



# MATERI KULIAH IPA-3 JURUSAN PENDIDIKAN IPA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM



UNIT 1:
PLANT AND ANIMAL
REPRODUCTIVE SYSTEM



#### **Latar Belakang**

- Pada K-13 terdapat KD sebagai berikut :
- 3.2 Memahami reproduksi pada tumbuhan dan hewan, sifat keturunan, serta kelangsungan makhluk hidup
- 4.2 Menyajikan karya hasil perkembangbiakan pada tumbuhan
- Kemampuan apa saja yang harus dilatihkan ke siswa?
- Materi apa saja yang harus dipelajari siswa?
- Bagaimana kegiatan belajar yang sesuai dengan kemampuan dan materi tersebut?

#### Tujuan

## Setelah mengikuti sesi ini, mahasiswa mampu:

- Memahami maksud Kompetensi Dasar (KD) dan lingkup materi dalam KD 3.2 Kelas IX
- Memahami konsep reproduksi pada tumbuhan dan hewan, sifat keturunan dan kelangsungan makhluk hidup
- Mengembangkan ide pembelajaran di sekolah yang sesuai dengan "kemampuan" dan "Konten Materi" pada KD 3.2 Kelas IX

### Garis Besar Kegiatan

#### Introduction - 5'

 Dosen menyampaikan latar belakang, tujuan, dan garis besar langkah kegiatan.



#### Connection - 10'

 Recall : Pemahaman tentang
 Organ reproduksi tumbuhan dan hewan.



### Extension/ Penguatan – 2'

- Baca buku Biologi
   Universitas
   mengenai
   reproduksi
   tumbuhan dan
   hewan
  - penugasan

#### Reflection - 3'

- Mengingat kembali:
- Komponen
   "Kemampuan" dan
   "Konten Materi" apa
   saja yang terdapat
   pada KD 3.2

#### Application - 80'

• Observasi gambar struktur organ reproduksi tumbuhan dan hewan



#### **Ungkap Pendapat (10')**

- Apa saja penyusun putik dan benang sari??
- Bagaimana fungsi masing masing bagian tersebut?
- Apa saja jenis reproduksi pada hewan?
- Masih ingatkah jenis reproduksi aseksual pada hewan?



### Application – 80'

Kemampuan apakah yang harus dikuasai siswa? Materi apakah yang terkandung di dalamnya?

- 3.2 Memahami reproduksi pada tumbuhan dan hewan, sifat keturunan, serta kelangsungan makhluk hidup
- 4.2 Menyajikan karya hasil perkembangbiakan pada tumbuhan

## Catatlah hasil amatan Saudara menggunakan kertas plano dengan format seperti berikut:

| KD 3.3    |        | KD 4.3    |        |  |
|-----------|--------|-----------|--------|--|
| Kemampuan | Materi | Kemampuan | Materi |  |
|           |        |           |        |  |
|           |        |           |        |  |
|           |        |           |        |  |

#### Berbagi Gagasan

- Sajikanlah hasil diskusi kelompok Saudara kepada kelompok lain
- •Kelompok lain: Berikan komentar, khususnya terkait KETEPATAN jawaban atas pertanyaan tadi.

#### SISTEM REPRODUKSI TUMBUHAN

- Vegetatif (asexual)
- Lebih sering terjadi pada Tumbuhan.

Tidak melibatkan pertemuan gamet jantan dan gamet betina.

- Generatif (sexual)
- Terjadi baik pada Tumbuhan maupun Hewan
- Melibatkan pertemuan gamet jantan dan betina.

### BEBERAPA CONTOH REPRODUKSI SECARA VEGETATIF ALAMI DAN BUATAN PADA TUMBUHAN

#### Alami

- **1. Tunas** (pisang, tebuh, pohon pinang dan bambu).
- **2. Spora (**Lumut dan tumbuhan paku)
- 3. Tunas adventif (cocor bebek)
- **4. Stolon / geragih** (pegagan, strawberry, semanggi)
- **5. Rizoma / rimpang (**Kunyit, jahe, Bangle, lengkuas dan tebuh.
- **6. Umbi batang** (kentang, ubi jalar)
- 7. Umbi lapis (bawang-bawangan dan bunga tulip).

