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UNIT 1

Matlab Essential 1

Learning Objective

The objectives of this unit are to introduce some of fundamentals of Matlab programming, 
including

1) Operators, variables and expression

2) How  to create a variable

3) Assignment operator

Concepts

Basic Operator

Basic  aritmathic  operators  include  addition  (+),  subtraction  (-),  multiplication  (-),

division (/) and power (^). For example,

>> a=10
a =
    10
>> a^2
ans =
   100
>> a^3
ans =
        1000
>> 1+2*4/3

ans =
    3.6667

>> 1+2/4*3
ans =

   2.5000

Notice the example number 4 and 5. Here, we present the complex operation involving

+, * and /. We can write the operation more clearly of 1+2*4/3 with sign ( ) as
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1+((2*4)/3) = 1+8/3

         = 1+ 2.667

= 3.667

For the operation of 1+2/4*3, we  can write again 

1+2/4*3 = 1+(2/4)*3

     = 1 + 0.5 *3

                                 = 2.5000

Matlab has some rules in executing the mathematical operation 

 Matlab gives priority to the mathematical operation in the brackets.

 The mathematical operation involving the operator * and / (could be * / or / *) work

from left to right.

 The mathematical operation involving the operator + and – (could be + - or   - +) also

work from left to right.

Assignment Operator

The sign “=” is called as assignment operator. There are two forms of mathematical equation as below 

x4=7 and x=7−4

When we have an equation as point 1) and write it into Matlab statement, Matlab will show the error 
comment as below

>> x+4=7;

??? x+4=7;

       |

Error: Missing operator, comma, or semicolon.

Whereas, x can express the value if it is given a command to calculate a specific operation.

>> x=7-4

x =

     3

Creating Variable

Matlab does not need any variable declarations or dimension when we want to use the

variable. In Matlab, variable will be created automatically and saved whenever finding the
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new variable. Beside that,  the very important thing is that Matlab is case sensitive. It means

that upper case letter and lower case letter are differentiated. Followings are some rules when

we will create a variable.

1. Variable could not be initiated by  number, for example 2abc, 45y, 3ok43

2. Variable can consist of letter and number as ok45, ok45ok, abc432.

3. Variable could not use any special character as well as %, #, - , + or =. For example %ok,

net-cost, %x, @sign dsb.

4. Avoid to create variable using special names like  pi, eps, i, j. Because, the ones have

been used by Matlab to assign any special value. As you know that pi=22/7, eps=
Object 3

, i

and  j assign the value 
Object 4

.

5. It is recomended that the variable we have created is simple but meaningful.

Activity

1. State the problem

Calculate the value of z from the equation as shown below

z=
a−

b
c−d

a
b

cd

2. Define the inputs and outputs

The inputs of this problem are any values of a, b, c and d. The values  of input may not be 
imaginary. While, the output of this problem is z after applying any arithmetic operation of a,b,c
and d.

2. Describe the algorithm

This problem can be broken down into three steps:

1) Get the values of inputs a,b,c,and d

2) Apply the basic arithmetic operation to get z.

3) Write out the output (e.g the z)

PROBLEMS

1. Determine which of the followings are valid variable. If invalid, explain why

a) b32 b) 2d
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c) s34d

d) speed_bicycle

e) _speed

f) %velocity

g) velocity&

h) speed bicycle

i) 'a'nu

j) pi

k) realmax

l) a^3

2. Determine which of the following numbers are not accepted by Matlab. 

a) 2,34

b) 2.32

c) 0.32

d) -3214

e) 2.3e-4

f) 5.2e+2

g) 5e^3

h) 3.43e5.3

i) 34.2*e^2

3. Interprete the following statements in Matlab

a) abc

b)
a
b
−c

c) p
w

u−v

d) x y z

e) −bb2
−4 ac

2a

f) x y z

4. Evaluate the following Matlab statement. Firstly, you must calculate manually and then check 
your answer with Matlab.

a)

1
3
2
4

b)
2×3

4
5

c) 2−
3×4

6

d)
3−4×2 

4
−

6
2

e) 3−
4

23×5

f) 59
4 5

3

g) 43[ 3
4


9
23 ]
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Recommended Reading

Chapman, S.J. 2002. Matlab Programming for Engineers 2nd, USA: Brooks/Cole.

Hahn, B.D; Valentine, D.T. 2007. Essential Matlab for Engineers and Scientists 3rd , Amsterdam: 
Elesevier

Reporting

The results of this UNIT must be reported to lecterer in the next meeting. Each student must 
report individually and present their results to get the feedbacks from the lecturer. 
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UNIT 2

Matlab Essential 2

Learning Objective

The objectives of this Unit are to introduce some of fundamentals of Matlab programming, 
including:

1) Numbering format and rounding number commands.

2) Additional Matlab command, built-in functions

3) Essential Matlab functions

4) Matlab special constants

Concepts

Numbering Format 

The followings are numbering format provided by Matlab. We can activate it by setting

Matlab preference or writing manually.

Table 2.1 Numbering Format

No Command Description Output
1 >> format short Fixed-point  with  4

decimal digits
3.1429  (  4  angka  di
belakang koma)

2 >> format long Fixed-point  with  14
decimal digits

3.14285714285714 

3 >> format short e Scientific  notation

with 4 decimal digits

3.1429e+000

4 >> format long e Scientific  notation

with 14 decimal digits

3.142857142857143e+

000
5 >> format rational Rational expression 22/7
6 >> format short g Best of 4 digit fixed or

floating-point

3.14286

7 >> format long g Best of 15 digit fixed or

floating-point

3.14285714285714

8 >> format bank 2 decimal digits 3.14
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Rounding Number Commands

Matlab has some commands to round any number to specific integer number.

 ceil(x) : Round x to the nearest integer number toward ∞

 floor(x): round x to the nearest integer number toward - ∞ .

 fix(x) :  round x to the nearest integer number toward 0.

 round(x): round x to the nearest integer number.

 mod(x,y): returns the remainder after x is divided by y with definition x-n*y where

n=floor(x./y). 

 abs(x): absolute number of x.

 sign(x): sign of x.

 factor(x): main factor of x.

