
1 INTRODUCTION 
 Recently, the linear motion stage has become a vi-
tally important part of precision industry. Due to 
high stiffness and resolution properties, lead-screw 
architectures are usually employed in linear table 
which is broadly used in industry automation equip-
ment, semiconductor manufacturing processes and 
pharmaceutical applications. This mechanism often 
exists several kinds of disturbances, such that non-
linear friction and uncertainties, that will affect the 
precision and tracking performance of controlled 
system.  

The adaptive fuzzy controllers [2, 3, 5] have 
shown better capability in situations where the sys-
tem model with uncertainties and unknown varia-
tions. Wang had proposed stable direct and indirect 
adaptive fuzzy controllers for nonlinear systems [3]. 
Yin and Lee [4] proposed a fuzzy model-reference 
adaptive controller for the system with unknown pa-
rameters. The approximation error in the adaptive 
fuzzy control systems is generally inevitable [1, 2]. 
Also, in the practical applications, systems variable 
are continually by external disturbances and friction 
force. Thus, the adaptive fuzzy controller should be 
designed to be robust to cope with approximation er-
ror. So, the aim of our research is to design a con-
troller that ensures to have a smaller tracking error. 
 In this paper, we proposed direct adaptive fuzzy 
control method that guarantees the tracking error is 
smaller. The plant model with a friction effect is 
considered here. First, we design the direct fuzzy 
controller that able to deal with two-axis on motion 
stage. Second, we need to know the all parameters of 
every axis motor that can make up the motion stage 
model. Final, based on the proposed architecture, we 
can obtain the trajectories of X-Y stage. 

2 MODELING OF TWO-AXIS STAGE 

  The dynamic equation the single-axis mechanism 

with the friction model include is 
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where yxi , ( x  and y  denote the axis), iJ  is 

the moment of inertia, iB  is the damping coeffi-

cient; LiT  is the external disturbance term including 

cross-coupled interference and )( ifi vT  is the fric-

tion torque, iv  is the linear velocity of X- and Y- 

axis. Considering Coulomb friction, viscous friction 

and Stribeck effect, the friction torque can be formu-

lated as follows: 
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where iFC  is the Coulomb friction, SiF  is the stat-

ic friction, siv  is the Stribeck velocity parameter,  

viK  is the coefficient of viscous friction, )sgn(  is a 

sign function. All the parameters in (2) are time-

varying. 
 Base on realization of Field-oriented control, the 
dynamic equation can be simplified as following:  

*

qtiei iKT                                (3.1) 

2/3 fdmdt IMLk                 (3.2)               

where M  denotes the number of primary pole pairs,  

mdL is d axis inductances, fdI denotes equivalent 

d -axis magnetizing current, tiK  is the denote 

torque constant.  
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3 ROBUST ADAPTIVE FUZZY CONTROL 
We consider the research equation in the follow-

ing form. 
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where x  is the position variable of stage, )(f  is 

unknown function and b  is unknown positive con-

stant. We adopt THENIf   fuzzy rule to describe 

the control rule,  

IF 1x is 
rP1 THEN …THEN nx  is 

r

nP , and u  is 
rQ                               (5) 

where 
r

nP  and 
rQ  are fuzzy sets in R . 

We define Tknk )
1

,,( k  to let polynomial 
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1  all root in left plane. The con-

trol law can be defined as following: 
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From (4) and (6), the close dynamic equation is  
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Base on choosing k  value, we can get the error 

which will be approach zero when the time ap-

proaches infinity. However, designing a control law 

)/( xuu   and a adjust parameter base on direct 

adaptive fuzzy control, it can make output value as 

similar as possible for ideal output. We design a di-

rect fuzzy control as following: 

)/( xuu D                              (8) 

where Du  is a fuzzy system and   is the adjusta-

ble parameter sets. Fuzzy system can be constructed 

by two steps: 

Step 1: Define im  fuzzy sets il

iA  for variable 
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where iml ,,2,11   and ni ,,2,1  . 