#### Buatan

Mencangkok

Menempel/Okulasi

Menyambung atau Enten

Merunduk

Stek

Kultur jaringan

### **Asexual Reproduction**

Asexual reproduction is natural "cloning."
 Parts of the plant, such as leaves or stems, produce roots and become an independent plant.

### Sexual Reproduction

 Sexual reproduction requires fusion of male cells in the pollen grain with female cells in the ovule.

### Pergiliran Keturunan

- Plants have a double life cycle with two distinct forms:
  - Sporophyte: produce diploid spores by mitosis.
  - Gametophyte: produce gametes by meiosis

### Reproduksi Generatif pada Tumbuhan

#### Flower Parts

(a)



### Klasifikasi Bunga

- Bunga lengkap dan bunga tak lengkap
- Bunga sempurna dan Bunga tidak sempurna

#### MACAM MACAM PENYERBUKAN BERDASARKAN ASAL SERBUK SARI

- Penyerbukan sendiri (autogami)
- Penyerbukan tetangga(geitonogami)
- Penyerbukan silang(allogami / xenogami)
- Penverbukan bastar (hvbridogami)



Penyerbukan pada tumbuhan meliputi penyerbukan (1) sendiri, (2) tetangga, (3) silang, dan (4) bastar.

## MACAM MACAM PENYERBUKAN BERDASARKAN VEKTOR/PERANTARA.

□Anemogami (perantaraan angin).□Hidrogami (perantaraan air).□Antropogami (perantaraan manusia).□Zoidiogami (perantaraan hewan).

siput : malakogami

serangga: entomogami

kelelawar : kiropterogami

burung : ornitogami

#### Perkembangan Generatif pada Tumbuhan

- **Konjugasi**, yaitu reproduksi generatif pada tumbuhan yang belum jelas alat kelaminnya. Contoh: *Spyrogyra* (ganggang hijau) yang koloninya berbentuk benang.
- **Isogami**, yaitu peleburan 2 sel gamet atau kelamin yang sama besar. Contoh: *Clamydomonas* (ganggang biru)
- Anisogami, yaitu peleburan 2 sel gamet yang besarnya tidak sama. Gamet 1 lebih kecil (mikrogamet) dan gamet 2 lebih besar (makrogamet). Contoh: *Ulva* (ganggang yang berbentuk lembaran).
- Penyerbukan yang diikuti dengan pembuahan. Terjadi pada tumbuhan berbunga (Antophyta) atau tumbuhan berbiji (Spermatophyta). Alat kelamin jantan berupa benang sari dan alat kelamin betinanya berupa putik.

#### MACAM – MACAM PEMBUAHAN

#### GYMNOSPERMAE

terjadi pembuahan tunggal (hanya terbentuk biji)

#### ANGIOSPERMAE

terjadi pembuahan ganda ( terbentuk biji dan buah)

### Angiosperm Life Cycle



#### Gametogenesis: Male



Copyright © 2005 Pearson Prentice Hall, Inc.

### Gametogenesis: Female



#### Double Fertilization



© 2011 Pearson Education, Inc.

#### LIFE CYCLE OF PINUS



#### **STROBILUS**

• Strobilus yang telah pecah.

 Strobilus yang belum pecah





#### **TUGAS KELOMPOK**

Tiap kelompok

#### Flower to Fruit



#### Ovule to Seed



(a) Early development of the seed

© 2011 Pearson Education, Inc.

### Seed Anatomy



(c) Bean seed (dicot)

© 2011 Pearson Education, Inc.

#### **Seed Germination**





© 2011 Pearson Education, Inc

© 2011 Pearson Education, Inc.

 Umbi bawang merah mengandung senyawa turunan asam amino yang mengandung sulfur yaitu Sikloalliin 2%, propilalliin dan propenilalliin. Bila selsel umbi pecah senyawa tersebut akan berubah menjadi bentuk ester ( ester asam tiosulfinat), sulfinil disulfida (Kepaen), disulfida dan polisulfida, begitu juga tiofen. Di samping itu terbentuk pula propantial-S-oksida (suatu senyawa yang dapat menyebabkan keluarnya air mata). Disamping turunan asam amino, ditemukan pula adenosine dan prostaglandin.8,11)

- <u>www.wou.edu</u>
- Buku solomon

### **Animal Reproductive Process**

### Reproduction

- Reproduction is one of the ubiquitous properties of life.
- Evolution is inextricably linked to reproduction.
- Two modes of reproduction are recognized:
  - Asexual
  - Sexual



### Asexual vs. Sexual Reproduction

- Asexual reproduction the production of offspring whose genes all come from one parent without the fusion of egg and sperm.
  - Usually diploid eggs are produced by mitosis which then develop directly.