Additional MatlabCommands

Matlab have some additional commands. There are

1. clc : cleaning the screen on the command window

2. close all : closing all figures displied before.

3. clear : deleting all data in the Matlab memory.

4. cd : changing the directory.

5. pwd : this command is used if we want to know where we are now. 

6. dir : this command is used to list all files in the current directory.

7. mkdir : be used to create a new directory.

8. delete : be used to delate a file

9. who : displaying all variable in the current time.

10. Whos :  displaying all  variable  in the current  time together  with information

about size, byte, class etc.
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11. what : dispying all files with extention .M (M-File)

12. lookfor : command for looking for a file with keyword.

Built-In Functios

Trigonometric Functions

There  are  many  trigonometric  functions  we  have  known.  The  function  include  in

Matlab built in functions. Here are some functions included in trigonometric functions: sin(),

cos(),  tan(),  sinh(),  cosh(),  tanh(),  asin(),  acos(),  atan(),  asinh(),  acosh()dan  atanh().  The

important thing is that argument must be in radian.

 Essential Matlab Function

Beside  of  trigonometric  functions,  Matlab  also  provides  many essential   functions.

There are abs(), sqrt(), exp(), log(), log10(), log2(). For more clearly, notice table 2.2 below

Table 2.2 Essential Matlab Functions

No Nama variabel Keterangan

1 abs(x) Returns absolute value of x, or ∣x∣

2 sqrt(x) Returns square root of (x), or x

3 exp(x) Returns eponential value of x or ex

4 log(x) Returns the natural logarithm of x, or ln(x)

5 log10(x) Returns the base 10 algorithm of x, or log(x)

6 log2(x) Returns the base 2 algorithm of x, or  log2
x 

Matlab Special Constants

Matlab provides some special constants. We recommend you to avoid giving a name of

variable using the same name with the constants. Table 2.3 shows some special functions:

Table 2.3 Special functions

No Constants Description

1 pi  3.14159265...
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2 i Imaginary unit  −1

3 j The same as i

4 eps Floating-point relative accuracy

5 realmin The smallest floating-point number

6 realmax The biggest floating-point number

7 inf Infinite number

8 NaN Not-a-Number

Activity

1. State the problem

Conversion from Celcius to Fahrenheit degree. As we know that there are some types of 
thermometer that can be used to measure the temperature of bodies. There are Celcius (very 
common used), Fahrenheit, Reamur and Kelvin. Now, we want to calculate the conversion from
celcius to Fahrenheit based on equation

C=
5
9
F−32

2. Define the inputs and output

The inputs of this problem is just degree in F. While, the output of this problem is C, that is the 
resulting conversion.

3. Describe the algorithm

This problem can be broken down into three steps:

1) Read the values of input F.

2) Apply the basic arithmetic operation to get C.

3) Write out the output (e.g the z)

PROBLEMS

1. Use Matlab to evaluate thefollowing expression. Answer are in bracket again.

(a) 2

(b)
12
23

(c) the sume of 3 and 9 divided by their 
product.

(d) 234

(e) the square of 

(f) 33

(g) 1/2

(h)
1

2

(i) the cube root of the product of 3.2 and 
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2.3

(j)
1

2
34

1
2

4−3

2. Water freezes at 32o and boils at 212o on the Fahrenheit scale. If C and F are Celcius and 

Fahrenheit temperatures, the Formula

F= 9/5 C + 32

convert from Celcius to Fahrenheit Scale. Use the Matlab command line to convert a 

temperature of 37O C (normal human temperature).

3. Scientist often has to convert from one unit to another. Form example, convert 5 acres to 

hectars, given that an acre is 4840 square yards, a yard is 36 inches, an inch is 2.54 cm, and a 

hectar is 10000 m2. The best approach is to develop a formula to convert x acres to hectars. You

can do this as follows.

One square yard = (36 x 2.54)2 cm2

so one acre           = 4840 x (36 x 2.54)2 cm2

       = 0.4047 x 108 cm2

       =  0.4047 hectare

so x acres        =  0.4047 x hectare

Based on the formula, we can do this with Matlab 

x= 3;

h=0.4047 * x;

disp(h)

Develop formulae for the following conversions, and use Matlab to find the unswer

(a) Convert 22 yards to meters.

(b) One pound = 454 grams. Convert 100 kilograms to pounds.

(c) Convert  49 meters/second (terminal velocity for person-shaped object) to km/hour.

(d) One atmosphere pressure  = 14.7 pounds pre square inch (psi) = 101.325 kilo Pascals 
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(kPa). Conver 40 psi to kPa.

(e) One calorie = 4.4184 joules. Convert 6.25 kilojoules to calories.

4. The following Matlab statements plot the function y x =2 e−0.2 x for the range 0x10

x=0:0.1:10;

y=2 * exp(-0.2 * x);

plot(x,y)

Use the Matlab edit Window to create a new empty  file, type the statements into the file, 
save the file with the name test1.m. Bact to command window and execute the file by typing test1. 
What result do you get?

Recommended Reading

Chapman, S.J. 2002. Matlab Programming for Engineers 2nd, USA: Brooks/Cole.

Hahn, B.D; Valentine, D.T. 2007. Essential Matlab for Engineers and Scientists 3rd , Amsterdam: 
Elesevier

Reporting

The results of this UNIT must be reported to lecterer in the next meeting. Each student must 
report individually and present their results to get the feedbacks from the lecturer. 
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UNIT 3

Matlab Essential 3

Learning Objective

The objectives of this unit are to introduce some of basic consepts of Matab programming, 
including:

1. How to use the built-in functions provided by Matlab: meshgrid, feval, polyval, polyfit, 
polyder, roots, poly, conv and deconv.

2. Applying the built-in functions to solve the problems.

Concepts

meshgrid

Meshgrid function is used to create the grids on the x-y plane. This function will be 
useful when we want to plot 3 dimensional graph.