 We adopt single-valued fuzzy control, product in-
ference engine and center average defuzzifier to de-
sign fuzzy control as following: 
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where 
nll

u
y

1

 is a free parameter and the fuzzy con-

trol is as following: 
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where )(xξ  is 
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rank vector, it’s element as 

following: 
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 From (8) to (6), the equation is as following: 
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close-loop dynamic equation can be written in vector 

form. 
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Defining optimal parameter is as following 
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Defining minimum approach error is as following 
**)/( uxuw D                           (15) 

The close-loop dynamic equation can be written as 
following: 
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We define the many equations, but we don’t know 
whether the system is stable. So we use the Lyapun-
ov theory to decide the system stable. First, Lyapun-
ov equation is defined as following: 
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where r  is a positive constant and P  is a positive 

definite matrix. But P needs to satisfy that 

QPΑPA -T  , where Q  is a arbitrarily positive 

definite matrix. Second, the differential operator is 

used in Lyapunov equation. That is  
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 We choose last one row of P  matrix is 
n

p , so 

we can know bpePbe n

TT  . The differential Lya-

punov equation can be rewritten as following: 
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In order to 0V , we adopt the adaptive law 

)(xr n

T
ξpeθ  . The differential Lyapunov equation 

can be rewritten as following: 
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where 0Q , we can design many rules by fuzzy 

system to let w  smaller. Base on Qebpe
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The differential Lyapunov equation less than zero. 

4 SIMULANTION RESULTS 
 In this section, direct adaptive fuzzy controller is 
presented to verify the smaller tracking error of pro-
posed control methods. The X-Y table system pa-
rameters are assumed in Table 1.  

TABLE1 X-Y STAGE MODEL PARAMETERS 

X-Y stage model Model parameters 

X-axis model ANm
tx

/96.0K    
23 sec109.2 NmJ

x

  

radNmB
x

sec/1003.0  

Y-axis model ANm
ty

/96.0K   
23 sec1079.2 NmJ

y

  

radNmB
y

sec/1015.0  

Stribeck  Friction  N
ci

15.0F  , NF
si

09.0  

smV
si

/10 , 02.0  

The membership functions are selected as follows: 

)))2(5exp(1/(1)(3  iiN xx , ))5.1(exp()( 2
2  iiN xx , 

))5.0(exp()( 2
1  iiN xx , ))5.0(exp()( 2

1  iiP xx ,  

))5.1(exp()( 2
2  iiP xx ,  and 

)))2(5exp(1/(1)(3  iiP xx , spanning in the interval 

]3,3[ . Let the initial state ]01[)0( x , and all ini-

tial value of )0(θ  is set to zero vector. The parame-

ters are chosen as 11 k , 102 k , 50r and 
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The circle contour is utilized in our simulation. The 

math model can be described as following: 
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where R  is radius of the circle,   is the variable 

value of angle, iX  is the motion command of the 

X-axis, iY  is the motion command of the Y-axis. 

The reference signal for X-axis is assumed as  

)sin(*1)( ttX i  , Y-axis is assumed as 

)sin(*1)( ttYi  ,  and the external disturbance is set 

to 10 in our simulation.  

The simulation results of the adaptive fuzzy con-

trol method are obtained to confirm the tracking 

characteristics. Two indexes are employed to 

demonstrate the performances. They are the average 

tracking error and tracking error standard deviation. 

They are defined as:  

(1) Average tracking error:  





n

k n

kE
m

1

)(
              (21.1) 

with )()()( 22 kekekE yx  , yxi ,  

where )(kex  is the tracking error in X-axis, )(key  

is the tracking error in Y-axis, n  is the total simu-

lation points.   

(2) Tracking error standard deviation: 
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Figure 1(a) shows the X-axis tracking response. It 

can be observed that the displacement error can be 

reduced significantly at 1 second. On average, the 

tracking error of X-axis is 0.0488, and the standard 

deviation of error is 0.0647. The Figure 1(b) shows 

the Y-axis tracking response, and its plant model is 

different from X-axis one. It can be seen that the 

tracking error can be substantially improved and the 

error is diminished at 2 second. On average, the 

tracking error of Y-axis is 0.0530, and the standard 

deviation of error is 0.1347.Figure 1(c) shows the 

contour trajectory of X-Y stage. In the beginning, 

trajectory route has deviated from the path of the 

reference. After two seconds, the adaptive fuzzy 

control architecture can accomplish the better track-

ing performance and trajectory error converges to ze-

ro at steady state. On average, the mean trajectory er-

ror is 0.079 and the standard deviation of trajectory 

error is 0.119.  

 
(a) 



 
(b) 

 
(c) 

Figure 1. Simulation results of computed-torque controller due 
to circle contour. (a) contour tracking trajectory (b) trajectories 
of X and Y axes. 

5 CONCLUSIONS 

The precision motion X-Y stage and adaptive fuzzy 
controller have been designed in this paper. The non-
linear friction effect and external disturbance behav-
ior are including in the system model. Based on the 
Lyapunov theorem, adaptive laws of fuzzy coeffi-
cients can be obtained and utilized for contour track-
ing application. The simulation results show that the 
proposed adaptive fuzzy controller can performs 
well in control the X-Y stage system.   
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