### Asexual vs. Sexual Reproduction

- **Sexual reproduction** the production of offspring by the fusion of haploid gametes (eggs & sperm) from two parents to form a diploid zygote (fertilized egg).
  - Gametes arise by meiosis.
  - Genetic variability is increased by the random combinations of genes from the parents.



Bacteria and many protozoa can reproduce by binary fission – separating into two or more individuals approximately the same size.



- Budding is a form of asexual reproduction where new individuals form as offshoots of a parent.
- The offspring may separate or remain attached to form colonies.



 Freshwater sponges release specialized groups of cells called gemmules that can grow into new individuals.



- Fragmentation results when an organism's body is broken into several pieces and each piece grows into a new organism.
  - Regeneration the regrowth of lost body parts.



- Fragmentation occurs in some sponges, cnidarians, polychaete annelids, tunicates.
  - Sea stars can regenerate lost limbs, but only species in the genus *Linckia* can form new individuals from broken arms.



### Asexual Reproduction - Advantages

- Animals living far from members of their own species can reproduce without having to search for a mate.
- Numerous offspring quickly ideal for colonizing a new area.
- Advantageous in a stable, favorable environment because it reproduces a successful genotype precisely.



- Generally involves two parents.
- Special germ cells unite to form a zygote.
- Sexual reproduction recombines parental characters.
  - A richer, more diversified population results.
- In haploid asexual organisms mutations are expressed and selected quickly.
- In sexual reproduction a normal gene on the homologous chromosome may mask a gene mutation.

- Why do so many animals reproduce sexually rather than asexually?
- The costs of sexual reproduction are greater than asexual methods:
  - More complicated.
  - Requires more time.
  - Uses more energy.
  - The cost of meiosis to the female is passage of only half of her genes to offspring.
  - Production of males reduces resources for females that could produce eggs.

#### However:

- Sexual organisms produce more novel genotypes to survive in times of environmental change.
- In crowded habitats, selection is intense and diversity prevents extinction.
- On a geological time scale sexual lineages with less variation are prone to extinction.
- Many invertebrates with both sexual and asexual modes enjoy the advantages of both.

- Parthenogenesis involves the development of an embryo from an unfertilized egg or one where sperm & egg nuclei did not fuse.
  - Ameiotic parthenogenesis no meiosis, egg is formed by mitosis (diploid)
  - Meiotic parthenogenesis haploid ovum formed by meiosis, it may be activated by a male (or not).

- In some animals (aphids (kutu daun), rotifers, Daphnia (crustacea air tawar)) the females can produce two types of eggs depends on environment condition.
  - One must be fertilized.
  - One type will develop directly into haploid adults parthenogenesis.
    - Haploid females produce eggs by mitosis.(hewan dewasa yang dihasilkan bersifat haploid) dan sel-selnya tidak mengalami miosis dalam pembentukan telur baru.

- Daphnia reproduce asexually (parthenogenesis) when conditions are favorable.
- pergantian reproduksi tergantung musim, reproduksi aseksual terjadi pada kondisi yang menguntungkan dan reproduksi seksual terjadi ketika adanya cekaman lingkungan.
- In times of environmental stress, they utilize sexual reproduction.
  - Increases variation!

 In many social insects, like honeybees, males (drones) (lebah madu jantan) are haploid and are produced by parthenogenesis while females (workers & queens) develop from fertilized eggs.

- Parthenogenesis occurs in vertebrates in some fishes, amphibians, lizards, and has recently been discovered in <u>snakes</u>.
  - After meiosis, the chromosomes are doubled, creating diploid "zygotes".
  - Often mating behavior is required to stimulate development of offspring.
  - Bereproduksi melalui partenogenesis yang kompleks yang melibatkan penggandaan kromosom, contoh 15 spesies kadal.