[X,Y] = meshgrid(x,y) transforms the domain specified by vectors x and y into arrays X 
and Y, which can be used to evaluate functions of two variables and three-dimensional 
mesh/surface plots. The rows of the output array X are copies of the vector x; columns of the 
output array Y are copies of the vector y. 

[X,Y] = meshgrid(x) is the same as [X,Y] = meshgrid(x,x). 

[X,Y,Z] = meshgrid(x,y,z) produces three-dimensional arrays used to evaluate functions
of three variables and three-dimensional volumetric plots.

Example

Determine graph of the function z=x2− y2 with spcified domain 0x5 and
0 y0

Solution

Firstly, we must create the grids on x-y plane by using meshgrid function.

>> x=0:5;

>> y=0:5;

>> [X Y]=meshgrid(x,y);

Efect of applying mesgrid function is that elements of matrix X are formed by x and the 
elements of matrix Y are formed by y. Therefor, the value of z can be determined by
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>> z=X.^2-Y.^2;

As example, the point of grid (3,4) has value z=32−22=5 . To display the graph, we 
can use mesh function.

>> mesh(X,Y,z)

feval() 

Feval() function is usually used to evaluate a function. To do that, the first step is to 
create the function we want to evaluate. In this example, we will use a function provided by 
Matlab, that is  humps.

To evaluate the humps function, we must create a handle function by using notation @ 
(read  et).

>> fhandle=@humps;

>> feval(fhandle,1)

ans =

    16

polyval

polyval is used to determine the value of polynomial in the form

px =a0a1x 1
a2 x2

a3 x3
a4 x4

...an−1x n−1
an xn

Matlab has a simple way to express polynomial function as below

p=[ an an−1 ... a3 a2 a1 a0 ]

Example

Given a polynomial px =x 4
3x 2

4x5 . The polynomial will be evaluated at
x=2, −3 and 4. 

Solution

● Firstly, we must write the polynomial on the Matlab expression, that is p=[1 0 3 4 5].

● Secondly, we determine the point of evaluation, that is x=[2,-3,4]

● Thirdly, evaluate the polynomial on point x, that is polyval(p,x)

If we write on the command window 

>> p=[1 0 3 4 5];

>> x=[2,-3,4];
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>> polyval(p,x)

ans =

    41   101   325

Polyfit

Polyfit function will be very useful when we have to fit the data we have obtained from
an experiment. We can fit our experiment data with linear, quadratic, third order polynomial, 
etc depending on behaviour of the data. The general form of fit function is

p = polyfit(x,y,n)

with n is order of the polynomial we are applied to fit the experiment data.

polyder

Polyder function is used to differentiate a polynomial. The general form of the function
is

k = polyder(p)

or

k = polyder(a,b)

Example 

Differentiate the polynomial below

px =4x 4
3x 2

4x5

Solution

p=[4 0 3 4 5];

polyder(p)

ans =

    16     0     6     4

We can write the result on the mathematical expression as

16 x 3
6 x4

Example

Differentiate the polynomial below 

px =x4
3 x2

4x52x3
x 2

3 x1
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Solution

a=[4 0 3 4 5];

b=[2 1 3 1];

p=polyder(a,b)

p =

    56    24    90    60    69    40    19

or

px =56 x6
24 x 5

90 x 4
60x3

69 x 2
40 x19

roots

Roots function is used to find  the roots of a n order polynomial. The general form of 
the function is

r = roots(c)

Example

Given a polynomial px =4x 4
3x 2

4x5 . Find roots of the polynomial using 
roots function.

Solution

Polynomial px =4x 43x 24x5 can be writen in Matlab expression as

p=[ 4 0 3 4 5]

By using roots function

roots(p)

ans =

   0.6364 + 1.0830i

   0.6364 - 1.0830i

  -0.6364 + 0.6222i

  -0.6364 - 0.6222i 

poly

Poly function is used to obtain a polynomial when the roots of polynomial have been 
ditermined.The general form of poly function is
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p = poly(r)

Example

Given roots of polynomial p are 1,2,3,4 and 5. Find form of the polynomial

Solution

>> r=[1 2 3 4 5];

>> poly(r)

ans =

     1   -15    85  -225   274  -120

or

px =x 5
−15 x4

85 x 3
−225 x 2

274 x−120

conv

Conv function is used to multiply two polynomials. The general form of the function is

w = conv(u,v)

Example

Given two polynomials u x =x2
3x2 and v x =x 3

2x 2
3x1 . Find the 

multiplication result of the two polynomials.

Solution

>> u=[1 3 2];

>> v=[1 2 3 1];

>> conv(u,v)

ans =

     1     5    11    14     9     2

or

x5
5 x4

11 x 3
14 x 2

9x2

deconv

Deconf function is opposite to conv. This function will perfom division operation of tho 
functions. General form of this function is

[q,r] = deconv(v,u)
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where  q and r are result and residue respectivefully.

Example

Given two polynomials p1 x =2x 4
3x 3

x 2
4x5 and p2 x =x2

3x4 . Find 
result of the division operation and its residue from p1 and p2 .

Solution

Using deconv function, we can find the division result and its residue,

>> p1=[2 3 1 4 5];

>> p2=[1 3 4];

>> [q r]=deconv(p1,p2)

q =

     2    -3     2

r =

     0     0     0    10    -3

or, if we express into mathematical expression

q=2x 2
−3x2 dan r =10 x−3

Activity

1. State the problem

Suppose that we perfomed an experiment, and then we obtained experiment data as 
shown belows

x 1 2 3 4 5 6 7 8 9 10

y 1.3 3.2 11.3 15.1 25.5 38.2 47.1 68.2 81.3 98.2

Based on data we have obtained, the first thing we have to think about data is to guess 
the trend of the data. Is it tend to linear, quadratic or other. It is crucial because one is to 
determine the order of polynomial.

2. Define the inputs and output

The inputs of this program are data as shown on data table above. There are data of 
independent variables x and data of dependent variables y. Make them as vector. Then,
the outputs of this data fitting program are a specific polynomial p and data evaluation
of p. You can use polyval to evaluate the polynomial.

