2 The if Statement
	3 else and elseif statements
	4 Switch-case statement

	break
	continue
	CHAPTER 6
	Solving Quadratic Equation
	Plotting Symbolic Equation