### Hermaphroditism

- Hermaphroditism occurs when an organism has both male and female reproductive systems.
  - Monoecious
  - Some can fertilize themselves.
  - Usually a mate is required – they can fertilize each other.



# Sequential Hermaphroditism

- In sequential hermaphroditism, an individual reverses its sex during its lifetime.
  - In wrasses, sex reversal is associated with age, size and social conditions.
  - Fish are female first.
  - The largest female becomes male if the previous male dies.



### Sequential Hermaphroditism

- There are also sequential hermaphrodites that are male first, later changing to female.
- This occurs in species that produce more eggs at a bigger size – so it is advantageous to have larger females.
  - Oysters

# Perbalikan jenis kelamin pada ikan karang, wrasse

- Semua spesies pada ikan ini terlahir betina, tetapi indvidu yang tertua dan terbesar mengalami perubahan kelamin menjadi dan menyelesaikan kehidupannya sebagai jantan
- Perubahan jenis kelamin dikaitkan dengan ukuran tubuh

### Fertilization

- Fertilization fusion of egg and sperm into a single diploid cell, the zygote.
  - External
  - Internal



#### **External Fertilization**

External fertilization –

fertilization takes plac outside the female's body.

 A wet environment is required so gametes don't dry out and so sperm may swim to the eggs.



# **Ensuring Survival of Offspring**

- Species with external fertilization produce huge quantities of gametes that result in lots of zygotes.
  - Predation on young is high.
  - Few will survive to reproduce.

# **Ensuring Survival of Offspring**

- Species with internal fertilization produce fewer zygotes, but protect them more from predation.
  - Tough eggshells
  - Embryo may develop in reproductive tract of female
  - Parental care of eggs & offspring



(Kutu air raksasa)

# Perlindungan telur pada Kutu air raksasa

- Kutu air raksasa menghasilkan keturunan dalam jumlah relatif sedikit tetapi perlindungan dari induk meningkatkan kelangsungan hidup keturunan tersebut
- Fertilisasi internal dan betina menempelkan telur yang sudah dibuahi ke bagian belakang jantan
- Kutu air jantan membawa telurnya dan menjaganya supaya tetap lembab dan terhindar dari parasit.

### Advantages of Sexual Reproduction

- Sexual reproduction has costs including finding mates, greater energy cost, reduced proportion of genes passed on to offspring, and slower population growth.
- However, sexual reproduction increases
   variability in the population important
   during times of environmental change.

### TUGAS kelompok

- TIAP KELOMPOK MEMBAHAS
- 1. PARTHENOGENESIS
- 2. BUDDING
- 3.FRAGMENTATION
- 4. BINER FUSION
- 5.EXTERNAL FERTILIZATION(ikan, katak)
- 6. Hermafrodit

### Gamete Production & Delivery

- Gametes (eggs & sperm) are required for sexual reproduction.
- Usually, gametes are produced in gonads (ovaries & testes).
- Germ cells are set aside early in development. They will produce only gametes.

### Migration of Germ Cells

- Germ cells arise in the yolk-sac endoderm of vertebrates – not in the gonads.
- They migrate to the gonads using amoeboid movement.





### Gametogenesis

- Gametogenesis the production of gametes.
  - Spermatogenesis each primary spermatocyte divides to form 4 sperm.
  - Oogenesis each primary oocyte divides to form 1 ovum and 2-3 polar bodies.
    - In oogenesis, cytokinesis is unequal, most of the cytoplasm goes to one daughter cell which becomes the ovum. The other cells, **polar bodies**, degenerate.

### Spermatogenesis

- Outermost layer of the seminiferous tubules contain spermatogonia, diploid cells that grow to become primary spermatocytes.
- After the first meiotic division, they are called secondary spermatocytes.
- When meiosis is complete the haploid cells are spermatids.

## Spermatogenesis Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



# Spermatogenes

 Spermatids mature into motile sperm with a tail for locomotion, and a head containing an acrosome as well as the nucleus.



### Oogenesis

- In the ovary, early germ cells called oogonia are diploid.
- Oogonia grow to become primary oocytes.
- After the first meiotic division, the cytoplasm divides unequally and only one secondary oocyte and one polar body result.
- Following the second meiotic division, one ootid and another polar body result.
- The ootid develops into a functional ovum.