3. Describe the algorithm
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This problem can be broken down into three steps:

(a) Read the values of input, namely, x and y as a vector of each.

(b) Apply the predefined functions, these are  polyfit to fit the data to specific polynomial 
and polyval to evaluate the polynomial at any points.

(c) Write out the output (e.g the polynomial p and evaluation data table of p )

Problems

1. The ideal gas law relates the pressure P, volume V, absolute temperature T, and amount of gas n.
The law is

P=
nRT
V

where R is the gas constant. An engeener must design a large natural gas storage tank to be 
expandable to maintain the pressure constant at 2.2 atmospheres. In Desember when the 
temperatures is 4oF (-15oC), the volume of gas in the tank is 28.500 ft3. What will the volume of
the same quantity of gas be in July when the temperature is 88o F (31oC)? (Hint: Use the fact 
that n,R and P are constant in this problem. Note also that K= oC +273.2).

2. Use Matlab to calculate

(a) e −2.1 
3

3.47 log 14
4
287

(b) 3.4
7 log 14

4 287

(c) cos2 4.12

6 
(d) cos 4.12

6 
2

3. Use Matlab to evaluate

8 x3−9 x2−7

10 x35 x2−3 x−7
 at x=5

4. Given a function with two variables

z=sin
r 
r

, where r= x2
 y2 and −8x8 and −8 y8

(a) Find array  X and Y as result of meshgrid from the variable x and y.

(b) Plot the result in 3D graph

5. Given a polynomial 

P x =x8−3 x57 x2−10 x1

Find the value of P at point x=1,-4, 10, and 3.

20



Recommended Reading

Chapman, S.J. 2002. Matlab Programming for Engineers 2nd, USA: Brooks/Cole.

Hahn, B.D; Valentine, D.T. 2007. Essential Matlab for Engineers and Scientists 3rd , Amsterdam: 
Elesevier

Reporting

The results of this UNIT must be reported to lecterer in the next meeting. Each student must 
report individually and present their results to get the feedbacks from the lecturer. 
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UNIT 4

MATRIX

Learning Objectives

The objective of this unit are to introduce some of basic concepts related to matrix:

1. Create a matrix including coulomn and row matrix.

2. Identify individual element of a matrix.

3. Use the colon operator and arithmetic operator. 

4. Delete the row and coulomn of a matrix and manipulate the elements  .

5. Create a sparse matrix

Concepts

As we know that Matlab stands for Matrix Laboratory, because Matlab is designed specially to 
work with data arranged in the form of matrices. In this chapter, matrix has two distint meanings:

1. an arrangement of data in rows and coulomns

2. a mathematical object, for which mathematical operations are defined.

Creating Matrices

Matlab have ability to create matrices simply. The complicated matrices can be constructed by 
simpler one. Notice how to make matrices below. Use semicolon to indicate the end of a row when 
entering a matrix. 

>> A=[1,2,3;4,3,4;3,2,1];

>> x=[4,5,6];

>> B=[A;x]

B =

     1     2     3

     4     3     4

     3     2     1

     4     5     6

Subscript

Individual element of matrix are referenced with two subscripts, the first for row and the second

for colomn.
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>> A=[1,2,3;4,3,4;3,2,1];

>> A(3,3)

ans =

     1

Transpose

Transpose is defined to change elements of matrix in row to colomn and reverse elements in  
colomn to row .

>> A=[1,2;3,4];

>> b=A'

b =

     1     3

     2     4

The colon operator

The colon operator has extremely powerful, and provides very efficient ways of handling 
matrices. Notice example below

>> A=[1,2,3;4,3,4;3,2,1];

>> A(1:2;2:3)

>> A(1:2,2:3)

ans =

     2     3

     3     4

(returns first and second rows, second and third colomns). The statement 

( 1 , : ) result in

1 2 3

(returns first row), and statement A(1:2,2:3)=zeros(2)

A(1:2,2:3)=zeros(2) result in

     1     0     0

     4     0     0

     3     2     1
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We can also construct a table based on the colon operator. Suppose we want a table trig of the 
sines and cosines of the angles 0o to 180o in steps of 30o. The following statement achieve this:

>> x=[0:30:180]';

>> trig(:,1)=x;

>> trig(:,2)=sin(pi/180*x);

>> trig(:,3)=cos(pi/180*x);

>> trig

trig =

         0         0    1.0000

   30.0000    0.5000    0.8660

   60.0000    0.8660    0.5000

   90.0000    1.0000    0.0000

  120.0000    0.8660   -0.5000

  150.0000    0.5000   -0.8660

  180.0000    0.0000   -1.0000

The colon operator is ideal for the sort of row operation performed in Gauss reduction. For example, if 
A is the matrix

A=[1,2,3;4,3,4;3,2,1];

the statement 

A(2,:)=A(2,:)-A(2,1)/A(1,1)*A(1,:)

resulting in

1     2     3

     0    -5    -8

     3     2     1

and then the statement

>> A(3,:)=A(3,:)-A(3,1)/A(1,1)*A(1,:)

A =

     1     2     3

     0    -5    -8

     0    -4    -8

>> A(3,:)=A(3,:)-A(3,2)/A(2,2)*A(2,:)

A =

    1.0000    2.0000    3.0000
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         0       -5.0000   -8.0000

         0         0           -1.6000

The keyword end refers to the last elements of a vector. Note that vector is special case of 

matrix, because it only has one row or colomn. For example, if A is a vector, the statement 

sum(A(1:end))

returns the sum of array elements from 1 to last one.

Duplicating Row and Colomn

Sometimes, it is useful to create a matrix where all rows or colomns are the same. It is can be 

done with the repmat function. Suppose  A is a row vector,

>> A=[1,2,3];

>> repmat(A,[3 1])

ans =

     1     2     3

     1     2     3

     1     2     3

>> repmat(A,[1 3])

ans =

     1     2     3     1     2     3     1     2     3

The alternative syntax for repmat is,

>> repmat(A,3,1)

Deleting rows or Colomns

We can use colomn operator and the empty array to delete entire rows or colomns. For example

>> A=[1,2,3;4,3,4;3,2,1];

>> A(1,:)=[]

A =

     4     3     4

     3     2     1

>> A(:,1)=[]

A =
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     3     4

     2     1

Specialized Matrices

The followings are functions that could be used to generate arbitrary matrices when we can not 
think of one to generate our self.

1. pascal (n), the function is used to generate a pascal matrix.

2. magic(n), the function is used to generate a magic matrix.

3. zeros(n), the function is used to generate an array of all zeros.

4. ones(n) generates an array of all ones

5. rand(n) generates an array with uniformly random distributed elements.

6. randn(n) generates an array with normally random distributed elements.

Manipulating Matrices

Here are some function s for manipulating matrices. See help for details

1. diag extracts or creates a diagonal

2. fliplr flip from left to right.

3. Flipud flip  from top to down

4. rot90 rotate 90o

5. tril extracts the lower trianguler part, e.g, the statement

>> A=pascal(4);

>> tril(A)

ans =

     1     0     0     0

     1     2     0     0

     1     3     6     0

     1     4    10    20

Matrix Multiplication

The matrix product C = AB is defined when the column dimension of A is equal to the row 
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dimension of B, or when one of them is a scalar. If A is m-by-p and B is p-by-n, their product C is m-

by-n. The product can actually be defined using MATLAB for loops, colon notation, and vector dot 

products. A = pascal(3);

B = magic(3);

m = 3; n = 3;

for i = 1:m

     for j = 1:n

        C(i,j) = A(i,:)*B(:,j);

     end

end 

MATLAB uses a single asterisk to denote matrix multiplication. The next two examples 

illustrate the fact that matrix multiplication is not commutative; AB is usually not equal to BA. X = 

A*B

X =

      15    15    15

      26    38    26

      41    70    39

Y = B*A

Y =

      15    28    47

      15    34    60

      15    28    43

A matrix can be multiplied on the right by a column vector and on the left by a row vector. u = 

[3; 1; 4];

x = A*u

x =

       8
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      17

      30

v = [2 0 -1];

y = v*B

y =

      12    -7    10

Rectangular matrix multiplications must satisfy the dimension compatibility conditions. C = 

fix(10*rand(3,2));

X = A*C

X =

      17    19

      31    41

      51    70

Y = C*A

Error using ==> *

Inner matrix dimensions must agree.

Anything can be multiplied by a scalar. s = 7;

w = s*v

w =

      14     0    -7

Sparse Matrix

In the physics and engineering, we often find the problems involving matrix containing a large 

enough percentage of zeros. The density of a matrix is the number of non-zero elements divided by the 

total elements of matrix. The low density matrix are often good candidates for use of the sparse format. 

The general form of using sparse function

sparse(row,colomn,input,m,n)

For example, if we want to create a 5-by-5 sparse matrix as below
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[
2 −1 0 0 0

−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

]
we can create simply,

>> p=sparse(1:5,1:5,2,5,5);

>> p=p+sparse(2:5,1:4,-1,5,5);

>> p=p+sparse(1:4,2:5,-1,5,5);

>> full(p)

ans =

          2.00         -1.00           0              0               0

         -1.00          2.00         -1.00          0               0

             0          -1.00           2.00         -1.00          0

             0             0              -1.00         2.00         -1.00

             0             0                0             -1.00          2.00

Activity

1. State the program

In the first program, we will solve a problem related to sparse matrix. Because it is often 

applied in physics. The form of a sparse matrix we have to create  is

A=[
2 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2

]
2. The Inputs and Output of program

In this program we will apply the sparse matrix function. The inputs of this program are non-

zero elements (-1 and 2),vector of row and columns indices and the number of row and column 

29



of the matrix. Ouput of this program is the form of matrix that it is shown as above.

3. Design the algorithm

This program can be broken down into three steps:

Read the inputs

Manipulate the spare matrix

Write out the outputs

We will discuss one-by-one these steps to make us clearly. The resulting pseucode for these 

steps are just follows:

a) Prompt the user to input a vector of row and column indices (i,j, respectifully), non-zero

elements (-1 and 2), the number of row and columns (m and n).

b) Read the inputs i, j, non-zero, m and n.

c) A <----- zeros(m,n)

A <----- sparse(i:m, j:n,2,m,n);

A <----- A+sparse(i+1:m, j : n-1, -1 , m,n);

A <----- A+sparse(i:m-1, j+1: n,-1, m , n);

 full(A)

Problems

1. Given two vectors A=(1  -3  2  5  6) and B=(4; 1;   3;   5;   1). Find

(a) magnitude of the two vectors

(b) multiplication product of  the two vectors

2. Given vector A=(2+i  -3+5i  5   1-3i   2). 

(a) Find the transpose of matrix A

(b) Find the transpose conjugate of matrix A

(c) Find the magnitude of A.

3. Suppose that we have a few numbers 3,2,3,1 and 6. Create a colomn and row vector with the 
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given nimber elements..

4. Given  A=[1,2,3,5,3] and B=[ 4;3;2;5;2]. Find

(a) Cross product of vector A and B.

(b) transpose of B

(c) Dot product of vector A and B.

5. Given two matrices A and B

A= 3 2 −1 2 4
−2 1 1 3 2
8 2 −4 3 −5 B=4 1 −1 2 7

6 3 0 3 6
1 −2 14 2 −5

(a) Find multiplication product of A and B

(b) Find invers of A and B

(c) Find AA-1 , AB, BB-1 and A-1B-1.

6. Create command lines to construct a sparse matrix with order 7-by-7 as belows

(a) A=
3 0 0 0 0 0 0
0 3 0 0 0 0 0
0 0 3 0 0 0 0
0 0 0 3 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 3 0
0 0 0 0 0 0 3

 (b) A=
3 4 5 6 7 8 9
4 3 0 0 0 0 0
5 0 3 0 0 0 0
6 0 0 3 0 0 0
7 0 0 0 0 0 0
8 0 0 0 0 3 0
9 0 0 0 0 0 3


Recommended Reading

Chapman, S.J. 2002. Matlab Programming for Engineers 2nd, USA: Brooks/Cole.