### Oogenesis

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



### Oogenesis

 Meiosis is usually arrested at the beginning of meiosis and is not completed until ovulation or fertilization.

### Reproductive Patterns

- Oviparous animals that lay eggs.
  - Most invertebrates, many vertebrates
- Ovoviviparous animals that retain the eggs within their bodies. Nourishment comes from the egg.
  - Some annelids, insects, some fishes, reptiles.
- Viviparous eggs develop in oviduct or uterus, nourishment from mother.
  - Mammals, some sharks, scorpions.

#### Invertebrate Reproductive Systems

- Many insects have separate sexes, internal fertilization and have complex reproductive systems.
  - Female crickets use long ovipositors to deposit eggs.



### Gamete Production & Delivery

- In vertebrates, reproductive systems are similar with a few important variations.
  - Nonmammalian vertebrates usually have one combined opening, the cloaca, for the digestive, excretory, and reproductive systems.
  - The uterus is partly or completely divided into two chambers in most vertebrates.
    - Humans & other mammals with few young, birds & snakes have a single structure.

## Female Reproductive System

- Ovaries are where female gametes, egg cells, are produced.
  - A follicle contains one egg cell as well as follicle cells that nurture the developing egg.
  - Most/all of the follicles a woman will produce have formed before birth.



Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

### Female Reproductive System

- Each month from puberty through menopause one follicle ruptures and releases its egg cell – ovulation.
  - The corpus luteum forms from the ruptured follicle and secretes estrogen and progesterone to help maintain the uterine lining during pregnancy.
     If the egg is not fertilized the lining disintegrates.

# Female Reproductive System

 After ovulation, the egg leaves the ovary and enters the oviduct, which it follows to the uterus.



### Male Reproductive System

- Testes are where male gametes, sperm cells, are produced.
  - Testes contain the seminiferous tubules where sperm are formed.
  - Leydig cells scattered between the tubules produce testosterone & other androgens.
  - Sperm production can't occur at normal body temperature in mammals, so the testes are held outside the body abdominal cavity in the scrotum.

# Male Reproductive System

- After leaving the testes, sperm pass through the epididymis where they become motile and gain the ability to fertilize an egg.
- Sperm leave the body through the vas deferens and urethra.



## Reproductive Cycles

 Males produce sperm continuously, whereas females only release one or a few eggs at certain intervals.

#### Reproductive Cycles in Female Mammals

- Humans & some other primates have a menstrual cycle while other mammals have an estrous cycle.
  - In both, ovulation occurs at a time when the endometrial lining of the uterus is ready for an embryo to implant.
  - If no egg is fertilized, the lining is shed (menstruation) in humans & other primates and is reabsorbed in other mammals.

#### Reproductive Cycles in Female Mammals

- Female mammals that have estrous cycles may have more behavioral changes.
- Estrous cycles may be more closely tied to season and climate.
- Females will usually only mate when in estrus
  - the time surrounding ovulation.

# Female Reproductive Cycle

- The female reproductive cycle in humans contains two parts:
  - Uterine (menstrual) cycle
  - Ovarian cycle
- One integrated cycle involving the uterus & ovaries.

#### Female Reproductive Cycle

 The ovarian and uterine cycles are regulated by changing hormone levels in the blood.



Days

- GnRH (gonadotropin-releasing hormone) is released from the hypothalamus which stimulates the release of LH (luteinizing hormone) and FSH (follicle stimulating hormone) from the pituitary gland.
- FSH stimulates follicle growth, aided by LH.
- The follicle cells start producing estrogen.
  - Rise in estrogen during the follicular phase.

- When the secretion of estrogen begins to rise steeply, the release of FSH and LH rise rapidly as well.
  - Low levels of estrogen inhibit FSH & LH production.
  - High levels of estrogen stimulate FSH & LH production. (Positive feedback)

- The maturing follicle develops an internal fluid filled cavity and grows very large.
  - The follicular phase ends with ovulation. The follicle ruptures releasing the secondary oocyte.