Hahn, B.D; Valentine, D.T. 2007. Essential Matlab for Engineers and Scientists 3rd , Amsterdam: 
Elesevier

Reporting

The results of this UNIT must be reported to lecterer in the next meeting. Each student must 

report individually and present their results to get the feedbacks from the lecturer. 
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UNIT 5

BRANCHING STATEMENTS

Learning Objective

The objectives of this unit are to introduce some of basic concepts of Matlab, including:

1. Logic operator and its application.

2. The if constructor and its applications to solve the mathematical problems.

Concepts

In this topic we will discuss the branching statements that allow us to control the order in which
statements are executed in a program. Before that, we are going to introduce some relational operator 
which will be very important .

Relational Operator

Operator Operation
==
~=
<
<=
>
>=

Equal to
Not equal to
Less than
Less than or equal to
Greater than
Greater than or equal to

Logic Operator

Logic operators are operators with one or two logical operands that yield logical result. There
three main logic operators: AND, OR  and EXCLUSIVE OR (XOR)

Operator Operation
&
|
xor
~

Logical AND
Logical OR
Logical XOR
Logical NOT

Branches

The if Construct

The if construct has the form

if control_expr_1
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Statement 1 )

Statement 2  )  BLOCK 1

.... )

else if (control_expr_2)

Statement 1 )

Statement 2 ) BLOCK 2

.... )

else

Statement 1 )

Statement 2 )  BLOCK 3

.... )

end

where the control expression control operation of the if construct. If the value of control expression is

non-zero,  the statements in  Block 1 will  be executed.  Otherwise,  the control  expression 2 will  be

checked. It the value of control expression 2 is true, then statements in Block 2 will be executed. If

control expression 1 and 2 are false, then statements in Block 3 will be executed.

Activity

1. State the problems

Calculate and write out the roots of a quadratic equation. We must give the category  of  th

roots, whether the roots are real or imaginary.

2. Define Inputs and Ouputs

The inputs required in this program are the coefficients  a, b and c of the quadratic equation

ax2bxc=0

The outputs of this program are the roots x1 and x2 . In addition, we must write out

type of the roots, whether they are real or imaginary.

3. Design the algorithm

This program can be broken down into three steps:

1) Read the inputs data
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2) Calculate the roots

3) Write out the roots

As you know that there are three possible ways to calculate the roots, depending on the value of

its discriminant. If the value of discriminant is greater than 0, so the two roots are real. If the

value of the discriminant is equal to 0, the two roots are the same and if the discriminant is less

than 0, so the roots are imaginary. Considering  the problem, it is logical to implement this

algorithm with a three-branched if construct. The resulting pseucode is

Prompt the user to input the three coefficients a,b and c

Read the coefficients a, b and c

Determine the discriminant D=b2−4ac

if D > 0

x1 
−bD

2a

x2 
−b−D

2a

Give a message that the equation has two distint roots and the 

roots are real. Write out the roots.

Else if D ==0

x1= x2 
−bD

2 a

Give a message that the two roots are the same and real.

Write out the roots.

Else

real_part <------ -b/(2*a)

imag_part <----- sqrt(abs(D))/(2*a)

Give a message that the equation has two distint complex roots.

Write out the roots.
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Problems

1. Write a program to evaluate a function f(x,y) for any user-specified values x and y. The function

f(x,y) is defined as follows

f x , y ={
x y , for x0, y0
x y2 , for x0, y0
x2

 y , for x0, y0
x2

 y2, for x0, y0

2. Suppose that we must give the final grade after the final examination. The program will read in

a numerical grade and assign a letter grade to it according to the following table

grade > 95 A

95 >=  grade > 86 B

86 >= grade > 76 C

76 >= grade > 66 D

66 >= grade > 0 E

Write an if contruct to assign the grade as described above using (a) multiple elseif clauses

and (b) nested if construct.

Recommended Reading

Chapman, S.J. 2002. Matlab Programming for Engineers 2nd, USA: Brooks/Cole.

Hahn, B.D; Valentine, D.T. 2007. Essential Matlab for Engineers and Scientists 3rd , Amsterdam: 
Elesevier

Reporting

The results of this lab work must be reported to lecterer in the next meeting. Each  student

must report individually and present their results to get the feedbacks from the lecturer. 
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UNIT 6

REPEATING WITH FOR

Learning Objectives

The objectives of this unit are to introduce some of basic concepts of Matlab including:

1. The basic construct of repeating for.

2. The use of the repeating for, its application to a numerical method.

3. Avoiding for with vectorizing

Concepts

Statement for is very useful in constructing  computer  programming. To describe how the 
statement do, notice statement s below:

for i =1:5; disp(i);

for i=1:3; disp(i);

for i=1:0; disp(i)

Square root with Newton's Method

The square root x of any positive number a may be found using only arithmetic operation of 
addition, subtraction abd division with Newton's method. This is an iterative method that refines an 
initial guess. The procedure for finding the square root of x is the following

1. initial guess a

2. initialize x to a/2

3. repeat 6 times (say)

1. replace x by (x+a/x)/2

2. display x

4. Stop

Factorial

Factorial of an integer number n is defined as

n !=1×2×3×4⋯n−1×n

Here are structure plan to create factorial program

1. Determine the number to be fartorized, say N

2. initialize fact to 1

3. repeat N times

1. replace fact by k*fact
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2. display fact

4. Stop

The Basic Construct of for Repetition

In general the most common form of the for repetition (for use in a program, not on the 
command line)  is

for index=j:k

statements

end

or

for index=j:m:k

statements

end

Note the following points carefully:

1. j:k is a vector with elements j, j+1, j+2, j+3, ... , k

2. j:m:k is a vector with elements j, j+m, j+2m, j+3m, ... such that the last element does not exeed 

k if m > 0.

Avoid for repetition by vectorizing

There are situations where the for repetition is esential, as many examples presented here. 

However, the way Matlab designed, the for repetition tend to be inefficient in terms of computing time. 

For example, suppose we want to evaluate

∑
n=1

100000

n2

Here is how to do it with the for repetition

t0=clock;

N=100000;

sum=0;

for n=1:N

    sum=sum+n^2;
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end

etime(clock, t0)

Now, try to vectorize the calculation (before looking at the solution). Here it is

t0=clock;

N=100000;

n=1:N;

s=sum(1./n.^2);

etime(clock, t0)

The last way takes only 0.0160 second on the dual core, it is more than 12.4 times faster with 

the same computer. Now suppose, we want to calculate

∑
n=1

100000
1
n2

Here is the for repetition with tic and toc to write the elapsed time used to be

tic

N=100000;

sum=0;

for n=1:N

    sum=sum+1/n^2;

end

toc

This way takes about 0.4060. No if we try to vectorize the sum

tic

N=100000;

n=1:N;

s=sum(1./n.^2);
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toc

The elapsed time of this calculation takes only 0.016 second or 26.4 times faster compared with the 

first way.

A Common Mistakes: for less loop

A very common mistakes is to omit the word for in the repetition. It will give the terrible result, 

of course. For example

tic

N=100000;

sum=0;

n=1:N

    sum=sum+1/n^2;

end

toc

Problems

1. Write  Matlab  programs  to  find  the  followings  sum  (a)  with  for  repetition  and  (b)  by

vectorization. Time both version each case.

(a) 12223242⋯20002

(b) 1−
1
3


1
5
−

1
7


1
9
−⋯−

1
1003

(c) sum the left hand side of the series

1

12.32 
1

32 .52
1

52 .72 ⋯=
2−8

16

2. One of method to approach the integral expression is Simpson 1/3 rule. The method can be

defined as

I =
h
3 [ f 0 f N4∑

i=1

N /2

f 2i−12∑
i=1

N /2

f 2i]
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if f =x e−x , try to obtain result of the calculation with for loop and vectorization.

3. Calculate the squares of every integer number from 1 to 10000 in a for loop without initializing

the array of the squares first.

4. Calculate the squares of every integer number from 1 to 10000 in a for loop using the zeros

function to pre-allocate the array of squares first.

5. Calculate the squares of every integer number from 1 to 10000 with vector.

Recommended Reading

Chapman, S.J. 2002. Matlab Programming for Engineers 2nd, USA: Brooks/Cole.

Hahn, B.D; Valentine, D.T. 2007. Essential Matlab for Engineers and Scientists 3rd , Amsterdam: 
Elesevier

Reporting

The results of this lab work must be reported to lecterer in the next meeting. Each student 

must report individually and present their results to get the feedbacks from the lecturer. 
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UNIT 7

THE WHILE LOOP

Learning Objectives

The objectives of this unit are to introduce some of basic concepts of Matlab including:

1. The basic construct of repeating while loop.

2. The use of the repeating while loop, its application to stastical physics

Concepts

The while loop is a block of statements that is repeated indefinitely as long as the condition is 
satisfied. The general form of a while loop is

while (condition)

statements

............

.............

end

If the condition is non zero (true), the statements between the word while and end will be 

executed, and control will return to the while statement. If the condition is still non zero, the statements

will be executed again. The process will be executed until the condition become zero (false). When 

control returns to the while statement and the condition is zero, the program will execute the first 

statement after the end.

Statistical Analysis

It is very common in physics experiment, that we get a large set of data. What can we do with 

the data? If we measure a physics quantity repeatedly, so we must get the best point. The best point of 

numbers is called average number and defined as

x=
1
N
∑
i=1

N

x i (6-1)

where x i is sample i  of N data. If all of the input values are available in an array, the everage of a set

of numbers can be calculated either directly from equation (6-1) or elseby built-in Matlab function 
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mean.

The standard deviation of a set numbers is defned as

s= N ∑
i

N

xi
2
−∑

i

N

x i
2

N N−1

Standard deviation is a measure of the mount of scatter on the measurements. The greater 

standard deviation, the more scattered are the points in the data set. If all of the input values are 

available in an array, the standard deviation can be calculated either directly from equation (6-2) or else

by Matlab built-in function std.

Activity

1. State the problem

Calculate the everage and standard deviation of a set of measurement data set, assuming that all 

data are positive or zero and assuming that we do not know how many measurements are 

included in the data set. A negative data input will mark the end of the set of measurements. 

2. Define the inputs and outputs

The data required in this program are an unknown number of positive or zero numbers. The 

outputs of this program are a printout of the everage and standard deviation of the inputs data 

set. In addition, the number of inputs is also printed out to check that the inputs are read 

correctly.

3. Design the algorithm

This program can be broken down into three major steps.

Accumulate the input data

Calculate the everage and standard deviation

Write out the everage, standard deviation and number of points.

The pseucode for these steps is:

Initialize N, sum_x, sum_x2 to 0
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Prompt user for first number

Read in first x

while x>=0

n <--------- n+1

sum_x <-------- sum_x +  x

sum_x2 <-------- sum_x + x^2

Prompt user for next number

Read in next x

end

Next, we must calculate the everage and standard deviation. The pseucode of the steps are

just like equation (6-1) and (6-2). 

x_avg <------- 1/N* sum_x

x_std <-------- sqrt( (N *sum_x2 - ( sum_x )^2)/(N*(N-1)) )

Finally, we must write out the result

write out the everage value x_avg

write out the standard deviation

write out the number of input data points.

Problems

1. Write Matlab programs to find the followings sum with the while statement, so that the last term

less than 10-5. Finish the problems using the steps we have done. If you want, time how long

does the process take.