- Following ovulation, during the luteal phase,
   LH stimulates transformation of the follicle into the corpus luteum.
  - The corpus luteum secretes estrogen and progesterone.
  - As the combination of these hormones rises,
     GnRH production in the hypothalamus is inhibited.
     (Negative feedback)

- At the end of the luteal phase, the corpus luteum disintegrates and production of estrogen and progesterone drops.
- Now, the hypothalamus will start producing GnRH and the cycle starts over.

## The Uterine Cycle

- Estrogen and progesterone secreted in the ovary affect the uterus.
- Increasing amounts of estrogen released by the growing follicles causes the lining of the uterus (endometrium) to thicken.
  - The follicular phase of the ovarian is coordinated with the proliferative phase of the uterine cycle.

# The Uterine Cycle

- After ovulation, estrogen & progesterone stimulate the maintenance of the lining and growth of endometrial glands that secrete nutrient fluid to sustain an embryo before implantation.
  - The luteal phase of the ovarian cycle and the secretory phase of the uterine cycle are coordinated.

# The Uterine Cycle

 If the egg is not fertilized, the corpus luteum disintegrates, and production of estrogen and progesterone drops sharply. This triggers breakdown of the endometrium – menstruation.

### Male Reproductive System

- In males, the principle sex hormones are androgens, including testosterone.
  - Produced mainly by Leydig cells in the testes.
  - Responsible for secondary sexual characteristics.
  - Important determinants of behavior in vertebrates.
    - Sex drive
    - Aggression
    - Calling in birds & frogs

# Male Reproductive System

- As in females, GnRH from the hypothalamus stimulates release of FSH and LH from the pituitary.
  - FSH promotes spermatogenesis.
  - LH stimulates Leydig cells to make testosterone.



## Pregnancy

- Conception, fertilization of the egg, occurs in the oviduct.
  - Results in zygote.
- Cleavage, rapid mitotic divisions, starts after 24 hrs.



#### Pregnancy

- After about a week, the ball of cells produced during cleavage develops a cavity and is now called a blastocyst.
- It then implants into the endometrium.

### Pregnancy

 The embryo secretes hormones including human chorionic gonadotropin (hCG) that act like LH to maintain secretion of progesterone and estrogen to maintain the lining of the uterus.

#### First Trimester

- For the first few weeks the embryo gets nutrients from the endometrium.
- The outer layer of the blastocyst the trophoblast grows into the endometrium and forms the placenta.

#### Placental Circulation

 The placenta contains closely entwined embryonic & maternal blood vessels for the exchange of nutrients and wastes.



#### Hormone Levels

hCG is produced by the placenta.

Estrogen and progesterone are produced by the corpus luteum, then by the placenta.



#### First Trimester

- Organogenesis is occurring during the first trimester.
  - The heart starts beating about the fourth week.
  - At 8 weeks, all major organs are present in rudimentary form.
    - Now called a fetus.

#### **Second Trimester**

- The fetus grows to about 30 cm and is very active.
- Hormone levels stabilize, hCG declines, the corpus luteum disintegrates and the placenta takes over production of progesterone.



(a) 5 weeks. Limb buds, eyes, the heart, the liver, and rudiments of all other organs have started to develop in the embryo, which is only about 1 cm long.



(b) 14 weeks. Growth and development of the offspring, now called a fetus, continue during the second trimester. This fetus is about 6 cm long.



(c) 20 weeks. By the end of the second trimester (at 24 weeks), the fetus grows to about 30 cm in length.

#### Third Trimester

- Fetal activity may decrease as space becomes limited.
  - Fetus grows to about 50 cm and 3-4 kg.
- Development of organs is completed.
- Neural development continues even after birth.

# Labor & Delivery

- Birth, parturition,
   occurs through strong
   rhythmic contractions
   of the uterus.
  - Dilation
  - Expulsion
  - Delivery of placenta



#### Lactation

- One defining characteristic of mammals is that we have mammary glands.
- After birth, progesterone levels fall stimulating the production of prolactin which stimulates milk production.
  - The release of milk is controlled by oxytocin.

#### Multiple Births

- Humans are usually uniparous – one offspring at a time.
  - Multiparous animals have several.
- Fraternal twins result from ovulation & fertilization of two eggs.
- Identical twins result from the splitting of one zygote.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