(a) 1
1
2


1
3


1
4


1
5
⋯

(b) 1−
1
3


1
5
−

1
7


1
9
−⋯
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(c) 1−
1

32


1

52
−

1

72


1

92
−⋯

Recommended Reading

Chapman, S.J. 2002. Matlab Programming for Engineers 2nd, USA: Brooks/Cole.

Hahn, B.D; Valentine, D.T. 2007. Essential Matlab for Engineers and Scientists 3rd , Amsterdam: 
Elesevier

Reporting

The results of this lab work must be reported to lecterer in the next meeting. Each  student

must report individually and present their results to get the feedbacks from the lecturer. 
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UNIT 8

The Break and Continue Statements

Learning Objectives

The objectives of this unit are to introduce some of concepts, including:

1. Basic concept of using break and continue statements

2. Nesting loop

3. Fitting a line to a set of noisy measurement

Concepts

There are two additional statements that can be used to control the while and for loop. There are
break and continue statements. The break statement will terminate the execution of loop and pass  
control to the next statement after the end of the loop, while the continue statement will terminate the 
current passing through the loop and return to the top of the loop. For more clearly, notice the example 
below

for i=1:5

    if i==3

        break;

    end

    fprintf('%i ',i);

 end

disp('berakhir');

resulting in

1 2 berakhir

The following is the example for the continue standard

for i=1:5

    if i==3

        break;

    end

    fprintf('%i ',i);

 end

disp('berakhir');

46



resulting in

1 2 4 5 berakhir

Nesting Loops

It is possible for one loop to be completely inside another loop. If one loop is completely inside 

another loop, it is called nested loops. Notice the example below

for i=1:5

    for j=1:5

        z=i + j;

        printf('%i +  %i =  %i \n',i,j,z);

    end

end

resulting in

1 + 1 =  2 

1 + 2 =  3 

1 + 3 =  4 

2 + 1 =  3 

2 + 2 =  4 

2 + 3 =  5 

3 + 1 =  4 

3 + 2 =  5 

3 + 3 =  6 

Fitting a line to a set of noisy measurement

The velocity of an object in the presence of a constant gravitational field is given by

v t =v0a t (7-1)

where v t  is the velocity of an object eact time, v0 is the initial velocity, t is time and a is the 

acceleration due to gravity. From the function v, we can plot the velocity versus time. As you know that

the graphic is straight line. However, when we go out from the laboratory and attempt to measure the 

velocity versus time of an object and plot the data, our data will not fall along a straight line. They may 

come close, but never line up perfectly. Why not? Because we never measure perfectly. In this case, we

need the linear regression. Given a noisy set of measurements (x,y) that appear to fall along a straight 
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line, how can we find the equation of the line

y=mxb (7-2)

which best fits the measurements? If we can find the regression coefficeint m and b, then we can 

predict y at any given x. A standard method for finding the coefficients m and b is the method of least 

square.The slope of the least square line is given by

m=
∑ xy −∑ x  y

∑ x2
−∑ x x

(7-3)

and the intercept of the least square line is given by

b=y−m x (7-4).

Activity

1. State of the problem

Calculate the slope m and intercept b of the least square line to produce the line such as (7-2). 

The input data (x,y) is read from the keyboard. Plot both the input data points and the fitted line.

1. Define Inputs and Outputs

The inputs required in this program are the number of data points, plus the pair of points (x,y). 

The output of this program are the slope m and the intercept b of the best line fitted.

2. Describe the algorithm

This program can be broken down into six major steps:

(1) Get the number of inputs data points

(2) Read the input data values

(3) Calculate the required statistics

(4) Calculate the slope and intercept

(5) Write out the slope and intercept

(6) Plot the data points and fitted line.

The pseucode of these steps is shown below
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Print message describing purpose of the program

n_points <-------- input('input the number of data points');

for i=1:n_points

temp <------- input('input data values [ x y] pair')

x(i) <------ temp(1)

y(i) <------ temp(2)

end

Next, we must accumulate the required statistics data. There are the sums 

∑ xy , ∑ x , ∑ x2 and ∑ y . The pseucode of this program is

initialize sum_x, sum_xy, sum_x2 and sum_y to 0

for i=1 : n_points

sum_x <--------sum_x + x

sum_xy <------ sum_xy + x*y

sum_x2 <------ sum_x2 + x^2

sum_y <----- sum_y + y

end

Next, we must calculate the slope and intercept of the least square line. The pseucode of this 

program is

y_bar <------- y / n_points

x_bar <------- x / n_points

slope <------- (sum_xy – sum_x * y_bar) / (sum_x2 – sum_x * x_bar)

y_int <------- y_bar – m * x_bar 

Finally, we must write out and plot the results. We must plot the data points and fitted line 

in one frame. To do that, we  must use the hold command. Recall, if we want to add a picture into 

previous figure, we write hold on. In the end of program, do not forget to write hold off .
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Problems

1. When a ball is thrown upward, trajectory of the motion will be parabolic. As you know that 

there are two components of motion, x-component and y-component. When we start throwing, 

we have two initial velocity components, these are v0x=v0 cos and v0y=v0 sin  . The 

height of the ball at any time  after it is thrown is given by

y t= y0v0y t
1
2

g t 2

while the horizontal distance travelled by the ball after it is thrown is given by

x t =x0v0x t

(a) Create a program to calculate y and x at any time if the initial velocity is 3 and angle

=60o

(b) Find when does the ball achieve maximum height.

2. The nth Fibonachi number is defined by the following recursion equation

f 1=1 ; f 2=2 ; f 3=3 ; ....
f n= f n−1 f n−2

Therefore, f 3= f 1 f 2=21=3 , and so forth for higher numbers. Create a 

program to calculate and write out the Fibonachi number for n>2.

Recommended Reading

Chapman, S.J. 2002. Matlab Programming for Engineers 2nd, USA: Brooks/Cole.

Hahn, B.D; Valentine, D.T. 2007. Essential Matlab for Engineers and Scientists 3rd , Amsterdam: 
Elesevier

Reporting

The results of this lab work must be reported to lecterer in the next meeting. Each student 

must report individually and present their results to get the feedbacks from the lecturer. 
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